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Abstract

Most societies reward innovation with market power. Such an entrepreneurial system is

optimal in as far as the materialistic genius celebrated, but not formalized, by many of its

supporters accounts for most of the benefits from innovations. While market power distorts

consumption, it also targets rewards for innovations towards those that generate the greatest

consumer surplus per unit sold. Thus, optimal policy calls for some ex-post distortion but

never full monopoly pricing. This mix can be calibrated empirically. The results address

a number of classical problems and we develop tools for solving multidimensional screening

models with endogenous information structures.
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When high roads, bridges, canals etc. are...supported by the commerce which is

carried on by means of them, they can be made only where that commerce requires

them, and consequently where it is proper to make them...A great bridge cannot be

thrown over a river at a place where nobody passes...things which sometimes happen

in countries where works of this kind are carried on by any other revenue than that

which they themselves are capable of affording.

–Adam Smith, An Inquiry in the Nature and Causes of the Wealth of Nations

Nothing could be more absurd. Whether it was wise for the government to subsi-

dize...Union Pacific Railroad...is an interesting historical question...but it would be

better...to leave it unsolved than to ruin the country...by charging enormous freight

rates and claiming that their sum constitutes a measure of the value...of the invest-

ment.

–Harold Hotelling, “The General Welfare in Relation to Problems of Taxation and Of Railway

and Utility Rates”

Knowledge diffuses most effectively1 in the public domain. However, this efficient free flow

of information affords no opportunity for innovators to recoup the opportunity cost of their

creative work. Therefore, human societies have long debated the relative merits of prizes and

exclusive use as means of rewarding innovation. The latter appears the overwhelming winner

thus far, with intellectual property (IP) of various forms2 (patents, copyrights, trade secrets)

accounting for the lions share of innovator revenue. In fact, IP is one of the oldest tools of

microeconomic policy, dating at least3 to 7th century BCE Greece. Nonetheless, there has been

substantial interest in recent years in supplementing or replacing IP with centrally-directed

subsidies and prizes. In what follows we propose an approach, outlined in Section 1, to simplify

the multidimensional screening problem inherent to jointly choosing prices to charge for and

rewards to give to innovations. This allows us to derive empirically measurable quantities

calibrating the optimal mix of IP and prizes.

1Recent persuasive empirical evidence is provided by Williams (2010).
2We follow much recent literature in seeing the broad institution of market power as a reward for innovation

(regardless of the exact form it takes) as separate from the specific institution of patents. This paper is agnostic as
to when patents are “necessary” for appropriating market power (Boldrin and Levine, 2002, 2008) or even helpful in
doing so (Kultti et al., 2007); instead our focus is on whether market power is appropriate, however implemented.
This contrasts with the classic papers in the theoretical R&D literature (Gilbert and Shapiro, 1990; Green and
Scotchmer, 1995; Klemperer, 1990; O’Donoghue et al., 2004), which assume rents may arise only from a pure patent
system and study the least-cost provision of market power (e.g. breadth vs. length). See Gallini and Scotchmer
(2002) for an overview.

3Athenaeus (c. 200-300), as translated by Jason Aftosmis, writes in Book XII verse 521 lines c8-d3 of IP in
Sybaris dating at least to the 7th century BCE:

[Phylarchus, the 3rd century BCE historian, states that in Sybaris] if some cook or chef invented an
extraordinary recipe of his own, no one but the inventor was entitled to use it for a year in order that
during this time the inventor should have the profit and others might labor to excel in such endeavors.
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Our work addresses a broad debate in our field about how to foster and make the best use of

innovations. Marshall (1890) famously advocated the limitation or even abolition of patents4

and their replacement with prizes, subsidies to provide monopolies incentives to reduce their

prices to cost5 and the financing of public projects from public funds6 to allow marginal cost

pricing. These views were adopted by much of the profession (Pigou, 1920; Hotelling, 1938) and

have become core tenets7 of economics textbooks. Actual policies, of course, starkly diverge

from these precepts: monopolies mostly do not receive specific subsidies, public infrastructure

projects are often asked to cover their fixed costs, divisions may use full cost accounting and

innovators invoke IP protection to exercise market power.

Such institutions are the heart of the idea of (intracorporate, social, political or commercial)

entrepreneurship, whereby an inspired individual or small group undertakes a project for the

prospect of a reward if it passes some form of market test. We seek to understand the circum-

stances under and the extent to which such entrepreneurial institutions, despite the distortions

they cause, are nonetheless socially useful. In doing so, we draw on an idea commonly, but

informally, expressed by the defenders of that system: the importance of materialistic genius.

In Capitalism and Freedom, Friedman (1962) defends8 entrepreneurship by writing,

(T)he great advances of civilization...have never come from centralized govern-

ment...Columbus did not set out...in response to a majority directive...Whitney,

McCormick, Edison, and Ford...no one of these opened new frontiers...in technical

possibilities...in response to governmental directives. Their achievements were the

product of individual genius, of strongly held minority views, of a social climate

permitting variety and diversity.

The primary goal of our paper is thus to formalize these ideas and clarify their connection

to the optimality of market power as a reward for innovation. To do this, we build a framework

that simultaneously captures Smith’s and Hotelling’s competing arguments above, while ac-

4See Book IV, Chapter IX note 110, Chapter XI note 133 and Book VI, Chapter III more broadly.
5Book V, Chapter XIV notes 131 and 133.
6Book V, Chapter XIII, pp. 472-475.
7These views are well summed-up by Hotelling: public investment and the cost of innovations more generally “is

best carried by the public treasury without attempting to assess it against the users of the particular commodity as
such.” Tirole (1988), pages 69-70, illustrates the tensions arising from the inconsistency of such standard prescriptions
with the welfare standards used to study antitrust policy.

8Not only Friedman but other admirers of the entrepreneurial spirit (Schumpeter, 1942; Hayek, 1948; Rand, 1957;
Kirzner, 1973) celebrate the importance of the Edison’s, Ford’s and Gates’s of the world. For example, Rand (1970)
argues that

(O)ne invention opens incalculable avenues to other inventions in other sciences... How can any person
or group know what genius will be born where, and what ideas might occur to him. That’s impossible by
definition.

Yet the connection between the existence of such genius and the entrepreneurial system is far from apparent. Many
nineteenth century utopian socialists argued that capitalism would destroy genius by making all into petty bourgeois
and even Marshall, one of capitalism’s doughtiest defenders, argued in Book IV, Chapter VI that while in the “Middle
Ages...genius...found vent in..work...the modern artisan is apt to be more occupied with management...or to collect
a little store of capital.”
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commodating the quantity-dependent prizes advocated by Barder et al. (2006) and Berndt et

al. (2007). We then develop technical tools to simplify the complex resulting multidimensional

screening9 with endogenous information structures.

These techniques, outlined in Section 1 and developed in detail in Sections 2-4, enable

quantification of the apparently grandiose notion of the value of materialistic genius, based on

intuitive measures of “value”, “materialism” and “genius”. Consider these each in turn:

1. Value: As in the literature on IP (Klemperer, 1990; Scotchmer, 1999) ,we assume the

social value of innovations is proportional to the monopoly profits they could potentially10

earn. Thus, it is appropriate to weight materialistic genius by (square11 of) profits π.

2. Materialism: Materialistic individuals are highly responsive to incentives; materialism

can thus be measured by the elasticity of supply of innovations, which we denote η.

3. Genius: In Friedman’s view, a genius is an innovator whose “vision” cannot be under-

stood by the rest of society; it is in the nature of genius to be indistinguishable from

charlatanism by others. Thus, it is natural to formalize the degree of genius as residual

tail uncertainty that society has about the innovator. A well-known12 measure of such

tail uncertainty is the variance of the logarithm. When prices are close to monopoly,

society may approximately observe the monopoly profit a firm could make. Therefore,

the relevant dimension of residual (to any information I available to the social planner)

heterogeneity in innovations is that orthogonal to profits, the ratio of prices (or mark-ups)

to quantities that we denote by x.

It is therefore natural to formalize the value of materialistic genius as

V ≡ Eπ2 [Var ( log(x)| I, π) η]

9The growing literature on mechanism design for innovation incentives (Scotchmer, 1999; Cornelli and Schanker-
man, 1999; Hopenhayn and Mitchell, 2001; Hopenhayn et al., 2006; Chari et al., 2009) restricts instruments severely:
the market price is either the monopoly price or the ex-post efficient one. Direct transfers from the government to
the innovator are disallowed (Hopenhayn-Mitchell, Hopenhayn et. al., and Chari et. al. make a “no-money pump”
assumption: T ≤ 0, ruling out prizes) and no ex-post information (e.g. quality or price) is observable. Thus, the
screening variable is patent length or breadth. These papers thus obtain non-responsiveness (Guesnerie and Laffont,
1984) results; oversimplifying, the social planner would particularly like major innovations to have limited protection.
But producers of major innovations are also relatively more eager to get more protection as they enjoy a higher profit.
So the“quality” of innovations is difficult to screen, often leading to a “one-size-fits-all” outcome. This provides an
immediate solution to the screening problem in a way that is not possible when the broader instruments we study are
allowed. Furthermore, all papers we know of in the literature consider only a single (effective) dimension of asym-
metric information; while they may have heterogeneity in cost as well as benefit, only the latter has any interaction
with preferences and thus can be screened.

10However, in sharp contrast to most of this literature, we do not assume it is proportional to the profits they
actually earn, as we allow pricing above cost but below the monopoly optimum.

11The square is the relevant weighting, as we use the elasticity rather than the semi-elasticity and a one percent
increase in innovation incentives obviously impacts innovations with larger (cost and benefit) scale more strongly.

12In fact, the variance of the logarithm is one of the most commonly used measures of inequality (Creedy, 1977;
Foster and Ok, 1999). It is even more intuitive in our setting because its well-known drawback of being hard to
ground in utility theory (Dasgupta et al., 1973) is irrelevant, while its primary benefit of emphasizing the degree
of extremely low and high outcomes (Sen, 1973) is central to the notion of genius: the fine line separating it from
insanity or sophistry.
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We can then formalize Friedman’s vague but intriguing conjecture: when V grows large, a

system of complete monopoly power over innovations becomes optimal. However, we also

prove a (partial) converse: when a closely related quantity grows small, it is optimal for

innovations to be freely available and rewards for innovation to be provided by a centralized

prize system. Our model therefore transforms broad philosophical arguments into empirically

measurable quantities, allowing the adjudication of long-standing debates.

The key to our analysis is the notion that market power, despite its indisputable distortions,

may provide market-based screen for low-surplus activities. This idea goes back at least to the

work of Smith (1776) and has been echoed in the work of several of the great economists of

the last two centuries (Dupuit, 1844; Mill, 1848; Coase, 1946; Vickrey, 1948). Yet as far as we

know, the role of market power in avoiding “white elephants” has never been formalized. An

important reason for this omission is the inherently multidimensional, and therefore technically

challenging, nature of this screening problem. Smith’s (surprisingly topical) fear of bridges to

nowhere may be addressed simply by judging the merits of public projects based on usage. Only

when innovations differ both13 in the size of the market they create and the value consumers

take from using them is market power necessary.

p

q

m

p0

M

Figure 1: Distinguishing valuable from low-surplus projects

Figure 1: Distinguishing valuable from low-surplus projects

Figure 1 illustrates the basic idea: two equally costly innovations/products/projects: m

(“minor”, “me-too”) and M (“Major”). Because willingnesses to pay are small, m creates little

social value despite its large market size and does not vindicate the fixed cost of bringing it

about. An example14 might be one of the many expensive-to-develop but minor improvements

on the widely marketed treatments for Type II diabetes that have come to market in recent

years. In contrast, M , for example synthetic insulin that revolutionized the treatment of the

rarer but deadlier Type I diabetes (Stern, 1995), adds substantial value.

13However, as we show in Subsection 5.5, if innovators may bribe consumers to purchase their products, even
screening market size may require market power. This is a closely related, but distinct, rationale for market power.

14Another natural example pair would be ketchup, which is highly homogeneous but has undergone many minor
widely marketed improvements, and mustard which has hundreds of highly prized but niche varieties (Gladwell,
2004). Finally, and more familiar to economists, an excellent example of a niche product that unpredictably created
large consumer surplus is Honey Nut Cheerios (Hausman, 1997). We thank Scott Stern for guiding us to all of these
examples.
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A social planner who does not directly observe consumer surplus15 and so, to tell m and M

apart, needs to tease out information about the demand curve by using the property that the

demand for a higher-quality product is less sensitive16 to price. This requires charging a price

(for M) of at least p0, the minimum price at which the demand for M actually exceeds that

for m. At lower prices, m looks superior to M , being more widely adopted. Fundamentally,

a prize system – a payment to the innovator depending only on demand at the marginal cost

price charged – is unable to screen out m and screen in M .

Screening out costly, low-surplus projects is important to the extent that rare geniuses

co-exist with them, as this makes it credible (and socially costly) for them to claim “strongly

held minority beliefs” in the great social benefits of their projects. Furthermore, the more the

supply of innovations responds17 to incentives, the more important is Smith’s concern with

screening compared to Hotelling’s fear about ex-post distortion. Thus, optimal level of market

power is determined by the value of materialistic genius.

1 Road Map and Simplified Presentation

This section provides an independent, heuristic development and outline of the main arguments

of the paper. Those interested in a more rigorous and complete treatment may therefore

consider skipping it, while conversely those seeking a quick sense for the paper’s thrust may

view it as an alternative to reading the long paper that follows it.

To formalize the idea that authorities are not equipped to pick winners, we assume (be-

ginning with Section 2) that the potential innovators are better informed not only about the

expected cost c of their invention or a one dimension “benefit” as in Wright (1983), but also

about the nature of demand for the product. Namely, individual innovations, each indepen-

dent in production18 and consumption19 of one another, are characterized by two parameters:

15While it may seem feasible to measure consumer surplus without such great distortions by charging elevated
prices for a short period of time, with a small probability or in a limited geographic area, such schemes may be open
to easy manipulation, as we discuss in Subsection 5.6.

16This is dual to the classic identification result of Bresnahan (1982): just as demand twisters are needed to identify
market power, market power is needed for the social planner to identify demand twisters. The relationship between
quality and demand twisting is discussed more extensively in Subsection 6.5.

17Note, crucially, that because, in contrast to most of the literature, our model allows direct prizes, this is not simply
an application of Nordhaus (1969)’s classic argument that, if market power is the only way to reward innovations,
an increase in the elasticity of innovation supply calls for a (costly) increase in market power. In fact, in our baseline
model, where the social planner maximizes social surplus, greater elasticity of innovation supply has no direct effect
on the optimal level of transfers to innovators, just as an increase in the elasticity of demand has no effect on prices
in a competitive market. Only if we introduce a distributive motive and thus a monopsony motive on the part of the
social planner, as in 5.1, will greater elasticity raise optimal transfers. But even there, this channel is independent
of that from greater elasticity to higher market power.

18A polar opposite of this assumption is that only one innovation may be created. In Subsection 5.3 we show that
the need for market power, though not the other rich implications of our model, arises quite simply in this context
as well.

19This may fail if innovations compete with or complement one another. In Subsection 5.2 we show that little
about our baseline results change in this context.
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the extent or size of the market, σ, and the quality of the innovation, m. The quantity, q, sold

at price p is given by preferences representable by a natural20 stretch parametrization,

q

σ
= Q

( p
m

)

that implies a perfect correlation between the monopoly price and average consumer surplus, if

the same fraction of the monopoly price is charged for all goods. Thus, it is useful to normalize

Q(·) so that m is the monopoly price and σ the demand at the ex-post efficient price 0.

The social planner faces a challenging three-dimensional screening problem, as the agent

knows (σ,m, c) but she does not. To investigate the fundamental role market power plays,

we allow the social planner to observe both price and quantity, and commit to a schedule of

subsidies depending on these. By the revelation principle21 (Gibbard, 1973), this is equivalent

to the social planner asking the innovator to reveal
(
σ̂, m̂

)
and committing to a fraction of the

monopoly optimal price p = m · a
(
σ̂, m̂

)
that will be charged and a rewards T

(
σ̂, m̂

)
that will

be given to the innovator following each announcement.

She then monitors that the realized quantity22 is consistent with the price charged to buyers

and the innovator’s announcement, providing the reward only if this occurs. Note that T is the

total transfer and can take any form, including the patent system where T (σ,m) = σmQ(1)

and a(σ,m) = 1 and the prize system where T (σ,m) is a function of σ and a(σ,m) = 0.

The social planner would like to provide a greater reward to innovations that create high

unobserved consumer surplus. However, doing so creates an incentive for the innovator to

pretend he has developed a major innovation. As indicated in Figure 1, her ability to suc-

cessfully fool the social planner depends on the prices charged. This leads us to the notion

of an imitation frontier, which is the frontier of types
(
σ̂, m̂

)
an innovator of type (σ,m) can

mimic without the social planner’s finding out, under a particular pricing policy a(·, ·). The

innovator will aim at maximizing the transfer she receives over her imitation frontier, equat-

ing the marginal at which σ̂ may be transformed into m̂ along the frontier to the marginal

rate at which substitution between these implied by the relative rewards given to each by the

social planner. Therefore, the mechanism’s “isoreward curves” must be tangent23, as depicted

in Figure 2 and detailed in Section 3. Interestingly, from both the economic and a techni-

cal perspectives, these imitation frontiers (and therefore the isoreward curves) depend on the

(endogenous) price function, placing our problem in the class of multidimensional screening

problems with endogenous information structures.

To bypass the technical issues such problems raise, the central exposition of the paper

20In Subsection 6.5 we discuss the wide range of standard demand functions consistent with this parameterization.
21A price theoretic approach that does not rely on the revelation principle is developed in Subsection 7.1.
22This strategy may fail either because the innovator has residual uncertainty about demand or may manipulate

the quantity of the innovation sold to fool the social planner. While we show in Subsection 5.4 that little about our
analysis changes in the first case, the second possibility imposes significant restrictions on the social planner and
provides an alternative (but very closely related) rationale for market power, as we discuss in Subsection 5.5.

23This approach to multidimensional screening problems is grounded in an extension (Lemma 1) to multi-
dimensional parameters and endogenous choice sets of Milgrom and Segal (2002)’s general envelope theorem.
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Figure 2: Imitation frontiers define the isoreward curves forming their upper envelopeFigure 2: Imitation frontiers define the isoreward curves forming their upper envelope

initially restricts attention to a natural rule given our demand function, namely proportional

pricing P (σ,m) = am. Despite its restrictiveness, it embeds both ex-post efficiency (a = 0)

and monopoly pricing (a = 1) as special cases and allows a smooth transition between them

with higher values of a corresponding to more ex-post distortion. Subsection 7.2 shows that

all of our main results have natural analogs with more general pricing.

Our first theorem shows that Pigovian “payment in accordance with product” is feasible

only for monopoly pricing and thus a value of a strictly between 0 and 1 is optimal. In the

tradition of Baker (1992), we can compare the value that the agent creates for the principal,

and what is actually measured by the latter. Due to the isoreward constraint, the social planner

“observes” a performance index that puts too much weight on size relative to quality below

monopoly pricing and too much weight on quality relative to size above monopoly pricing.

More technically, the total surplus created by the innovation is equal to

S(a)σm

where S(a) is a decreasing function of a, reflecting the increased distortion as price increases.

Iso-reward curves also take a simple Cobb-Douglas form

σ
1

1+ε(a) m
ε(a)

1+ε(a) = constant

where ε(a) ≡ −aQ′(a)/Q(a), the elasticity of demand, increases from 0 for ex-post efficient pric-

ing to 1 for monopoly pricing. Ex-post efficient pricing, and more generally below-monopoly

pricing, puts excessive weight on size while monopoly pricing achieves just the right balance

between size and quality.

Choosing the degree of market power then boils down to a tradeoff between the ex-post

distortion, minimized for a = 0, and the screening of socially optimal innovations, optimized

for a = 1. Section 4 studies the design of this optimal mechanism, under which the optimal
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reward along an isoreward curve clears the market created by social demand for innovations

and supply of innovations along that isoreward curve. The formula for optimal pricing applies

Milgrom and Segal (2002)’s envelope theorem to illuminate the relevant tradeoffs. On the

one hand, raising a allows greater rewards to be given to the best marginal24 innovations,

important to the extent that these (log-)differ from the worst innovations. However, it also

distorts sales of all infra-marginal innovations, hence the role of elasticity of innovation supply.

This establishes our formalization of Friedman’s conjecture and its converse. We also derive

empirical analogs of these quantities, showing how optimal market power can be calibrated and

how the optimal mechanism can be implemented through a system of (non-linear) subsidies.

While we couch the analysis in a fairly specific context of incentives for innovation, it

actually has a much broader scope. It may be extended, as we show in Section 5, to al-

low for distributional concerns between the innovators and the rest of society, externalities,

mutually-exclusive innovations, residual uncertainty of the innovator about demand condi-

tions, the manipulation of sales by the innovator and more sophisticated mechanisms by the

social planner to measure demand. Given this, the analysis applies whenever a private or pub-

lic institution wants to screen out activities that create little unobserved surplus and teasing

out such information about quality requires allocative distortions. Section 6 shows how the

framework applies to the bundling of applications by platforms, to incentives in conglomerates

and to the incentives of multisided platforms to use participation by some users to select for

the best users on other sides of the platform. We also discuss how the stretch parameterization

is natural in many classical industrial organization problems.

Section 7 presents a price theoretic approach (analogous to the “demand profile” approach

in non-linear pricing) to solving our model that relies less heavily on the revelation principle and

uses this to generalize our results to broader pricing rules. Section 8 concludes by summarizing

our modeling, technical and substantive contributions briefly and discussing directions future

research might take. An appendix following the main text of the paper treats a number of

technical issues that we deal with casually in the text. These include a supply-and-demand

interpretation of optimal transfer policies that is valid under certain simplifying conditions,

approaches to ironing optimal transfers when these fail, a version of the first-order condition

which applies when optimal transfers are discontinuous, second-order conditions for optimal

pricing and simulations of optimal policy under specific distributions. This acts as a short guide

to a more extensive online appendix, available at http://www.glenweyl.com, which comprises

the proofs of most results in the paper.

24By marginal we mean the technical notion of innovations just receiving enough reward to make their inventors
indifferent between creating them and not and not the more common meaning of low-quality innovations.
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2 Set-up

We begin by developing the basic model we use in the paper and providing a simple example

that shows how a market power-based system can dominate an ex-post efficient system.

2.1 Model

Potential innovators (individuals or firms) are characterized by three numbers:

• c, or cost, an ex-ante cost of creating the innovation

• σ, or size of the market, the demand at the ex-post efficient price of 0

• m, the monopolist’s optimal price for the good, which we call quality for reasons that

will become apparent below.

Innovator’s utility is T − c if she innovates and 0 otherwise, where T is the reward the

innovator receives; thus she chooses to innovate if and only if the reward she will receive

exceeds her cost. We assume no marginal costs25 of production, to focus on the case of IP.

θ = (σ,m, c) is private information of the innovator. The social planner knows26 only that

θ is distributed according to some smooth pdf f with full support R3
++ and all moments finite.

The social planner announces a reward to the innovator based on the price the innovator

chooses to charge and the quantity of demand this leads to, a quantity observed by the social

planner. By the revelation principle, we can instead think of the social planner as choosing a

price to be charged for the good and a reward to be given conditional on a θ announced by

the innovator, subject to constraints ensuring that the innovator will truthfully reveal her θ.

It is easily demonstrated27 that it is never incentive compatible for either price or reward to

depend on c. Thus, we view the social planner as simply announcing two policies: a fraction

of the monopoly optimal price conditional on market size and quality, a(σ,m), and a reward

conditional on these, T (σ,m).

25But of course this is equivalent to known costs and an adjusted demand. This assumption is reasonable in
many contexts, but is problematic in others; in fact firms’ private information about cost is a focus of the extensive
literature on regulation as pioneered by Baron and Myerson (1982) and treated fully by Laffont and Tirole (1993).
Extending our analysis to this case is an exciting direction for future research.

26These priors are, of course, conditional on any information available to the social planner either directly or by
incentive-compatible elicitation from other private agents. Kremer (1998) suggests eliciting such information while
Chari et al. (2009) and others have argued such schemes are open to significant collusion. Our model is agnostic
on this issue and valuable as long as, after all information is aggregated, there is still some residual asymmetric
information between the innovator and social planner.

27Suppose two innovator types θ = (c, σ,m) and θ̂ = (ĉ, σ,m), differing only in cost, were assigned different rewards;

without loss of generality assume θ̂ is given the higher reward. Then θ would always report θ̂ as θ̂ has exactly the
same demand function as θ and could thus not be detected by the social planner. Finally, suppose the innovator
breaks any indifference by choosing between rewards by choosing the lowest feasible price. Then, again, it is not
feasible to assign different prices but the same reward to θ and θ̂.
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Demand for the innovation is characterized by a general function Q obeying standard as-

sumptions28 and the normalizations inherent29 to our demand parameters. Thus, the quantity

sold q = σQ
( p
m

)
with corresponding elasticity ε(a) ≡ −aQ′(a)/Q(a), where a ≡ p

m . σ repre-

sents a horizontal stretching of inverse demand while m is a vertical stretching. We thus refer

to this as the stretch parametrization; it is quite broad, as discussed in Subsection 6.5 below.

A simple example is linear demand q = σ(2m−p)/2m; σ corresponds to the quantity-intercept

of linear demand and m to half of the price-intercept as shown in Figure 3. The crucial as-

sumption inherent to the stretch parametrization is a perfect correlation between average social

surplus and monopoly prices when a constant fraction of the monopoly price is charged: under

this parametrization, the social surplus created by an innovation is

pσQ
( p
m

)

︸ ︷︷ ︸
profit

+σ

∫ ∞

p
Q

(
p̃

m

)
dp̃

︸ ︷︷ ︸
net consumer surplus

= σm

(
aQ(a) +

∫ ∞

a
Q(ã)dã

)
≡ σmS (a)

So if a is constant across types, so is the ratio of social surplus to profit.

2.2 An illustrative example

2m

σ

Prize

Social surplus = σm

profit σm

2 ≥ c

if realized

2m

m

σ
2 σ

consumer
net surplus

deadweight lossPatent

Social surplus = 3σm

4

Figure 3: Linear demand under the stretch parametrization (left) and, under that demand, the division
of potential gains from trade among deadweight loss, profits and consumer surplus at monopoly
prices (right)

To build intuition, let us compare two specific institutions, the prize and the patent system,

in the context of the linear demand curve illustrated in the first panel of Figure 3. Under the

prize system (ex-post efficient prices and rewards based only on demand at these prices), the

expected welfare created by innovations characterized by (c, σ) is

Wprize = σE(m|σ, c)− c
28Q is assumed smooth, strictly decreasing wherever it is strictly positive, to have strictly declining marginal

revenue and bounded ε′′

ε , and to obey lima→0 aQ
′(a) = 0.

29Q(0) = 1, so ex-post efficient demand is σ, and ε(1) = 1, so that the monopoly optimal price is m.
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because every innovation with the same σ receives the same reward. Thus, while the prize

system realizes all potential gains from innovations that are created, it does nothing to screen

out low m innovations. In fact, if Akerlof (1970)’s condition that σE(m|σ, c) < c is satisfied

(for all σ and c), the average innovation that is created for any prize given is not worth creating.

It is thus optimal to award no prizes at all, shutting down the market for innovations entirely

even if many worthy innovations exist. For example, if m ∼
[
0, 5

2
c
σ

]
according to the decreasing

triangular probability density function f(m|σ, c) = 4σ
5c − 8σ2

25c2
m, despite all innovations with

m > c
σ being worthy, σE(m|σ, c) = 5

6c < c. Thus, it is optimal to shut down the market for

innovations if one is constrained to prizes.

Under the patent system (each innovation charges the monopoly price m and earns the

monopoly profits σm
2 ), the innovation occurs if and only if c < 1

2σm, the monopoly profit,

while the social welfare created by the innovation is (only) 3
4σm because of the deadweight

loss associated with elevated prices as illustrated in the second panel of Figure 3. Thus, while

the patent system destroys a quarter of the value created by each innovation, it robustly

selects only innovations which are socially beneficial. In our “lemons” example, the one in

every twenty five “genius” innovations with m > 2 cσ are created, and all these are worth

creating so clearly the patent system is in this case superior.

To see the role of genius in this tradeoff, consider the expected welfare under the patent

system when conditional on (σ, c):

Wpatent = Prob

(
m ≥ 2c

σ

)[
σE

(
3m

4

∣∣∣σ, c,m ≥ 2c

σ

)
− c
]

density

m

creative genius and
me-too dominate: patent
superior to prize

innovations clustered
towards center: prize
dominates

prize equivalent
to patent

Figure 1: Bitriangular distributions with varying degrees of creative genius
Figure 4: Bitriangular distributions with varying degrees of genius

Clearly the more important it is to select out the best, and only the best, innovations,

the more valuable is the patent system relative to prizes. A simple example arises if m is

again distributed on
[
0, 3 cσ

]
according to a bi-triangular30 pdf as shown in Figure 4. When the

30In particular, if we let ν ≡ σm
c and f represent the height of the peak/trough of the bi-triangular distribution

f (ν|c, σ) =

{ (
5
3f + 25

36

)
ν + 5

6 − f ν < 6
5(

25
81 − 10

9 f
)
ν − 10

27 + 7
3f ν ≥ 6

5
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distribution is peaked and thus innovations clustered towards the center, prizes are preferable.

But when it reaches a sharp trough, patents perform much better. The two systems perform

equally well for an intermediate pdf that is close to uniform.

Of course, neither of these systems is optimal if we allow a broader range of institutions

nesting both prizes and patents. Even if one were constrained to monopoly pricing, it would

be better to pay the innovator 3
2 her monopoly profit31 to cause her to internalize the full value

of social surplus. More importantly, full monopoly pricing is not necessary; a more moderate

elevation of prices above cost may be sufficient and, as we show in the following section, is

always optimal. The next two sections of this paper are devoted to solving for the optimal

policy that trades off ex-post distortion against screening.

3 The Isoreward Approach

Ideally, the social planner would like every innovation yielding social value greater than its cost

to be created. The natural solution to this problem, the principle of payment in accordance

with product advocated by Pigou (1920), would be to give each innovation a reward equal

to the social value it creates. However, given that he cannot observe σ and m is unable to

perfectly implement payment in accordance with product. An innovator of type (σ,m) can

pretend to be of another type (σ̂, m̂) if she cannot be distinguished by observing the demand

that innovator generates. We assume free disposal of demand, that an innovator can freely

reduce the demand for her product. Thus, she is able to imitate another innovator if, at the

price that other is asked to charge, she would generate at least as much demand.

Formally, type (σ,m) can successfully imitate type (σ̂, m̂) if and only if

σQ

(
a (σ̂, m̂)

m̂

m

)
≥ σ̂Q (a (σ̂, m̂))

We will say that the points (σ̂, m̂) satisfying this with equality lie on (σ,m)’s imitation frontier

given pricing policy a. This is a sort of “production possibilities frontier” for the innovator.

To provide innovators with incentives to truthfully reveal their type, the social planner must

provide at least as great a reward to each innovator type as that she could earn at any other

point along her inside her imitation frontier.

Thus, the social planner’s program is

max
{T (·,·),a(·,·)}

∫

{θ:c<T (σ,m)}
[σmS(a(σ,m))− c] f(θ)dθ (1)

Then welfare from prizes is .4− .3f while from patents is ≈ .47− .57f .
31Of course, such Pigovian generosity is only optimal if the social planner is indifferent to transfers between the

innovator and the rest of society, as we assume in our main analysis. Subsection 5.1 extends our analysis to the case
when the social planner has a distributive motive.
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subject to

σQ

(
a (σ̂, m̂)

m̂

m

)
≥ σ̂Q (a (σ̂, m̂)) =⇒ T (σ,m) ≥ T (σ̂, m̂) (2)

3.1 Technical challenges

A general solution to the above program is challenging for three reasons. First, Armstrong

(1996) argues that it is often difficult to find or interpret solutions to the differential equations

typically used to characterize multi-dimensional screening problems. We address this issue

by developing, in this section, an intuitive “isoreward approach” to this class of multidimen-

sional screening problems, anchored in a extension of the envelope theorem (Lemma 1) to

multidimensional parameters and endogenous choice sets. This is approach is related to the

method of characteristics32 common in mathematics and physics, but allows for discontinuities

and has a stronger intuitive economic interpretation in this context than is usually given to

these techniques. Second, Rochet and Choné (1998) argue that the complex, global nature of

incentive compatibility constraint like (2) makes even deriving such equations often infeasible.

To avoid these complications, we propose a restricted, but intuitive, proportional pricing rule

under which a is constant across innovations to ensure the validity of this approach (subject

to the potential need for ironing). However we also demonstrate in Subsection 7.2 that our

results are robust to relaxing this assumption. Finally, our setting poses an additional compli-

cation. Because the information structure is endogenous, the social planner’s program, even

once relaxed to a first-order partial differential equation, still constitutes a calculus of vari-

ations problem subject to a partial differential equations constraint, a frontier mathematics

problem (Gregory and Pericak-Spector, 1999). Fortunately, the special nature of the objective

function (that no derivatives directly enter it) allows us to analyze the effect of changing prices

simply by drawing on Milgrom and Segal (2002)’s envelope theorem.

3.2 From imitation frontiers to isoreward curves

A standard approach to mechanism design problems is to reduce their often unwieldy global

incentive compatibility constraints imposed by the necessity of global maximization by agents

to local constraints at each point imposed by the necessary first-order conditions for those

agents’ maximization. This first-order approach, proposed in the single-dimensional context

by Mirrlees (1971) and given rigorous foundations by Rogerson (1985), views then views the

resulting envelope theorem linking the payoffs of different types of agents as the only, or

at least the fundamental, constraint imposed by incentive compatibility. In this section we

32We thank Roland Fryer for this observation and are surprised that this approach has, to our knowledge, not been
applied in the assumed-differentiable case to mulitidimensional screening. Basov (2005) provides some discussion
of the method of characteristics in the context of multidimensional screening, but does not explicitly apply, or
economically interpret, it.
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develop an “isoreward” approach that acts as an intuitive multi-dimensional extension33 of

the Mirrlees-Rogerson first-order approach.

In doing so we draw an analogy34 to a neoclassical production economy. We can think of

the innovator as “producing” her report by choosing a point along her production possibilities

frontier (imitation frontier) to maximize her reward. Thus, at the optimal report, the marginal

rate at which the innovator can transform σ̂ into m̂ must be equated to the marginal rate at

which the social planner rewards m relative to σ, as this is the innovator’s marginal rate of

substitution between m and σ. This local marginal rate of transformation is − dσ̂
dm̂ , defined

by implicit differentiation of the imitation frontier (her production possibilities frontier) at

(σ̂, m̂) = (σ,m), which after some algebraic manipulations yields the simple formula,

− dσ̂
dm̂

m̂

σ̂
= ε (a(σ,m)) (3)

Thus, local to the truth, a one percent increase in m̂ requires a sacrifice of ε of a percent of

σ̂, as raising m̂ by one percent forces the innovator to raise prices (locally) by one percent.

Thus, crucially, an increase in m̂ requires a sacrifice of σ̂ only to the extent that a is large, as

ε increases35 from 0 to 1 as a does.

An alternative way to express the first-order conditions of a classical production economy

is that, at the optimal bundle, the relevant production possibilities frontier curve is tangent

to the indifference curve. Similarly, here, the curve along which rewards are constant passing

through (σ,m) (the indifference curve) must be tangent to the (σ,m) imitation frontier at

that point. In fact, this requirement is equivalent to the first-order conditions for optimiza-

tion. Mathematically, the relevant Mirrlees-Rogerson first-order constraint is that the relative

marginal rate of substitution, TmTσ
m
σ , be equated to the marginal rate of transformation derived

above:
Tm
Tσ

=
σ

m
ε (a(σ,m)) . (4)

33Our extension is, like Milgrom and Segal (2002)’s extension of the Mirrlees-Rogerson approach, robust to the
possibility of non-differentiable mechanisms

34The problem of incentive compatibility in our context can be seen as equivalent to that of market equilibrium in
Rosen (1974)’s model of hedonic pricing in which every product exists (hence first-order conditions for its production
by the most efficient producer, our incentive compatibility constraint, must be satisfied). However, our solution
method via (in his context) isoprice curves, an alternative interpretation of his partial differential equations, has not,
to our knowledge, been applied and might aid in the solution of such models.

35Given our normalizations and assumption of no marginal cost, this is equivalent to increasing elasticity for
0 < a < 1:

MR = p− p

ε
∝ a− a

ε(a)

so

MR′ < 0 ⇐⇒
[
a

(
1− 1

ε

)]′
< 0 ⇐⇒ ε′ < − ε

a

(
1− 1

ε

)

Note that the right hand side of this last inequality must be strictly negative for 0 < a < 1 as ε, a > 0 and if MR′ < 0
it must be positive for a < 1 so

(
1− 1

ε

)
must be positive. Thus, our class cannot accommodate constant elasticity

demand, unsurprising given that this always has infinite demand at price 0.
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Our (standard) assumptions imply that ε(0) = 0, ε(1) = 1, ε is differentiable and ε′ > 0. That

is, the local reward given to m relative to σ is proportional to the elasticity of the demand

curve for the innovation at prevailing prices, which increases as prices increase as long as36

marginal revenue is declining.

Because the tangency conditions above must hold for every (σ,m) pair, and thus the

marginal rate of substitution is everywhere proportional to σ
m , Condition (4) uniquely traces

out a series of isoreward curves along which rewards must be constant, as formalized in the

corollary below. These form the upper envelope of the imitation frontiers, a multi-dimensional

extension of Harrod (1931) and Viner (1931)’s classic argument the long-run average cost curve

is the lower envelope of short-run average cost curves for various levels of fixed investment.

Lemma 1. Under an arbitrary differentiable pricing policy a(·, ·), incentive compatibility re-

quires that T be weakly monotone in both its arguments and that rewards be constant along

any curve σ̃(m̃) obeying for all m̃

m̃′(σ̃;σ,m) = − m̃(σ̃)

σ̃ε (a (σ̃, m̃ (σ̃)))

and passing through a point (σ,m), except that, on a countable set of such curves, this may fail.

However, changing T along such a set has no effect on the social planner’s value function and

thus an optimum for the social planner subject to incentive compatibility obeys this constraint.

Every point (σ,m) is assigned to a unique such curve, whose value may be defined by the point

at which it intersects the 45◦, σ = m line.

We have thus chosen the fairly intuitive convention of denoting isoreward curves by the

point at which they intersect the 45◦, σ = m line. We refer to this point k. Given free disposal,

rewards clearly must be increasing in k.

Proof. See our Online Appendix Section 2.

The proof of this result is by far the most subtle and challenging37 of the paper. We

extend a classic theorem of Young and Young (1924) to show that discontinuities of T lie

along a countable set of curves. These curves are composed of at most a countable set of

disconnected curves, or almost-curves from which a measure-zero set of points has been re-

moved, of discontinuities. We then show that each of these (almost-)curves lies entirely along

a single conjectured isoreward curve of the form stated in the lemma. This establishes that

at most a countable number of conjectured isoreward curves contain points of discontinuity.

Furthermore, we show that any conjectured isoreward curve along which T is continuous must

in fact have constant rewards, that is, be an actual isoreward curve. Finally, we note that the

36We conjecture, but have not yet proven, that the assumption of declining marginal revenue can be dispensed
with through ironing, because prices in the ironing range are never optimal.

37This proof was written jointly by Weyl and Michal Fabinger and will likely be spun off as Fabinger and Weyl
(2011).
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countable number of conjectured isoreward curves along which there may be discontinuities

have no impact on maximized social welfare and thus can be ignored.

3.3 Proportional pricing

Under proportional pricing a constant fraction of the monopoly price is charged for each38

innovation. This is a natural parameterization given our demand form. Because demand

depends only on the fraction of the monopoly price charged, this parameterization implies

that demand, σQ(a), is determined only by market size, and that the surplus created, σmS(a),

depends only on the product of quality and market size. Thus, proportional pricing can also

be seen as proportional production: it is equivalent to each innovation being asked to produce

the same fraction of the socially optimal quantity.

In addition to its intuitive appeal, proportional pricing has a number of other benefits.

First, it embeds both ex-post efficiency (a = 0) and monopoly pricing (a = 1) as special

cases and allows a smooth transition between them by increasing a with the unambiguous

interpretation that higher values of a correspond to more ex-post distortion. Second, it leads

to isoreward curves taking a simple and familiar Cobb-Douglas form, as shown by the following

corollary.

Corollary 1: Under proportional pricing, incentive compatibility requires T being constant

along (all but a countable set of) curves of the form k = σ
1

1+ε(a)m
ε(a)

1+ε(a) .

Proof. Lemma 1 implies rewards must be constant along any curve solving

dσ̃

σ̃
= −ε(a)

dm̃

m̃
⇐⇒ ε(a) log(σ̃) = − log(m̃) + (1 + ε(a)) k ⇐⇒ σ̃

1
1+ε(a)m

ε(a)
1+ε(a) = k

which yields the posited set of solutions.

Finally, and most importantly, the validity of the isoreward approach is easy to show

in this case. However, as we show in Subsection 7.1 a similar, if more technical, argument

applies to any parametric or even non-parametric class of pricing rules obeying very weak

(nearly necessary for incentive compatibility) assumptions. Furthermore, our results all have

natural generalization in that broad context. Thus, proportional pricing is a natural class that

simplifies our exposition, as well as the empirical burdens for identifying an optimum, without

misleading an applied analyst about the more general features of the solution.

3.4 Validity of the isoreward approach

First-order conditions are, of course, not sufficient to ensure incentive compatibility in general.

However our stretch parameterization and assumption of increasing elasticity make non-local

38Our solution may, of course, be applied in an industry specific manner so that a different a and T are assigned
to each industry, or even sub-industry.
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Figure 5: Justifying the isoreward approach based on the monotonicity of elasticityFigure 5: Justifying the isoreward approach based on the monotonicity of elasticity

deviations unattractive if local deviations are unattractive. As we show in Subsection 7.1,

the isoreward approach is valid under any pricing policy for which εεaσ < 1, εam > −1 and

εεaσ − εam < 1 hold for all (σ,m), where εaσ and and εam respectively denote the elasticities

of a with respect to σ and m respectively. This is particularly easy to illustrate in the case of

proportional pricing, which clearly obeys these restrictions.

To see this, consider Figure 5 and suppose an innovator with type (σ,m) cheats by, say,

over-reporting m1 > m. She moves up along the demand curve σQ
(
am1
m

)
relative to the

position of an innovator with a true value of m = m1. This causes the elasticity of demand

to be higher for the cheating innovator than for the innovator who truly is of type (σ1,m1) as

shown in Figure 5, making further over-reporting m̂ > m1 more costly than it would be to an

innovator of true type (σ1,m1). Because the first-order conditions imply that type (σ1,m1)

is (locally) indifferent to over- or under-reporting m̂, (σ,m) will strictly prefer to reduce m̂

back towards m as shown in Figure 5 by the fact that (σ,m) lies on a higher isoreward curve

than does (σ1,m1). A reverse argument holds for under-reporting m2 < m. Therefore, if no

innovator has a local incentive to lie, any innovator imitating her will have a local incentive

to move back towards the truth. Thus, so long as rewards increase across in k, the isoreward

approach is valid. As a result, the isoreward and monotonicity constraints of Corollary 1 are

necessary and sufficient for incentive compatibility under proportional pricing.

Corollary 2: Under proportional pricing, the incentive compatibility constraint (2) is equiv-

alent to the relaxed constraints of Corollary 1.

Proof. See Subsection 7.1.

So long as the optimal T along each isoreward curve monotonically increases in k, we can
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consider the optimal reward to assign to each isoreward curve in isolation. We focus below on

the case when sufficient conditions for this are satisfied. When they are not, an ironing process

(Guesnerie and Laffont, 1984) restores monotonicity: see Appendix B.

3.5 Sorting-optimality of monopoly pricing

Because social surplus is proportional to σm, payment in accordance to product would require

that Tm
Tσ

= σ
m as social value created is proportional to σm. However, from equation (4)

incentive compatibility restricts the relative rewards to quality compared to market size to
Tm
Tσ

= σ
mε(a). Thus, Pigovian payment in accordance with product is feasible only when a = 1

(full monopoly pricing). Any degree of below-monopoly pricing implies that market size will

be rewarded more than quality.

Conversely, any value of a above 0 involves ex-post distortion. The higher the value of a

(below 1) the closer we are to payment in accordance with product and thus perfect sorting

among innovations, but also the greater is ex-post distortion. This establishes the basic tradeoff

between sorting and ex-post efficiency that is the key to optimal policy.

It also immediately implies a useful and intuitive result in a surprisingly clean fashion: it is

never optimal to price (proportionately) above the monopoly optimum. Monopoly pricing gets

sorting exactly right. Raising a above 1 both reduces the quality of sorting by over-rewarding

quality relative to size and worsens ex-post distortion. As usual, given this, as we approach

perfect sorting the marginal value of additional sorting diminishes smoothly to 0.

Theorem 1: Either optimal rewards are constant everywhere and a = 0 or the optimal value

of a is strictly between 0 and 1.

If transfers are everywhere constant when a = 0, sorting need not have a local benefit as

it is not used. However such flat transfers can easily be ruled out by a significant weakening

of our no-monotonicity-ironing condition in Appendix B, which requires that σ not be too

negatively affiliated with m in the sense of Milgrom and Weber (1982).

Proof. See Online Appendix Subsection 3.4.

Subsection 7.2 derives a version of this result that hold under more general pricing. The

local social screening benefit from higher prices outweigh the (zero) local social costs of ex-

post distortion at every point beginning from ex-post efficiency and the local social ex-post

efficiency benefits of lower prices always outweigh the local costs of poorer screening everywhere

beginning from monopoly pricing.

4 Optimal Rewards and Pricing

Our solution now proceeds in three steps. First, we discuss briefly how the isoreward approach

makes the derivation of optimal rewards straightforward. However, we do not discuss the
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mechanics of deriving these optimal transfers because they are not crucial to understanding

the optimal choice of a. The reason, developed in our second step, is a variational calculus

version of the envelope theorem, which obviates considering how optimal transfers are affected

by a change in a. Finally, we use this envelope theorem to calculate the marginal benefits

(from sorting) and costs (from ex-post distortion) of raising a.

4.1 Optimal transfers

Under the isoreward approach we consider the optimal reward along each isoreward curve

independently, a simple unidimensional problem. It is therefore useful to re-parameterize the

problem in terms of k, the isoreward curve, x ≡ m
σ , the quality-market size ratio denoting the

position along a particular isoreward curve, and c, rather than (σ,m, c). We will refer to the

relevant (change-of-variables augmented) distribution function39 as f̃ to distinguish it from f .

In this new notation, the social value created by an innovation, S(a)σm, becomes S(a)k2x
1−ε
1+ε

because k = σ
1

1+εm
ε

1+ε .

If a reward T (k) is given, all innovations along the k isoreward curve with cost less than

T (k) are created. If the average marginal innovation, the average innovation along isoreward

curve k with cost c = T (k), creates social value great than T (k), the social planner has an

incentive to raise T (k); if it creates social value less than T (k), the social planner has a local

incentive to lower T (k). Thus, the optimum is at a point where these are exactly equated:

T ?(k; a) = k2S(a)Ex,f̃

(
x

1−ε(a)
1+ε(a)

∣∣∣∣ c = T ∗(k; a), k

)
.

If costs are not too correlated with x under f̃ given k, in a sense formalized in Proposition

8 in Appendix A, then there is a unique point at which this condition is satisfied and this

constitutes the optimal (monotonicity-relaxed) transfer T ??(k, a). Furthermore, if k is not too

negative affiliated under f̃ with x given c (see again Appendix A) then the T ?? is monotone

increasing and thus is the truly optimal transfer function. If either (but not both) of these con-

ditions fail, standard ironing techniques can used to determine optimal transfers as described

in Appendix B. The total social value W (a) associated with each pricing policy a can thus be

computed, reducing the complex program we began with to a standard single-variable calculus

problem.

4.2 Optimal market power

T ?(k; a) is chosen optimally. Therefore, we can apply the envelope theorem for general choice

sets established by Milgrom and Segal (2002) and consider only the direct effect of an increase

in a on social welfare, ignoring indirect effects through the optimal choice of T ?.

Lemma 2. W (a) is differentiable for all a ∈ (0, 1) and its derivative may be evaluated by the

39The formula for this transformation is provided in Appendix A.
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envelope theorem, holding T ? fixed. Formally:

W ′(â) =
∂

∂a

[∫

σ

∫

m

∫ T ?

(
σ

1
1+ε(a)m

ε(a)
1+ε(a) ;â

)
c=0

[σmS(a)− c] f(c, σ,m)dcdmdσ

]∣∣∣∣∣
a=â

Proof. See Online Appendix Subsection 3.3.

In fact, this holds even if T ? is non-differentiable: the smoothness properties we have

assumed on f , combined with the monotonicity of T ? are sufficient to establish the equidif-

ferentiability and continuity conditions required by Milgrom and Segal. However, in most of

what follows we will derive the formulae for the case when T ? is differentiable (the absence of

ironing40 is sufficient to ensure this differentiability). Appendix C presents analogous results

to what follows when optimal transfers are non-differentiable.

4.3 Heuristics

Recall that the relative rewards to m compared to σ are proportional to a. Thus, as a and

therefore ε(a) grow, isoreward curves become less steep, allowing an increase in m to more

easily move an innovator up the curves compared to the effect of an increase in σ. The

derivative of T ? with respect to a is proportional to log(m/σ) ≡ log(x) at that point.

To understand why, note that as a increases, innovations move across isoreward curves, but

the rewards given to these isoreward curves can be thought of as fixed by the envelope theorem.

Movement across isoreward curves is rapider for innovations that are far from the 45◦ line.

These are innovations for which an increase most impacts relative rewards: they are most

“un-diversified” across m and σ and thus most exposed to a change in the relative rewards

given to one compared to the other. Innovations with high m relative to σ will quickly move

up isoreward curves profiting from an increase in a while innovations with high σ relative to

m will quickly move down, losing out.

Figure 6 first depicts an isoreward curve (the dashed curve) for a given pricing rule. Types

(σ1 ,m1) and (σ2 ,m2) receive the same reward given a. An increase in a makes the isoreward

curves flatter. This has the effect of shifting the high-quality type (σ1 ,m1) to a higher k

(higher isoreward curve; note that k = σ = m on the 45◦ line and is therefore independent of

a) and the low-quality type (σ2 ,m2) to a lower k. This in turn implies that for locally fixed

transfers T ∗(k; a), a small increase in a at the margin will crowd in high-quality projects and

crowd out equally costly (c = T ∗) low-quality projects.

The further points are from the (σ = m) 45◦ line (the upwards-sloping line shown) which

defines k values, the more quickly the k values corresponding to the point increases (if the

point is above the line), or decreases (if it is below), in a. The rate of moving up (or down)

40In other words the obedience of conditions (11) and (12) in Appendix A.
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Figure 6: Increasing market power changes isoreward curves and therefore the reward given to different
innovations, favoring high quality over large market size

isoreward curves



d

(
σ

1
1+ε(a)m

ε(a)
1+ε(a)

)
da


 for an innovation of partial type x is proportional to

log(x), just as the production of a Cobb-Douglas economy41 responds to a shift in shares at a

rate proportional to the ratio of factors because isoquants are log-linear.

The value of innovations, along any particular isoreward curve, is proportional to x
1−ε(a)
1+ε(a) .

The social benefit associated with raising a is that high x innovations are created more fre-

quently; that is, to the extent that x
1−ε(a)
1+ε(a) covaries with log(x) (which it must to some ex-

tent), more beneficial innovations will be selected by higher values of a. Thus, it should be

clear that Cov

[
x

1−ε(a)
1+ε(a) , log(x)|k, c = T ?(k)

]
, the covariance between the extra rewards given

to (marginal) innovations and the value of these innovations, is a crucial quantity pushing

towards greater ex-post distortion. Furthermore, because lima→1
x
1−ε(a)
1+ε(a)−1
1−ε(a) = log(x)

2 , for a close

to 1

Cov

[
x

1−ε(a)
1+ε(a) , log(x)|k, c = T ?(k; a)

]
≈ 1− ε(a)

2
V ar [ log(x)| k, c = T ?(k; 1)]

Thus, near monopoly pricing, the incentive for ex-post distortion (higher a) is closely connected

to the (conditional) variance of the logarithm of x.

41If q is a Cobb-Douglas isoquant with inputs K and L then log(q) = α log(K) + (1 − α) log(L) so if we write
r ≡ K

L then the derivative of the isoquant shifts at a rate proportional to log(r). In fact, a number of the economists
who have proposed this form for isoquants have derived it from this property (Lloyd, 2001).
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Figure 7: Log normal probability density functions with log-mean 1 and various values of log-variance. As
log-variance grows tails (both near 0 and large values) grow while the middle range shrinks.

On the other hand, raising a reduces the value of innovations that are created. Unlike

the sorting benefits of higher a described above, these harms apply to all innovations, not

just those on the margin (with c = T ?(k; a)). Thus, the relative weight on this distortion

is closely related to the ratio of the number of infra-marginal innovations to the number of

marginal innovations; that is, the inverse hazard rate, or inverse semi-elasticity, of innovations

with respect to c conditional on k. The harm per innovation from increasing the price is

proportionate to the value of the innovations which, given the logic above, is closely related

to the reward given to innovations. Thus, it is in fact the (in)elasticity of innovations with

respect to the rewards given them that determines the relative size of the disincentive to

ex-post distortion.

Thus, we can finally return to discuss the notions of “genius” and “materialism” that we

defined in the introduction. Consider the probability density function of a log-normal dis-

tribution with fixed (log-)mean 1 and various levels of variance as shown in Figure 7 above.

As the variance increases, weight in the tails (both near zero and large values) grows, more

than the traditional variance per se. Similarly, the elasticity of innovation supply, the percent

increase in innovations for a percent increase in rewards, is a natural measure of the degree

of “materialism” of innovators in precisely the same way that the labor supply elasticity can

be seen as a measure of the materialism of workers: the extent of responsiveness to incen-

tives. This combination of materialism with genius is particularly important; geniuses, such as

the stereotypic brilliant scientist42, are not always strongly responsive to incentives and thus

42However, such a scientist’s ideas, even if not directly materially motivated, may require financial support from a
backer sharing his vision or only succeed with such small probability even when they are brilliant that to justify the
opportunity cost of work these must be handsomely rewarded in the case of success.

Furthermore, reinterpreted, our analysis may apply to academics who are more often motivated (at least directly
and primarily) by their colleagues’ esteem. For example, consider the, perhaps superficial, impression an outsider
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“screening” them for rewards is not important.

4.4 Full first-order condition

These forces can be formally shown to be the key determinants of the net marginal social

benefit of ex-post distortion.

Corollary 3: Assuming T ? is differentiable in k at a, W ′(a) ∝

Ek,f̃

[
k4
[

(1− ε) T
?′

k

ε′

(1 + ε)
2

ηCovx,f̃

(
log(x), x

1−ε
1+ε

)

1− ε
︸ ︷︷ ︸

sorting

− εQEx,f̃
(
x

1−ε
1+ε

)
Ex,f̃

(
x

1−ε
1+ε

∣∣∣ c < T ?
)

︸ ︷︷ ︸
ex-post distortion

]]
(5)

where η is the elasticity of innovations with respect to reward and all quantities inside the

expectation are evaluated conditional on a, k and c = T ?(k; a) where not explicitly stated. As

usual, a necessary condition for the optimal choice of a is that this equal 0.

This formula is a special case of the general first-order condition which applies even when

T ? is not differentiable, as stated in Proposition 13 in Appendix C. Intuitively, by Leibnitz’s

rule, there are two effects of an increase in a on social welfare. First, increasing a changes

boundary of the integrating region: the rewards given to different innovations and thus which

marginal innovations are created shift, as described above. We refer to this as the sorting

effect. Second, increasing a changes the interior of the integrals, reducing the surplus of all

innovations that are created, which we refer to as the ex-post distortion effect. The first effect

is always positive, the second always negative. The optimal level for a balances these two

incentives.

Proof. See Online Appendix Subsection 3.4.

Of course, for the equation of these marginal benefits and costs to actually characterize

the optimum, the problem must be (quasi-)concave. While, as in the Mirrlees problem, it is

not typically tractable to determine simple conditions on primitives to ensure this, we show

in Appendix D that so long as the product of materialism and genius does not increase too

rapidly, especially for intermediate values of a, the problem is concave. All of our computational

simulations thus far, some of which are described in Subsection E below, exhibit such concavity.

4.5 Limit theorems and Friedman’s conjecture

Our analytical results therefore depend on assuming quasi-concavity. These results consider

the limit as genius and materialism grow large or small and can be seen as formal proofs of

Friedman’s conjecture and its converse.

would have of the process of acquiring academic prestige in mathematics compared to economics. In mathematics
the importance of a result is typically judged at the time the result is produced. This reduces the need for the costly
jostling for citations so important to provide a “market test” for ideas in economics. Of course, much more detailed
data on the role of citations, the predictability of the importance of various results and the responsiveness to prestige
incentives in the two fields would be needed to draw such conclusions more firmly.
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Theorem 2 (Friedman’s Conjecture): Let π be the monopoly profit associated with an inno-

vation and V1 the value of materialistic genius near monopoly be

Eπ,f̃

[
π2Varx,f̃

(
log(x)| k =

√
π

Q(1) , c = S(1)
Q(1)π

)
η

(
S(1)
Q(1)π

∣∣∣ k =
√

π
Q(1) , a = 1

)]

Eπ,f̃ [π2]
.

Then, within a class of distributions for which W is quasi-concave, those with sufficiently high

values of V1 have a? arbitrarily close to 1. That is, as the value of materialistic genius near

monopoly grows large, monopoly pricing becomes optimal.

Proof. See Online Appendix Subsection 3.6.

Intuitively, as the extent of genius and materialism grows, the incentives for ex-post distor-

tion grow until monopoly pricing becomes optimal in the limit. In this limit many of the com-

plexities above disappear: isoreward curves become isoprofit sets, optimal transfers collapse to

the social surplus of every innovation, S(1)
Q(1) of its profit, and pricing is near monopoly-optimal.

Theorem 3 (Partial converse of Friedman’s Conjecture): Let V0, the value of materialistic

genius near ex-post efficiency be

Eσ,f

[
σ4 log(T ?(σ))′Covm,f (log(m),m|σ,c=T ?(σ))η(T ?(σ)|σ,a=0)

σE(m|σ,c<T ?)

]

Eσ,f (σ4)

Then, within a class of distributions for which W is quasi-concave, those with sufficiently low

values of V1 have a? arbitrarily close to 0. That is, as the value of materialistic genius near

ex-post efficiency grows small, ex-post efficiency becomes optimal.

Proof. See Online Appendix Subsection 3.6.

Intuitively, as m becomes perfectly known or all innovations become infra-marginal, the

incentives for ex-post distortion become small and are overwhelmed by even the small distortion

it causes. Optimal policy becomes ex-post efficient pricing coupled with pure (ex-post demand-

dependent) rewards.

These two theorems are not quite converses of one another. They consider only limit cases

and use related but not identical measures of genius and materialism. Nonetheless, we believe

they establish a tight connection between the extent of materialistic genius and the justification

of market power.

4.6 Examples

The comparative statics arising from our model match common intuitions about the relative

merits of entrepreneurial and more centralized or bureaucratic systems of procurement. Con-

sider the standard comparison between product and process innovations. It is typically difficult
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to predict the success of a new product and thus a large degree of asymmetric innovation is

likely to exist between the innovator and the firm or government “procuring” the innovation.

Thus, it is natural, in the context of our model, that a fairly entrepreneurial approach should

be taken to such innovations as we see in most societies. Process innovations, on the other

hand, are for the most part bureaucratized and procured in a much more hierarchical manner

within firms. This accords with our results, because the potential benefits of such innovations

are far more predictable and measurable before the product goes to market. Similarly, one

might compare the recent enthusiasm for prizes and patent buyouts in the medical sphere to

the almost complete absence of interest in such schemes for high technology. While the benefits

of a new medicine may be measured to at least some extent independent of the willingness of

consumers to pay for the medicine, such is nearly impossible for new consumer technologies

which may, unpredictably, being of great or no value at all.

Similar comparisons appear in settings which differ in the elasticity of innovation supply.

Consider the comparison between Apple’s iTunes Music Store, or other online music sites, and

their iPhone App Store. As discussed in Subsection 6.1 below, the optimal strategy43 for such

a site selling media strongly complementary to a platform, such as the iPod or iPhone, closely

resembles that of a social planner. In practice we observe the online music store using price

caps, fixed or proportional licensing fees and low (or purely bundled) prices to consumer. In

our model, this is rationalized by the fact that only a small fraction of the total revenue for

a song comes from any of these individual stores and thus the elasticity of innovation supply

with respect to a change in their revenue from one of these stores is small. Compare this to

the App store, which allows total pricing freedom to App developers and gives them a share of

revenue. Given that applications are developed almost exclusively for the iPhone or another

individual platform, the elasticity of innovation supply is likely much higher and thus there is

more burden on Apple to sort out which applications deserve greater rewards by using market

power.

4.7 Empirical counterparts

Beyond these broad associations, Theorem 2 above has natural and more precise empirical

analogs. This is analogous to Saez (2001)’s argument that the Mirrlees model of optimal

taxation could be calibrated using labor supply elasticities, distributions of income and social

welfare weight. The two crucial quantities are materialism and genius. While many caveats44

must be applied in interpreting any attempt to calibrate these, a relatively simple procedure45

43William Weingarten is currently working on calibrating our model to apply to this context.
44The caveats with such a calibration should be interpreted are numerous, as with most empirical calibration

of theoretical models; nonetheless, such calibrations, such as Saez (2001), can be quite informative by setting a
quantitative benchmark. Many of the assumptions we have made throughout may be relaxed in empirical estimation,
exploiting the extensions we develop in Section 5. Specific cautions are discussed in footnotes throughout this
subsection.

45The exercise depends on assuming current rewards to innovation are optimal conditional on the existing pricing,
which is clearly a stretch. If one were to ask what the optimal (approximate) value of a, holding fixed any (known) T
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seems to give a reasonable first pass.

Measuring materialism is essentially similar to measuring the elasticity of labor supply:

feasible and a focus of much research but carrying many familiar difficulties. Measurement of

genius is, at least on the first pass, somewhat more straightforward. Essentially, it consists

of taking a series of innovations46 in an industry to which a uniform policy would be thought

to apply and collecting data on all products innovated in that industry over that period. For

each product one would measure a mark-up and quantity (likely some average over time), as

well as any information available to individuals other than the innovator at the time of patent

but before the product came to market. Letting xi be the ratio of an individual product of

absolute mark-up (here, the price) to quantity (which is a valid approximation for a close to

1) and πi be their product while Ii is a vector containing all other covariates available prior to

marketing, one would run the regression

log(xi) = γ (πi, Ii) + εi (6)

to recover the residuals εi. The variance of these residuals47 (in a regression weighted by π2
i )

would then represent the degree of genius.

With these two estimates, call them M and G respectively, in hand one can calibrate our

model in a fairly straightforward manner. In the proof of Theorem 2 in Online Appendix

Subsection 3.6 we show that when a is near 1, as our society’s widespread use of market power

indicates we are, the first-order condition in (5) simplifies to

a? ≈ 1− 4Q(1)

S(1) (ε′(1))2MG
(7)

Note that, in addition to materialism and genius, two other unknowns appear: the ratio of

(fraction of total potential) social surplus to the fraction of total potential quantity at monopoly

prices and the slope of demand elasticity. These are properties of demand curvature48 about

which empirical work typically makes assumptions rather than measuring; thus, in what follows

policy, not necessarily the optimal one, an analogous formula with slightly altered numbers would apply but would
include terms related to a social desire to increase or decrease the level of rewards. Assuming away such a social
motive is equivalent to assuming the optimality of T . Thus, as long as one is primarily interested in adjustments
to the shape (induced prices) of innovation incentives rather than their level, our approach should apply reasonably
well.

46Genius should be measured for marginal innovations only. However, to provide a reasonable data set, this would
have, in practice, to be based on nearly all innovations. It would thus rely on the assumption that the degree of
marginal genius does not differ significantly from infra-marginal genius. This might potentially be improved upon
using the same instrument that identifies the elasticity of innovation supply to pick out marginal innovations.

47The measurement of G above is really an upper bound on the degree of genius, as not all of the residual variance
in log(xi) represents asymmetric information; much of it is unknown to the innovator as well. See Subsection 5.4 for
more details on how to adjust the formula to allow such residual uncertainty.

48It may be feasible to measure, or at least gain some intuition, about the second of these as ε′(1) is simply the
inverse of the rate at which the monopolist finds it optimal to increase prices in response to a tax at the monopoly

optimal price. Weyl and Fabinger (2009) discuss ways to calibrate intuitions about such pass-through rates. S(1)
Q(1) can

also be expressed as an average over a wide range potentially far from the monopoly optimal price.
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we make a standard assumption that ties down these quantities and use this as an example.

Along those lines, suppose that demand is linear so pass-through is constant and equal to
1
2 (i.e. ε′(1) = 2) and S(1)

Q(1) = 3
2 . Then the formula simplifies to 1 − 2

3CM . Suppose that the

elasticity of innovation supply were .14 as estimated by Dubois et al. (2010) in the pharma-

ceutical industry and two typical (squared-profit-weighted) innovations with the same ex-post

profit differed by about half order of magnitude in their ratio of mark-ups to profits. Then

optimal value of a would be approximated negative, clearly implying that the approximation

is invalid and that something quite far from monopoly pricing is likely optimal. On the other

hand, suppose the elasticity of innovation supply were 4, as estimated by Acemoglu et al.

(2006) (also in pharmaceuticals), and those two typical innovations differed by three orders of

magnitude. Then the optimal value of a would be near .98 and this would likely be a fairly

accurate estimate. Thus, it should be clear that our model does not immediately bias the

result of an analysis either in favor of market power or against it: it leaves optimal policy as

very much an open empirical question.

4.8 Implementation

Policy makers are unlikely to literally run a direct revelation mechanism. Instead, they would

like to provide monetary transfers or taxes to firms that are granted a patent, dependent on

their prices, thus inducing them to behave as described by the mechanism. The implementation

of the optimal scheme is quite simple to describe in these terms, because, under proportional

pricing, there is a direct relationship between prices and m on the one hand and quantity and

σ on the other. In particular, implementing a? requires providing innovators a net payoff of

T̂ ?
(
p

ε(a)
1+ε(a) q

1
1+ε(a)

)
≡ T ?

((p
a

) ε(a)
1+ε(a)

(
q

Q(a)

) 1
1+ε(a)

)

or, in other words, a gross subsidy (after the firm has collected its profits) of

T̂ ?
(
p

ε(a)
1+ε(a) q

1
1+ε(a)

)
− pq

Thus, the net rewards to innovations have Cobb-Douglas level sets in p and q, but need not

be homogeneous of degree 1. While simple to state, it might be challenging to implement49

a non-linear scheme of this form, just as it has often been argued that it is difficult to imple-

ment optimal non-linear tax schemes. However, just as with any standard mechanism, fairly

close approximations to a policy of this sort may be based on piecewise linear50 consumption

49However, the empirical calibration of the appropriate level of the elasticity of demand, as opposed to a, can
actually be performed under weaker pass-through rate assumptions. Given that this is all that is necessary for the
optimal implementation of policy, determining optimal policy in practice may be easier than determining the optimal
value of a.

50See, for example, Babayev (1997) for state-of-the-art algorithms for constructing such approximations.

28



subsidies.

Example (verifiable cost). Suppose that the social planner observes the cost c, as might

be the case for public infrastructure projects as discussed in Subsection ?? below. An optimal

scheme (the optimal scheme if transfers are – at least slightly – socially costly) is to reimburse

the cost provided that the innovation satisfy a minimum scoring rule: p
ε(a)

1+ε(a) q
1

1+ε(a) ≥ k, and

nothing if this score is not reached. When a is close to 1, this minimum score is equivalent to

a minimum profit level.

5 Extensions

This section extends our basic framework in a number of directions, largely exhibiting the

robustness of both its techniques and conclusions.

5.1 Distributional concerns

In many applications, including straight IP in a society with distributional motives, transfers

to innovators should not be viewed as socially neutral. A simple way to incorporate this into

our model is to assume the social planner puts a weight of only λ ∈ [0, 1) on the welfare of the

innovators compared to that of the government and consumers. Then her program is exactly

as in (1), but with λc+(1−λ)T replacing c, and is subject to the same incentive compatibility

conditions. Note that while we no longer have a guarantee that a? ∈ (0, 1) by our simple

argument51 in Theorem 1, all of the rest of Section 3 goes through exactly the same.

Lerner (1934)’s formula52 gives us that at the optimal reward, the innovator receives a

fraction η
1−λ+η of the marginal value of her innovation given pricing rule a. Suppose we were

interested in conditions under which not only monopoly pricing, but the exact monopoly rent

was optimal. This would require
η

1− λ+ η
=
π

S

or λ = 1− S−π
π η. Note that this can only be satisfied if the elasticity of innovation supply is

less than π
S−π (the ratio of profit to net consumer surplus, e.g. for linear demand, the elasticity

of supply is less than two). Thus, there is a tension between monopoly pricing and monopoly

rents: to the extent innovators are materialistic, it is unwise to try to cheat them of their

full social rents. But this is exactly the setting where monopoly pricing is beneficial (holding

constant G).

Analyzing a? is similarly straightforward. The two primary effects we emphasized above,

sorting and ex-post distortion, persist. The additional element added is the effect that an

51In particular, it is now not obvious that only sorting operates locally when a = 0 or that only ex-post distortion
operates when a = 1, as the Spencian effects discussed below arise in both cases.

52To derive optimal transfers we can follow nearly the same procedure, except that the supply curve for innovations
(as described in Subsection 7.2 below) must be replaced with a λ/1−λ mix of the supply curve and the monopsonist’s
(Bulow and Roberts, 1989) marginal cost.
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increase in a has on the rewards given to marginal compared to infra-marginal innovators. To

the extent that these rewards, proportional as we discussed in Subsection 4.3 to log(x), are

equal, they can be fully internalized by adjusting rewards optimally. When raising a gives

more less to infra-marginal innovators, it will be more53 attractive. This is exactly the logic

of Spence (1975)’s model of quality-choosing monopoly, expressed precisely in the following

proposition.

Proposition 1: The derivative of social welfare W λ maximized over transfers (with maximizer

T λ) with respect to a is proportional to expression (5) if

(1− λ)
ε′

(1 + ε)2
Ek,f̃

[
k4T

λ′

k
E
(
x

1−ε
1+ε |c = T λ

) [
E
(

log(x)|c = T λ
)
− E

(
log(x)|c < T λ

)]]

is also added to it and that η is replaced by 1− λ+ η .

Proof. See Online Appendix Subsection 4.1.

5.2 Externalities

Many innovations generate externalities. Some (e.g. green technology) are orthogonal to the

nature of products as innovations, but many arise directly from the innovative nature of the

products. In particular, many innovations “stand on the shoulders” of previous innovations

(Scotchmer, 1991; Green and Scotchmer, 1995), implying that innovations generate positive

spillovers to later innovations that build on them. On the other hand, many innovative prod-

ucts compete with existing products, generating negative spillovers (Spence, 1976; Dixit and

Stiglitz, 1977; Loury, 1979). To the extent that the value of such spillovers is not a direct func-

tion of the demand parameters we consider, the analysis of these effects requires introducing

further heterogeneity which is beyond the scope of direct extension of our model. However

in the, not unreasonable, simple cases when they are proportional either to the potential or

actual net surplus created by an innovation, a fairly straightforward analysis is possible, as we

develop below.

Let us begin with the case when the externality is proportional to the potential (σm),

rather than the actual (S(a)σm), surplus generated by the innovation. In this case, nothing

changes in our analysis in Section 4 other than the optimal transfers T ?.

Proposition 2: Let the social surplus generated by an innovation be [γ + S(a)]σm. Then

Corollary 3 applies except that T ?(k) = [γ + S(a)] k2Ex,f̃

[
x

1−ε(a)
1+ε(a)

∣∣∣∣ k, c = T ?(k)

]
rather than

S(a)k2Ex,f̃

[
x

1−ε(a)
1+ε(a)

∣∣∣∣ k, c = T ?(k)

]
.

53Suppose that, along an isoreward curve, c is affiliated with x: higher quality (compared to size) innovations are
more costly. Then marginal innovations will receive a larger increase in rewards from higher a compared to infra-
marginal innovations and thus a distributional motive will ( ignoring effects through T ? and the increased elasticity)
tend to increase the incentive for market power relative to the case of social surplus maximization. We conjecture
this effect will dominate the others, but have not found conditions under which we can prove this.
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Proof. See Online Appendix Subsection 4.2.

Raising T ? by raising γ may increase or decrease optimal market power in this case. On the

one hand, to the extent that the elasticity of innovation supply is declining over the relevant

range, as we might expected to be, higher transfers will encourage lower market power. On the

other hand higher transfers will likely make T ?
′
(k) greater, largely offsetting the first effect,

though of course either could dominate in practice.

If instead the spillover is proportional to realized surplus, there is, relative to the first

case, more motive to reduce market power when the spillover is more positive, as the reduced

consumption induced by higher prices also reduces the spillover.

Proposition 3: Let the social surplus generated by an innovation be (1 + γ)S(a)σm. Then

Corollary 3 applies except that T ?(k) = (1 + γ)S(a)k2Ex,f̃

[
x

1−ε(a)
1+ε(a)

∣∣∣∣ k, c = T ?(k)

]
rather than

S(a)k2Ex,f̃

[
x

1−ε(a)
1+ε(a)

∣∣∣∣ k, c = T ?(k)

]
and the second, ex-post distortion term is scaled up (or

down) by 1 + γ.

Proof. See Online Appendix Subsection 4.2.

If ex-post distortion also reduces the amount of spillovers, there is more of an incentive

to hold down (or up, for negative spillovers) the price of innovations. This is consistent with

the argument of Bessen and Maskin (2009) that innovations likely to have large spillovers

may be best priced nearer to cost to encourage follow-on innovation, so long as the profits

thereby lost can be (more than) made up through subsidies (including that directly coming

from lower licensing fees). For the most part, however, the basic conclusions of our analysis

are robust to the existence of consumption spillovers. In fact, all of our theorems could be

easily extended to this context. More explicit and detailed modeling of complementary and

substitutable innovations in our framework remains an important direction for future research,

however, for the light it might shed on competition policy.

5.3 Mutually-exclusive innovations

Another way that project may fail our assumption of complete independence is on the produc-

tion side. As Aghion et al. (2008) and Murray et al. (2009) argue, there are often trade-offs

between different research agendas. An extreme example of such trade-offs is simple to model:

there is a single agent who must choose which of many possible innovations to create. This

leads to a natural moral hazard version of our model which, while too simple to formalize the

notion of genius or materialism, illustrates the robustness of our basic argument.

Suppose an innovator can choose to create, for effort cost e, any innovation lying along the

smooth curve σ = h(m; e) where hm < 0 < he. The innovator would like to minimize her effort

cost of obtaining a prize T the social planner offers her, if she achieves a specified quantity-price

target which may be set in advance given the lack of ex-ante asymmetric information. From
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now on we will suppress the dependence of h on e, assuming the social planner has chosen (in

some other stage of analysis) the optimal effort e? to induce.

Thus, the choices of interest to us are those between quality and quantity, as in Lewis

and Sappington (1994), Ottaviani and Prat (2001) and Johnson and Myatt (2006). It is

natural to assume that along an isoeffort curve h(m), there is a unique point generating

maximal potential surplus mh(m) so that if the social planner were to select unconstrained,

his problem54 would be quasi-concave. A standard condition for this is increasing elasticity:
∂εh
∂m > 0 where εh ≡ −mh′

h .

The social planner can announce a price-quantity pair and penalize the innovator if she

fails to reach that price-quantity pair. Incentive compatibility requires that the isoeffort curve

is tangent to the demand curve at the requested price-quantity pair; otherwise the innovator

could achieve the desired price and quantity at a lower cost. Therefore, for (q, p) to be incentive

compatible it must be that

εh (m) = ε
( p
m

)
(8)

Note that m is increasing in a ≡ p
m because ε and εh are both increasing. Intuitively prices

must be higher to induce the innovator to choose a product that fairs better when prices are

higher.

Social welfare is S(a)h(m)m. If the social planner were unconstrained by incentives, he

would choose a = 0 and m = m? where m? is the unique maximizer of mh(m). However

to achieve the surplus maximizing m would require εh = 1, the social planner’s problem is

equivalent to the monopoly problem, which would, by incentive compatibility, require a = 1.

But to maximize surplus given the innovation that is created requires a = 0. This is exactly

the same trade-off in the case of independent projects and gives rise to a simple expression for

the costs and benefits of ex-post distortion.

Proposition 4: The first-order net benefits of increasing a in the mutually-exclusive innova-

tions model are proportional to

(1− εh) εε︸ ︷︷ ︸
incentivizing high quality

− εεεh εS︸ ︷︷ ︸
ex-post distortion

where εf is the elasticity of the function f .

When a = 0, εS = 0 as there is no first-order distortion from raising a but εε
εεh

> 0 and thus

there is a first-order benefit from raising a. When a = 1 there is no first-order benefit from

raising a as εh = 1, but there is a first-order loss from the distortion thus caused as εεh , εS > 0.

Therefore, it will always be optimal to choose an a? ∈ (0, 1). More detailed comparative statics

may easily be derived. If demand is very elastic, even for low values of a, it will be optimal

to choose a low. If the isoeffort curve is very elastic even for low values of a, then it will be

54Interestingly, Johnson and Myatt base their analysis on an assumption implying that the social planner’s problem
would be globally convex. This implication of their assumption does not appear to be widely appreciated.
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optimal to chose high values of a. In a broad sense, our core model can be seen as providing

structure to these relative elasticities and tying them thereby to statistical properties of the

distribution of innovations.

Proof. Denoting the logarithm of each variable with ∼, we can log-differentiate social welfare:

−εS + (1− εh)
∂m̃

∂ã

But by implicit differentiation of equation (8),

∂m̃

∂ã
=

εε
εεh

Combining this with the first expression and multiplying by εεh yields the expression in the

proposition.

5.4 Residual uncertainty

We assumed above that the innovator knows, at the point of undertaking the innovation,

the exact demand her product will face. This seems unrealistic for two reasons. First, the

innovator likely learns a significant amount about the demand from the time of undertaking

the innovation to when she brings it to market (e.g. through market research). Second, even

at the point of bringing the innovation to market the innovator may be uncertain about the

demand that will be realized once she chooses a price, as in Baron (1971), Leland (1972) and

Holthausen (1976). In this section we therefore show that our basic results are robust to such

residual uncertainty and in particular we illustrate how the empirical formula of Subsection

4.7 may be extended55 to these settings.

5.4.1 Ex-ante uncertainty

Suppose that, at the point of going to market the innovator knows (σ,m) but at the point

of deciding whether to make the investment or not she knows her cost c of innovating and

some56 signal, s, of her eventual demand. The key feature of this setting is that ex post, when

innovations go to market, nothing differs from our standard model above. Thus, our approach

to incentive compatibility applies exactly as before. Then a similar reinterpretation of the

arguments used to derive the first-order derivative with respect to a in the case of no residual

uncertainty yields an analogous first-order derivative in this case.

55Similar elaborations are possible for the other extensions in this section, but we omit these for brevity, using this
subsection as an illustrative example of how to undertake such an extension.

56s is drawn, jointly with the eventual realizations of (σ,m) and the contemporaneous c, from RN for some integer
N according to the (smooth and finite moment) joint distribution g(σ,m, s, c), which can be transformed as above
into g̃(k, x, s, c).
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Proposition 5: In the model with ex-ante uncertain demand, suppose T ? is differentiable at

a and, as described more formally57 in our online appendix, that conditional on the fact that

an innovation ends up on isoreward curve k and is marginal, the average distribution of k̂ and

x̂ that the social planner infers the innovator anticipated are independent and the distribution

of x does not depend on k. Assume also a similar independence condition on each s. Then

W ′(a) ∝

Ek

k4
(1−ε)

Es[Ek̂[ k̂
2|s]|k]

k2
2ε′

(1+ε)2

η(T?|k)Covs

(
Ex[log(x)|s],Ex

[
x
1−ε
1+ε |s

]∣∣∣∣∣k,c=T?(k)
)

(1−ε) −εQEx

[
x
1−ε
1+ε |k,c≤T?(k)

] ˜
x
1−ε
1+ε




Proof. See Online Appendix Subsection 4.3.

Expression (5) differs from expression (5) in two ways. First, and crucially, the expectations

and covariance over x are, as in Holmström (1979), taken only including the uncertainty over

s, not that given s. Thus, it is only the asymmetric information between the innovator and

society and not the social planner’s total uncertainty over x that is relevant. Similarly, in some

places k, or functions of it, must be replaced with the average value they would have been

expected to take on for an innovation that ends up with such a k value.

Our empirical formula therefore generalizes in a simple manner, described in more detail58

in subsection 4.3 of our online appendix: only the variance in log(x) (given profits and the

social planner’s prior information) over the private information of the innovator, not given

it, is relevant. Rather than simply taking the variance of the residuals from the regression

described in Subsection 4.7 above, one must multiply this variance by R2 of a regression of

these residuals on the information of the innovator.

5.4.2 Ex-post uncertainty

Alternatively, we may consider a case where the innovator does not know the demand even

ex-post. Suppose that given (σ,m) realized demand is given by a distribution

H
(
q|σQ

( p
m

))

Again, the imitation frontiers are unchanged: first, the social planner cannot distinguish be-

tween (σ,m) and (σ̂, m̂) at price p̂ as long as

σQ

(
p̂

m

)
= σ̂Q

(
p̂

m̂

)

57It is possible to derive extensions versions of our empirical formula that apply to this model without such stringent
assumptions. The required adjustments are no more burdensome empirically than those based on this formula, but
they are more cumbersome to describe and thus we omit them here.

58In particular, the relative incentive for ex-post distortion is now scaled up by a ratio of the average anticipated
to actual value of k2.
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since the distributions of quantities are exactly the same in both cases. Second, and conversely,

if the latter equality is not satisfied, the social planner can costlessly tell (σ,m) and (σ̂, m̂)

apart by asking the innovator to predict demand: see Osband (1989) for an illustration of how

“scoring rules” can be employed to that effect.

The analysis can then be generalized. A particularly straightforward case in point is that

of multiplicative (ξm, with E(ξm) = 1) shocks that are independent of (σ,m, c). That is,

q = ξm

[
σQ
( p
m

)]

so that

S(p; σ,m) = ξm

[
p
(
σQ
( p
m

))
+

∫ ∞

p
σQ
( p̃
m

)
dp̃

]

which is proportional to the welfare earlier. As shown in Online Appendix Subsection 4.3, our

empirical formula must be altered in similar, but not identical, manner59 to the case of ex-ante

uncertainty. Now in calculating x we take not the ratio of realized prices to quantities but the

ratio of prices to the best projection of the innovator of the quantity.

5.5 Sales manipulation

In line with the literature on advance market commitments and output subsidies policies,

we have assumed so far that sales are verifiable by the government. At the very least, such

verifiability requires the existence of either exclusive resale outlets with trustworthy record

keeping or an encryption device preventing inflated sale claims. Yet, even if actual sales

are verifiable, the innovator may still want to manipulate sales figures by asking friends and

affiliates to purchase on her behalf. Such manipulation may provide a separate, but closely

related, rationale for above-cost pricing.

With affiliated purchases, the scheme T (q, p) is non-manipulable if such purchases are not

profitable. That is, for any (q, p) in the equilibrium support, T (q + ∆, p) − p∆ must be

maximized in the range [0,∞) at ∆ = 0. If T is differentiable60, this adds the following

non-manipulability constraint:

Tq(q, p) ≤ p.

The non-manipulability constraint is inconsistent with low mark-ups. For instance, a prize

system (p = 0, T is an increasing function of q) is no longer feasible, let alone approximately

optimal.

Recalling that the optimal transfer in the absence of such manipulations writes:

T = T̂
(
k̂
)

where k̂ ≡ p
ε(a)

1+ε(a) q
1

1+ε(a) ,

59Of course, both of these filters might be applied to reduce the degree of asymmetric information implied by the
formula in Subsection 4.7 when appropriate.

60Otherwise its right Dini derivatives must both obey this bound.
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this non-manipulability constraint can be rewritten as

x ≥
(

T̂ ′

(1 + ε(a)) k

) 1+ε(a)
1−ε(a)

. A low mark-up leads to this being violated for a wide range of x values, unless the policy

is highly unresponsive. Thus, the only feasible means of using market signals is allowing ex-

post distortion, providing an closely related alternative to our rationale for market power:

in this setting, screening even the size of the market requires market power. The monopoly

solution (a = 1, and so k =
√
π, yielding T (k) = k2) satisfies the non-manipulability constraint

everywhere with equality.

The characterization of the optimal scheme under the non-manipulability constraint lies

outside the scope of this paper. However the tools we develop here will likely be helpful in

addressing it; we naturally conjecture that the optimal a is higher under the constraint than

in its absence.

5.6 Multiple price observations

For analytical convenience, we have presumed that the social planner does not require the

innovator to randomize over prices. This could facilitate sorting at lower distortion cost by

improving the social planner’s information about the demand curve without forcing all con-

sumers to pay higher prices.

There are several ways in which multiple prices might emerge: pure stochastic pricing (each

announcement of (σ,m) generates a price distribution), geographically differentiated prices

and intertemporally differentiated prices. The latter two forms of price variability require the

absence of consumer arbitrage: geographical price dispersion is not sustainable if resale across

territories is feasible. Similarly, for a durable good, Coasian arbitrage limits the forms of

intertemporal discrimination that can be achieved (Coase, 1972; Bulow, 1982).

But even in the absence of consumer arbitrage, price variability in general would not obviate

the need for pricing in the upper part of the demand curve sufficiently long, with sufficient

probability. A general treatment of this point lies outside the scope of the paper and we

content ourselves with a simple illustration.

An example. Consumers have willingness to pay for the innovation equal to vH (fraction m)

or vL (fraction 1−m), where vH > vL. Let v ≡ mvH + (1−m)vL denote the social surplus at

ex-post efficient pricing (p ≤ vL). There are two types of innovations: minor (c1 , σ1 ,m1) in

proportion f1 , and major (c2 , σ2 ,m2) in proportion f2 , with f1 + f2 = 1. One has σ1 ≥ σ2 ,

m1 < m2 and, with obvious notation, v2− c2 > 0 > v1− c1 so the social planner would like to

screen in major innovations and out minor ones.

Consider first intertemporal price variations. One might intuit that the social planner

should mandate high prices for a short while in order to learn about the demand curve and
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then, conditional on the observed demand having passed the market test, award a prize to

the inventor and have the innovation turned to the public domain. This reasoning, however,

ignores two related features: First, for exogenous reasons, demand may develop faster or

slower than thought and so early demand observations will be noisy. Second, the innovator

may use marketing and more generally non-price effort to frontload realizations of demand.

We formalize the latter possibility in a straightforward way: let time run from 0 to 1 and there

be no discounting for notational simplicity. Let ztk = 1 if type k ∈ {1, 2} charges vL < pt ≤ vH
and ztk = 0 if pt ≤ vL. To formalize the feasibility of moving demand across time, we allow

the innovator to choose demand path {σtk}t∈ [0,1] subject to the constraint

∫ 1

0
σtkdt = σk (total

demand across time is constant).

To mimic the major innovation, the minor innovation must choose σt1 = σt2m2/m1 for all

t such that zt2 = 1 and σt1 = σt2 otherwise. Letting z ≡
(∫ 1

0
σt2z

t
2dt

)
/σ2 denote the fraction

of the demand for time at which the major innovation leads to a distortion, screening out the

minor innovation requires that the latter be forced to frontload sufficient demand and so the

planner later finds out:

σ1 < σ2

(
1 +

m2 −m1

m1
z

)
.

Rather than moving demand across time, the innovator may manipulate sales, as studied

in the previous subsection. Let X ∈ [0, 1] denote the fraction of time for which pt = vH and

1−X the fraction of time for which pt = vL. To make up for the sale shortage (m2−m1) when

pt = vH , the producer of the minor innovation must spend (m2 −m1)vH , and so incentive

compatibility requires that

c2 − c1 ≤ (m2 −m1)vHX.

Again, this sets a lower bound on the fraction of time for which the monopoly price vH must

be charged if sorting is to occur.

Finally, let us use this example to illustrate that random schemes similarly require a suf-

ficient probability of a high price. Under risk neutrality, this would not be the case: it would

suffice to implement a high price with a small probability, and then give a very high transfer in

that state of nature if demand turns out to be sufficient. There are however two limits to this

argument. The first is that the random scheme is highly manipulable in the sense of Subsection

5.5: a small probability of teasing out the demand curve requires a very high transfer in order

to make up for the R&D cost c2. And so the cost of manipulation (m2 −m1)vH is lower than

this transfer. Second, innovator risk aversion also constrains the use of random schemes.61

The bottom line of this section is that the social planner must trade off the reduced cost

61Suppose for example that the innovator’s utility is u(T ) = T for 0 ≤ T ≤ T and u(T ) = T for T ≥ T , where
T > c2. Let X denote the probability that p = vH and (1 − X) the probability that p = vL. It is optimal to set
T = T when p = vH and demand is m2. Let T denote the reward when p = vL. Then XT + (1−X)T ≥ c2 for the
major innovation to be created. On the other hand sorting requires that (1−X)T ≤ c1. And so
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of sorting and the cost of randomization when contemplating the use of multiple price ob-

servations (temporal, geographic, randomized). The basic insights of this paper seems highly

robust. However the appropriate role of more sophisticated schemes to partially mitigate the

costs of market power is an exciting direction for future research.

6 Other Applications

This section demonstrates how the techniques developed above can be applied to a wide range

of problems significantly more general than IP or even the optimal distortion of prices that we

focus on above.

6.1 Platforms

Users Platform

Potential
application i

t

Tipi

Figure 8: Application development incentives in a two-sided market

A two-sided platform62 (as shown in Figure 8 above), such as an operating system, must

attract multiple sides of a market, say end-users and application developers. As discussed in

Subsection 4.6 above, one of the key decisions faced by such platforms is how to “regulate” the

relationship between application developers and end-users. Should it let application developers

charge a monopoly price (pi = mi) for their application, effectively giving them IP? Or should

it bundle the applications, free to the consumers, with the platform, paying the developer a

prize-like up-front fee?

The analogy between a platform and a social planner can be made more formal and is

particularly precise when, as described formally in Online Appendix Subsection 4.4, end-users

differ in an idiosyncratic parameter of taste for the platform and there is a large number of

X ≥ c2 − c1
T

.

Again the probability of monopoly pricing cannot be too small.
62See Rysman (2009) for a recent survey.
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applications. It can then be shown that the platform aims at maximizing total surplus (end-

user gross surplus) minus the rewards given to developers. Therefore, the extension of the

paper’s analysis to the case where the social planner cares nothing for developers (λ = 0 in

Subsection 5.1 above) carries through without any modification.

This analysis qualifies the classic result of Armstrong (1999) and Bakos and Brynjolfsson

(1999), who showed that a platform with full knowledge about the quality of a large number

of independent applications optimally bundles them with access to the platform. Bundling is

no longer optimal when the platform is unsure which applications bring value to the end-user;

thus the iPhone App Store’s policy may be nearly optimal if a few killer apps make most of

the platform’s value and the elasticity of innovation supply is high.

6.2 Intrapreneurship

A similar tradeoff arises when the “application developer” is an internal division and the

platform wants to provide it with incentives to develop useful applications. A division manager

is endowed with a project for a new product. If authorized, the manager will enjoy a private

benefit or cost, and headquarters will observe price and sales, but not the resulting spillovers.

Spillovers can be traced to the existence of either repeat purchases (e.g., due to lock-in) or the

sale of complementary products; the spillovers will benefit the conglomerate, but not (at least

not fully) the division manager. The unobserved profit from spillovers is the counterpart of the

unobserved net consumer surplus in our main analysis. Assume (reasonably) that spillovers are

larger when consumer’s willingnesses to pay for the division’s product are higher. Spillovers are

then larger when the demand curve is less price sensitive. This setting is perfectly analogous to

the platform setting discussed in the previous subsection, except that the relevant incentives

are internal to the firm. Our paper thus provides a rationale for allowing intrapreneurs to

receive rewards proportional to the profits generated by the profits on their product along,

even though this causes multi-marginalization problems for the firm, helping to address recent

debates about such incentive schemes (Hunt and Lerner, 1995).

6.3 Infrastructure procurement

The traditional approach to building a new highway or new train tracks is to enter a procure-

ment contract with an infrastructure builder, and then to turn to a separate infrastructure

operator to manage it; the infrastructure may then be accessed at a relatively low price. By

contrast, under a public-private partnership (PPP), the builder of the new infrastructure de-

rives substantial revenue from its later operations. Such a long-term approach links builder

compensation to actual revenue derived from the end-user and is often vaunted as a way to

screen out white elephants.

Purely public projects may be seen in a similar light if we consider the limiting case,

discussed in the example of Subsection 4.8, of known costs and consider the innovator as a
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political entrepreneur seeking funding from the public purse for a project on which she stakes

her reputation. Our analysis above showed that, in this case, an optimal rule is to provide the

funding if the entrepreneur agrees to accept public condemnation (and thus political ruin) if

the project fails to achieve a threshold score and public praise (and perhaps reelection) if it

passes that threshold. This score is based on a mix of revenue recovery and quantity consumed

(and thus consumer surplus). The optimal degree of market power then simply represents the

optimal elasticity of the threshold score with respect to each of these, which will determine

the political entrepreneur’s pricing incentives.

6.4 Platforms with heterogeneous externalities

The basic idea implicit in endogenous information structures has applications ranging even

further away from the structure of our model. One application, being considered in work in

progress by Veiga and Weyl (2010), is to the theory of multi-sided platforms, which typically

makes the restrictive assumption that the externalities delivered by any participant on a par-

ticular side of the market are either identical or can be fully third-degree price discriminated.

This clearly fails in newspapers, for example, where wealthy readers are more valuable to

advertisers than are poor readers, but cannot be charged a different price. The difficulty to

this point in solving a model with heterogeneous externalities has been analyzing the value

that, say, adding an additional advertiser to a paper brings in terms of sorting rich from

poor consumers. If rich marginal consumers dislike advertising more than poor marginal con-

sumer do, for example, then advertisements will be less attractive than if these preferences

were reversed. This effect can be quantified exactly through the sort of envelope theorem and

covariance approaches we took above.

6.5 Applications of the stretch parameterization

We make extensive use of our stretch parameterization of demand, which significantly general-

izes the linear specification of preferences typically used even in the most general multidimen-

sional screening models (Rochet and Choné, 1998). In this subsection we briefly describe the

breadth of this parameterization and some other potential interpretations and applications of

it.

Among the classes of preferences representable by the stretch parametrization are all con-

stant pass-through demand (Bulow and Pfleiderer, 1983) functions with common pass-through

rate, the broader Apt demand class (Weyl and Fabinger, 2009) if the slope-of-pass-through pa-

rameter scales appropriately to m and limiting pass-through is common, any demand based

on a statistical distribution with a constant location-to-scale parametrization63 and a single-

product version of AIDS (Deaton and Muellbauer, 1980). An increase in σ corresponds to an

63See Weyl and Fabinger (2009) for an extensive list of such distributions. Two prominent examples are Gaussian
or Type-I extreme value distribution with constant location to scale parameter ratios.
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increase in the traditional market size parameter in standard industrial organization (Bresna-

han and Reiss, 1991) and international trade (Krugman, 1980). A shift in m, on the other

hand, corresponds to a proportional increase in all consumers’ willingness-to-pay (proportional

decrease in their “price coefficient”), often represented (Berry et al., 1995) by a proportional

increase in their income.

Given its intuitiveness, this parameterization seems likely to be useful in other areas of

industrial organization and beyond; we provide a few examples. As discussed in Subsection 5.3

it seems a natural parameterization for demand morphing in the spirit of Johnson and Myatt

(2006). Similarly, σ compared to m provides a simple manifestation of Bresnahan (1982)’s

distinction between demand shifters and twisters. It offers a simple way to parameterize cases

when, in the sense of Spence (1975), a monopolist has excessive or deficient incentives to supply

quality, holding fixed quantity. A monopolist will always have too little incentive to supply m

holding fixed quantity64 as most of the benefits of higher m accrue to infra-marginal consumers

but, so long as demand is log-concave (linear-cost pass-through is less than 1), a monopolist will

have excessive65 incentive to supply σ. More broadly, in multi-dimensional screening stretch

parameterizations of indifference curves may extend many of the useful properties traditionally

attributed to linear indifference curves.

7 General Pricing

This section considers the generalization of our analysis to broader pricing rules.

7.1 Incentive compatibility with general pricing

Virtually all of our analysis above adopts the standard contract-theoretic approach of invoking

the revelation principle and solving for optimal assignments of transfers and prices to types of

innovators subject to incentive compatibility. The alternative (and equivalent) price theoretic

approach (Bulow and Roberts, 1989; Wilson, 1993; Milgrom, 2004), often called the “demand

64Social value is S
(
Q−1

(
q
σ

))
σm while profits are qmQ−1

(
q
σ

)
. Thus, the marginal social incentive to supply m

is σS while the marginal private incentive is qQ−1 = σQpm . But Sm
Qp is exactly the ratio of average to marginal

willingness-to-pay which is clearly above unity.
65The social incentive is now

−S
′

Q′
q

σ
m+ Sm =

QεQ

Q′a
am+ Sm = (S − aQ)m

while the private incentive is

− q
2m

Q′σ2
= −Q

2m

Q′
=
Qam

ε

At monopoly optimal prices the first simplifies to (S(1)−Q(1))m and the second to Q(1)m. S(1)−Q(1)
Q(1) is the ratio

of consumer to producer surplus at monopoly optimal prices, whose comparison to unity is dictated by the average
pass-through rate at prices above the monopoly optimum (Weyl and Fabinger, 2009). At prices other than monopoly
optimal a similar result may be shown, but we omit it in the interests of brevity.
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profile approach in the context of non-linear pricing, is, for some problems, more fruitful.

Among these is the analysis of incentive compatibility with more general pricing that we

consider in this subsection. We therefore begin this subsection by developing such an approach,

using it to derive more general sufficient conditions for incentive compatibility.

p

q

isoreward curve

(σ
3 ,m

3 )

(σ
2 , m

2 )

(σ1 , m1)

Incentive compatibility
(linear demand curves with
m3 > m2 > m1 and σ1 > σ2 > σ3)

Figure : Isoreward curves under
the price-theoretic approach

Figure 9: Isoreward curves in the (q, p) space under the price theoretic approach

Let us consider the analysis of T̂ (q, p) directly. Suppose that for every (q, p) pair there is

some66 innovator whom we would like to produce q and charge p. By free disposal, T̂ must

be increasing in (q, p) for this to be feasible. If innovator (σ,m) is to choose a quantity price

pair
(
σQ
( p
m

)
, p
)

then the isoquant (isoreward curve) of T (q, p) must be tangent to (σ,m)’s

demand curve at
(
σQ
( p
m

)
, p
)

(up to a set of such curves of measure zero; see Subsection 7.1

below). Thus, the simple demand curves play the role of imitation frontiers in the price theory

approach. This is pictured in Figure 9, where isoreward curves form the upper envelope of

demand curves at the points along these curves assigned to the respective innovators.

Proportional pricing would impose that we wish to implement p = am for some constant

a ∈ [0, 1]. However sufficient incentive compatibility conditions are straightforward to interpret

for general incentive compatible pricing rules based on the price theory approach. We thus

move immediately to these.

Suppose we wish to implement some continuous mapping (q, p) : R2
+ → R2

+ which prescribes

the quantity q(σ,m) and price p(σ,m), which any innovator is instructed to produce and

charge, respectively. Clearly to be implementable the price-quantity pair must lie along the

appropriate demand curve:

q(σ,m) = σQ

(
p(σ,m)

m

)

66Note that even if this fails it is irrelevant and we can always restore monotonicity, as any time there is an
innovator at (q, p) the reward there must be greater than at any point dominated by this.
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What else is required of (q, p) to be implementable? Suppose that q were to be decreasing

in σ or p decreasing in m. This would effectively ask types with a comparative advantage in

producing demand or prices to produce less of these than another type with a comparative

disadvantage. The classic logic of Spence (1973) and Mirrlees shows this may not be incen-

tive compatible. Moreover, in two variables individual (weak) monotonicity in each argument

is not sufficient (McAfee and McMillan, 1988); if (q, p) is differentiable the Jacobian of the

transformation must be positive semidefinite (it cannot flip points across quadrants in coor-

dinate systems based at any point). Such a differentiable mapping is known as a monotone

orientation-preserving weak self-diffeomorphism (weak MOPSD) of R2
+; a strict MOPSD has

a positive definite Jacobian.

While this condition is quite imposing as a formal statement, it is really just the most natu-

ral two-dimensional generalization of the standard monotonicity condition for one-dimensional

implementation. In algebraic terms it simplify states that εεaσ < 1 (where εaσ is the elasticity

of a with respect to σ), εam > −1 and that εεaσ−εam < 1. The first condition is that increasing

σ should not increase prices so far as to offset the direct increase in quantity this causes, so

that q remains monotone in σ. The second condition posits that a should not fall so rapidly

in m that p is actually declining in m. The final condition is equivalent to the condition

that moving along the local demand function towards higher prices also moves towards higher

m and lower σ. This last is the requirement, in addition to monotonicity, that ensures the

preservation of orientation.

Lemma 3. Suppose that (q, p) is a strict MOPSD of R2
+ with q(σ,m) = σQ

(
p(σ,m)
m

)
. Then

the conditions in Lemma 1 are necessary and sufficient for incentive compatibility. Almost

conversely if (q, p) is differentiable then any incentive compatible T̂ implementing (q, p) is

constant over any neighborhood where (q, p) fails to be MOPSD.

Thus, if we are willing67 to assume (q, p) is differentiable, we may use the isoreward ap-

proach except when there is bunching (a weak MOPSD or no MOPSD at all with flat T̂ ).

However, any weak MOPSD is the limit of a series of strict MOPSD and thus little is lost by

restricting attention to the latter.

Proof. See Online Appendix Subsection 5.1.

7.2 Substantive results with general pricing

Building on the preceding section we may now investigate the properties of more general,

incentive compatible pricing rules. Our analysis is less complete than under proportional

pricing, but we provide four results. First, we present a general first-order derivative with

respect to adjusting prices at any point and use it to provide a generalization of Theorem 1.

Second, we discuss a version of our analysis that may apply even absent proportional pricing: a

67Fabinger and Weyl (2011) are working to relax this and other technical assumptions.
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first-order derivative with respect to the overall level of market power. Third, we use a similar

strategy to prove a generalized version of Friedman’s Conjecture and its converse. Finally, we

discuss which direction, starting from proportional pricing, may be optimal to move the price

schedule. This provides some limited justification for proportional pricing. For simplicity we

restrict attention to the case when T ? is differentiable, but, as shown in Appendix C below,

little changes if this fails.

Just as in Section 4, under general pricing we can change variables from (σ,m) to (k, x).

Here k again represents the isoreward curve measured by the point at which it intersects the

45◦, σ = m line and x is again m
σ . However, now that pricing is not proportional, demand

elasticity is not the same at all points. It is thus necessary to consider, for any point (k, x), the

elasticity of demand at that point ε(k, x); we also use this convention for other quantities such

as S and Q. However, not only the elasticity at a point is relevant; the value of k corresponding

to any (σ,m) is determined by the elasticity at every point along the isoreward curve passing

through (σ,m) between x and the 45◦ line. Thus, one must consider the average68 elasticity of

demand:

ε̃(k, x) ≡ 1
1

1+ε(k, x)
− 1

where
1

1 + ε
(k, x) ≡

∫ x

z=1

1

z log(x) [1 + ε(k, z)]
dz

An innovation’s social value is, after some algebraic manipulations, S (k, x) k2x
1−ε̃(k,x)
1+ε̃(k,x) . The

benefits of raising a again arise from sorting and those of lowering it from reducing ex-post

inefficiency, both locally holding fixed rewards given to each k by the envelope theorem; the

optimum balances these two incentives. However for general pricing we must consider this

trade-off at each (σ,m), or (k, x), pair.

Proposition 6: If T ? is differentiable in k, the first-order net benefit of increasing a at
(
k̂, x̂
)

beginning from a strict MOPSD pricing policy a(·, ·) is, if x ≥ 1, proportional to

T?
′

k̂

ε′(k̂,x̂)

x̂[1+ε(k̂,x̂)]2

[
1+log(x̂)

ε′(εam−εaσ )
(1+ε)2

(k̂,x̂)
]E

f̃,x>x̂

[
Sx

1−ε̃
1+ε̃

]

E
f̃,x

[
Sx

1−ε̃
1+ε̃

] −1

η(T ?|k̂)
︸ ︷︷ ︸

sorting

−Qεx̂
1−ε̃
1+ε̃H(x̂|k̂,T ?)

E[ f̃( x̂|k̂,c)|c<T?,k̂]
f̃(x|c=T?,k̂)︸ ︷︷ ︸

ex-post distortion

where H is the (conditional) hazard rate of x under f̃ and if x < 1, proportional to

T?
′

k̂

ε′(k̂,x̂)

x̂[1+ε(k̂,x̂)]2

[
1+log(x̂)

ε′(εam−εaσ )
(1+ε)2

(k̂,x̂)
]E

f̃,x>x̂

[
Sx

1−ε̃
1+ε̃

]

E
f̃,x

[
Sx

1−ε̃
1+ε̃

] −1

η(T ?|k̂)−Qεx̂ 1−ε̃
1+ε̃H(x̂|k̂,T ?)

E[ f̃( x̂|k̂,c)|c<T?,k̂]
f̃(x|c=T?,k̂)

where R is the reversed hazard rate. A necessary condition for a strict MOPSD (no-bunching)

68As described in Online Appendix Subsection 5.2, this is a (transformed) log-average elasticity along the isoreward
curve from point (k, x) to point (k, 1).
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solution is that these equal zero at every point in the plane.

This is just the standard calculus-of-variations first-order derivative at a point in this

context, using the envelope theorem.

Proof. See Online Appendix Subsection 5.2.

Three things may be gleaned from these relatively dense expressions. First, despite their

complexity, the same basic forces are at work as with proportional pricing. The first term is the

product of materialism and the degree to which raising a is able to sort for the best innovations.

This is quite naturally measured by the ratio of the social value of average innovations with a

higher value of x than x̂, along isoreward k̂, to the social value of an overall-average innovation

along that isoreward curve. Thus, the basic logic of our analysis carries through more generally.

Second, there seems be a strong indication, discussed more extensively later, that along an

isoreward curve a will optimally decline in x (decline in m and/or increase in σ), at least over

a significant range. We will discuss the reasoning behind this more extensively below.

Finally, supposing this is the case, it is worth noting that this creates both greater, and

lesser, selective pressure in favor of high x innovations. On the one hand, it raises selective

pressure as their S values are higher as well. On the other hand in this case εam is likely

smaller than εaσ (so that a declines in x along k) so that the rather odd term

log(x̂)
ε′ (εam − εaσ)

(1 + ε)2

(
k̂, x̂
)

becomes negative and thus depresses the incentives for market power. The basic source of this

term, explained extensively in Online Appendix Subsection 5.2, is that changing pricing alters

the set of prices through which (σ,m)’s isoreward curve passes as it approaches the 45◦ line

and thus indirectly affects the rewards given to (σ,m) to the extent that a is not constant.

This analysis may be used to generalize Theorem 1.

Theorem 4: At global ex-post efficient pricing there is a local incentive at all points to raise

prices at any (σ,m) for which T ?(σ) is not constant in the neighborhood of σ. At global

monopoly pricing there is a local incentive at all points to lower prices.

Proof. See Online Appendix Subsection 5.2.

Another way of recovering some broader results of our analysis is to focus on its primary

goal: determining the optimal “level”, rather than structure, of market power. One of the

necessary conditions for optimality is, of course, choosing this level correctly. In particular, we

can consider the first-order costs and benefits of uniformly lowering 1
1+ε at every point by a

small amount; this particular direction is chosen for the analytic simplifications it allows. This

gives a similar expression to our baseline proportional pricing first-order condition, as shown

in the following proposition. However the additional forces identified above still play a role.
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Proposition 7: Starting from any strict MOPSD policy a with a < 1 everywhere and assuming

T ? is differentiable at this policy, the first variation of W in the direction a+ (1+ε)2

ε′ (uniform

decrease in 1
1+ε) is proportional to

Ek,f̃

[
k4
(
ηT?
′

k
Covx,f̃

[
ε′

(1+ε)2

(
1+log(xz )(εam−εaσ )

)
log(x),Sx

1−ε̃
1+ε̃

])
−Ef̃ ,x

[
Qεx

1−ε̃
1+ε̃

∣∣∣∣k,c<T ?(k)

]
Ef̃ ,x

[
Sx

1−ε̃
1+ε̃

]]

Proof. See Online Appendix Subsection 4.3.

Similarly, we may consider the benefits of moving towards monopoly pricing from any

pricing policy arbitrarily close to it, or towards ex-post efficiency from any pricing policy

arbitrarily close to it, to derive a general version of Friedman’s Conjecture, or its converse.

Theorem 5: Beginning from any a sufficiently, uniformly close to uniform monopoly pricing

(a = 1 everywhere) but with a < 1 everywhere, if V1 (of Theorem 2) is sufficiently large there

are first-order benefits from moving a small amount (uniformly) towards uniform monopoly

pricing. Beginning from any strict MOPSD a sufficiently, log-uniformly close to ex-post ef-

ficiency (a = 0 everywhere) but with a > 0 everywhere, if V0 (of Theorem 3) is sufficiently

small there are first-order benefits from moving a small amount (uniformly) towards ex-post

efficiency.

The proof is effectively identical to that of Friedman’s Conjecture and its converse, with only

slight complexities in simplifying the more general first-order condition local to the proportional

policies of ex-post efficiency and monopoly pricing.

Proof. See Online Appendix Subsection 4.3.

Finally, to provide at least some notion of what the optimal structure of market power

may look like, we can consider evaluating the first-order condition for optimal pricing at each

point, beginning from optimal proportional pricing. This provides at least some indication of

the optimal structure of market power.

Corollary 4: If T ? is differentiable in k, the first-order net benefit of increasing a at
(
k̂, x̂
)

given beginning from a proportional pricing policy a is, if x ≥ 1, proportional to

ε′T ?
′
(
k̂
)

(1 + ε)2 k̂x̂
2

1+ε



Ef̃ ,x>x̂

[
x

1−ε
1+ε

∣∣∣ k̂, T ?
]

Ef̃ ,x

[
x

1−ε
1+ε

∣∣∣ k̂, T ?
] − 1


 η

(
T ?|k̂

)
−QεH

(
x̂|k̂, T ?

) E
[
f̃
(
x̂| k̂, c

)∣∣∣ c < T ?, k̂
]

f̃
(
x|T ?, k̂

)

and if x < 1

ε′T ?
′
(
k̂
)

(1 + ε)2 k̂x̂
2

1+ε


1−

Ef̃ ,x<x̂

[
x

1−ε
1+ε

∣∣∣ k̂, T ?
]

Ef̃ ,x

[
x

1−ε
1+ε

∣∣∣ k̂, T ?
]


 η

(
T ?|k̂

)
−QεR

(
x̂|k̂, T ?

) E
[
f̃
(
x̂| k̂, c

)∣∣∣ c < T ?, k̂
]

f̃
(
x|T ?, k̂

)
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With some additional simplifying assumptions these formula may give some insight. As-

sume that k, x and c are all independent, which implies that T ? is quadratic in k. Furthermore,

suppose that
Ef̃ ,x̂

[
x̂
1−ε
1+ε

∣∣∣∣x̂>x,k,c=T ?(k)

]
Ef̃ ,x̂

[
x̂
1−ε
1+ε

∣∣∣∣k,c=T ?(k)

] −1 = γx
1−ε
1+ε as in a generalized Pareto distribution. Then

the first formula simplifies to
γε′η

(1 + ε)2 x
−QεH (x)

This setting implies that the local incentives for distortion are independent of k. However

it also gives a sense that, after some point at least, the local incentive for raising prices is

likely to decline in x along an isoreward curve. This occurs for two reasons. First, if we have

the standard increasing hazard rate condition, H grows in x. This is just the logic behind the

classic “no distortion at the top” result of Mirrlees (1971), though based on sorting rather than

rent extraction. The sorting benefits of higher prices only affect innovations with higher x than

that at which prices are distorted; if the mass of such upper-tail innovations shrinks relative

to that of those being distorted as hazard rates are increasing, there will be little incentive

to create such distortion. However there is also an additional motive for lower distortions for

higher x here: the multiplicative, log-linear nature of the stretch parameterization69 implies

that the upper tail is less affected by shifts in elasticity at high x values than those at low

values (above unity). In some sense the closer x is to 1 the more dramatically a change in the

elasticity at that point shifts the isoreward curve and therefore the greater its sorting value.

While for x < 1 things are a bit subtler, there seems to be some weak, but general, indication70

that optimal policy calls for a values declining along isoreward curves.

8 Conclusion

This paper aspires to make three contributions. First, in terms of modeling, we develop a

multidimensional screening framework and introduce the intuitive stretch parameterization

of demand to formalize Smith’s argument that market power helps screen for high surplus

innovations. Second, on a technical level, we develop techniques (the isoreward approach and

application of the envelope theorem) to derive a solution for the broad but unstudied class

of multidimensional screening problems with endogenous information structures. Finally, and

69It would be interesting to know if this is a more general property of multidimensional screening problems.
70This extremely tentative conclusion merits two comments. First, if this is the case it might point towards

bunching (a weak MOPSD) being optimal as a declining with rising x pushes up against order-preservation and/or
monotonicity. This would be consistent with the arguments of Armstrong (1996) and Rochet and Choné (1998)
that bunching is quite common in multidimensional screening and is an interesting observation from an economic
perspective, as it would imply the easy-to-implement institution of price controls potentially forming part of optimal
policy. Second, it provides at least some reassurance that proportional pricing is not too wildly off as a policy
prescription. There are limits to how rapidly a may increase with x and still be a MOPSD and therefore incentive
compatible; had it been optimal for a to decrease in x there would have been no limit to how far off proportional
pricing might have been. Obviously all of this analysis is exceptionally preliminary and the more complete analysis
of our model with general pricing remains an important topic for future research.
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substantively, we quantify a notion of “the value of materialistic genius”, which we show is

tightly connected to the optimality of market power as a reward for innovation, making precise

the conjectures of classical thinkers.

Needless to say, our framework requires further elaboration in order to help fashion policy.

Furthermore, given the foundational role that many of the issues we address in this paper play

in several areas of price theory, we believe our work opens a number of promising directions

for future research. First, our general formula ought to be calibrated empirically in specific

industries. Second, several extensions would test the robustness of our insights: the demand

function could be generalized beyond the stretch representation and the optimal structure,

not just level, of market power could be more fully analyzed; although we have presented

arguments that make us hopeful that our insights will carry over, only a rigorous analysis can

vindicate such a claim. Along the same lines, a general analysis of demand uncertainty (under

inventor limited liability or risk aversion), as well as richer asymmetric information (duration,

marketing, price discrimination, marginal costs) and richer instruments for screening demand

to accompany would be welcome. In particular, the latter would be crucial in allowing our

analysis to shed light on the design of patent length and breath. Finally, the extension of

our techniques to accommodate R&D races, licensing competition and cumulative innovation,

and thus tradeoffs between regulation and competition policy in these settings, stands high

on the research agenda. For instance, our techniques are likely to be helpful in analyzing

the validity of the notion (central to antitrust doctrine) that acquired market power may be

maintained but should not be extended. The acceptability of vertical foreclosure practices is

often felt to depend on the extent of innovation/investment (Rey and Tirole, 2007); market

power gained through horizontal mergers and predation are frowned upon in the absence of

substantial efficiency gains. Formal analyses would be useful to help guide policy in these

matters.
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Appendix

A Supply, demand and optimal transfers

In this subsection we consider, given a fixed value of a, the problem of solving for the
monotonicity-relaxed optimal T ??(k; a) function and then the conditions under which this
is monotone and thus is the monotonicity-constrained optimal T ?(k; a).

We begin with a change of variables from (σ,m) to (k, x); this requires transforming the

distribution of values according f̃(k, x, c; a) ≡ f

(
kx
− ε(a)

1+ε(a) , kx
1

1+ε(a) , c

)
kx
− 2ε(a)

1+ε(a) . We can

then rewrite the social planner’s problem, with the substitution and by switching the order of
integration, as

max
T̃ (·)

∫

k

∫ T̃ (k)

c=0

∫

x

(
k2x

1−ε(a)
1+ε(a)S(a)a− c

)
f̃(k, x, c; a)dxdcdk (9)

subject to the constraint that T̃ (·) is monotonically increasing, which we ignore for the re-
mainder of this subsection and return to in the following subsection.
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Consider the marginal cumulative distribution of innovations in terms of their cost of
creation c, integrating out over x, lying along a particular isoreward curve:

F (T ; k, a) ≡
∫ T
c=0

∫
x f̃(k, x, c; a)dxdc∫∞

c=0

∫
x f̃(k, x, c; a)dxdc

This is the fraction of innovations that will be created if a reward T is offered along this curve.
Σ(r; k, a) ≡ F−1(r; k, a) is then the (clearly increasing inverse) supply of innovations lying
along isoreward curve k, namely the reward necessary to induce a fraction r of innovations
lying along that curve to be created.

We can similarly define the (social inverse) demand for innovations. First, let us define the
average value of an innovation lying on isoreward curve k with cost c by

S(c; k, a) ≡ k2S(a)Ex,f̃

[
x

1−ε(a)
1+ε(a) |k, c

]
≡ k2S(a) ·

∫
x x

1−ε(a)
1+ε(a) f̃(k, x, c; a)dx∫
x f̃(k, x, c; a)dx

(10)

Then D(r; k, a) ≡ S (Σ(r; k, a); k, a) is the average value of a marginal innovation lying along
isoreward curve k, given that a fraction q of innovations lying on that isoreward curve have
been created. We refer to this as the social inverse demand71 for innovations.

The optimal reward along the isoreward curve can then simply be found as the intersection
of the supply and demand curves for innovations, assuming these intersect only once. In fact,
if c and x are independent given k, the demand for innovations is flat so the optimal reward
is simply its value for all r. It is clear from equation (10) that D(r; k, a) is constant in r if
either c is independent of x given k, if a is close to 1 or both. More generally for a < 1, D
will slope downwards if x varies negatively with c given k and upwards in the reverse case, in
a sense made more rigorous below. Both effects are dampened for large a. So long as D does
not increase too quickly, supply and demand will have a unique intersection corresponding to
the optimal quantity of innovations and reward along k given a.

These optimal rewards, however, ignore the monotonicity constraint that higher k isoreward
curves must receive higher rewards. Because higher k isoreward curves move out toward higher
values of σ and m, it is natural that they should have higher average social value for any given
cost and thus higher optimal rewards. However, when a is relatively low, if k is sufficiently
negatively affiliated with x given c, optimal rewards unconstrained by monotonicity may be
decreasing in k; ruling out such strong negative affiliation ensures that the relaxed solution is
in fact optimal.

Proposition 8: Suppose that for all k, c and a fixed a,

Covx,f̃

[
x

1−ε(a)
1+ε(a) ,

∂ log(f)

∂c

∣∣∣∣ k, c
]
≤ 1

k2S(a)
(11)

and

2Ex,f̃

[
x

1−ε(a)
1+ε(a) |k, c

]
≥ −kCovx,f̃

[
x

1−ε(a)
1+ε(a) ,

∂ log(f̃)

∂k

∣∣∣∣∣ k, c
]

(12)

Then the optimal reward function T ?(k; a), given a, is defined for each k by the unique value
at which D(·; k, a) and S(·; k, a) intersect if D(0; k, a) > S(0; k, a), D(1; k, a) < S(1; k, a) for

71Note that this approach directly incorporates one of the key incentive constraints, namely that rewards cannot
depend on costs and thus that the first innovations created along any isoreward curve will be the cheapest. This is
analogous to the standard “integration by parts” approach to incentive constraints in screening problems.
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Figure 10: T ??(k; a) in our simulation as described in Subsection E

all k, a. If D(0; k, a) ≤ S(0; k, a) then the optimal reward is 0 and if D(1; k, a) ≥ S(1; k, a)
then the optimal reward is anything exceeding the maximal possible cost c given a and k, or
infinite if no such cost exists.

These conditions are intuitive extensions72 of the classic Mirrlees (1979)-Rogerson (1985)
monotone likelihood ratio property that ensures validity of first-order approaches in classical,
single-dimensional screening problems. If as x (or some monotone function of it) increases
∂ log(f)
∂c also increases, this exactly represents x having a strong monotone likelihood ratio

relationship (Milgrom, 1981) with c. Thus, condition (11) can be viewed as stating that c and
x are not “too” affiliated (Milgrom and Weber, 1982), while condition (12) can be seen as
stating that x is not too negatively affiliated with k. Note that the simple approach is always
valid for sufficiently high values of a. This is illustrated by Figure 10, which shows T ??(k; a)
for the simulation we describe in Subsection 6 below. For high values of a it is monotone
increasing, but must be ironed for low values of a.

Proof. See Online Appendix Subsection 3.1.

As discussed in Subsection 3.5, a (grossly) sufficient condition to ensure that when a = 0,
T ? is not flat and therefore that a? ∈ (0, 1) is obedience of inequality 12 when a = 0. This
implies that at this pricing policy, reward monotonicity ironing is unnecessary. At a = 0 this
condition simplifies to (at each (σ, c)):

2Emf [m|σ, c] ≥ −σCovm,f

[
m,

∂ log(f)

∂σ

∣∣∣∣σ, c
]

72At some we hope to reduce these conditions to applications of the Rogerson result.
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That is, σ is not too negatively affiliated with m. Again this condition is grossly sufficient; all
that needs to be avoided is ironing over the entire range of the curve; this condition rules out
ironing anywhere along the curve.

B Ironing

If these regularity conditions do not hold, some ironing is necessary to derive the optimal T ?.
Here, we briefly discuss the classical ironing techniques that can be applied if either of these
conditions is violated individually.

First, suppose that condition (11) is violated, but (12) is obeyed. Then there may be
multiple crossings between demand and supply if supply and demand are at the wrong “levels”
relative to one another. This difficulty may be resolved either by directly comparing the surplus
created at each supply-demand intersection, as well as at the extremal points of q = 0 and
q = 1 or by “ironing” the social demand for innovation in the spirit of Hotelling (1931) relative
to the supply curve.

Proposition 9: If condition (11) is violated but condition (12) obeyed, then T ? is determined,
as in Proposition 8, but with the “Hotelling ironed” demand curve that never increases relative
to the supply curve replacing the demand curve.

Proof. See Online Appendix Subsection 3.2.

Now suppose that condition (12) is violated while condition (11) is maintained. Then T ??

may be non-monotone. However, the social value created along each isoreward curve is concave
in the reward given along that curve by condition (12): supply grows relative to demand as
quantity increases. This is exactly the conditions required to use the Guesnerie and Laffont
(1984) procedure to iron T ?? into a monotone T ?.

Proposition 10: If condition (11) is obeyed but condition (12) violated, then T ? is the Gues-
nerie and Laffont (1984) ironing of T ??.

Proof. See Online Appendix Subsection 3.2.

When both of these conditions fail, ironing is needed but the social value created along
each isoreward curve need not be concave. Little is known (Toikka, Forthcoming) about how
to solve mechanism design problems of this form and making an attempt to do so is outside
the scope of our paper.

C First-order condition with non-differentiable re-

wards

We focused above on the first-order condition for a? when T ? is differentiable. However, the
case of non-differentiable T ? does not pose substantial difficulties. While T ?

′
appears in (5),

the role it plays there is just that of a change of variable to an integral over c so as to trace
out the boundary of marginal innovations for which T ?(k) = c. If we instead take an integral
over c, this boundary is well-defined by the monotonicity of T ?, regardless of whether it is
differentiable, as stated formally in the following proposition.
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Proposition 11: Suppose that at least one of the conditions of Proposition 8 is obeyed. Then
if the expectation is taken over all c’s other than the (at most) countable set where T ?

−1
is not

well-defined W ′(a) ∝
Sε′

[1 + ε]2
E
c<c,f̃

[[
T
?−1

(c; a)

]3
ηCov

f̃,x

[
log(x), x

1−ε
1+ε

]
−QεE

x,k,f̃

[
k
2
x

1−ε
1+ε

∣∣∣∣∣ k ≥ T?−1
(c; a), c

]
E
x,k,f̃

[
k
2
x

1−ε
1+ε

]]
(13)

where, again, if not otherwise stated, expectations are taken over the marginal set for which
T ?(k; a) = c, η is the elasticity of innovation supply and c ≡ limx→∞ T

?(x) (typically ∞).

Note that this demonstrates that essentially nothing in our formulae would change if cost
were observed73, as discussed in Subsection 4.8. The proof of this formula uses a Riemann
sum representation of the relevant integrals to exactly represent the set of marginal types as
an integral over costs with k viewed only as term entering the quantity to be integrated. This
formulation is crucial in establishing the smoothness conditions required for Lemma 2.

Proof. See Online Appendix Subsection 3.4.

In Online Appendix Subsection 3.4 we show how this collapses to the formula in Proposition
3 when T ? is differentiable.

D Second-order conditions for optimal market power

Of course, the first-order condition, that expression (5) or (13) is equal to 0, is necessary but
not sufficient for the socially optimal choice of a. Some condition, such as quasi-concavity of W ,
is needed to ensure it selects even a local, much less a global, maximum. As in the Mirrlees
problem, interpretable conditions directly on primitives to ensure this seem challenging to
derive.

However, note that by Proposition 1 we know that the optimal value of a must be in the
interior of the unit interval and thus W ′(a) must be eventually negative as a goes to 1 and
eventually positive as a goes to 0. While this certainly does not preclude several local minima
or maxima in the interior, these basic forces point towards W “typically” being quasi-concave.
Some of these simulations are discussed in the following appendix.

Proposition 12: Let

M(a) ≡ 1

Ek,f̃



Ex,f̃

(
x
1−ε(a)
1+ε(a) |c<T ?(k;a),k

)
Ex,f̃

(
x
1−ε(a)
1+ε(a) |c=T ?(k;a),k

)
η(T ?(k;a);k,a)




.

and

G(a) ≡ Ek,f̃


k

3T ?
′
(k; a)

Covx,f̃

(
log(x), x

1−ε(a)
1+ε(a)

)

1− ε(a)




If T ? is differentiable, W is quasi-concave if for all a ∈ (0, 1),

d log (GM)

da
<
ε(a)

a
+ ε′(a)

(
1 + 3ε(a)− 2ε2(a)

ε(a) [1− ε2(a)]

)
− ε′′(a)

ε′(a)

73Assuming the innovators had some tie breaking rule that could not be dictated by the social planner. Otherwise
the planner could simply give all innovators c conditional on innnovating and just ask them to do the right thing.
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This condition always holds for a sufficiently close to either 0 or 1.

Proof. See Online Appendix Subsection 3.5.

We conjecture that when there is a strong negative affiliation between σ and m and thus
severe ironing (or even complete non-responsiveness) is necessary for small a, non-concavities
may arise as screening has no local benefits for small a’s given non-responsiveness but may
be globally optimal. However, we have yet to find an example where W is not quasi-concave,
despite considering a range of computational experiments where non-responsiveness is optimal
for low a (as pictured in Figure 10).

Figure 11: W̃ (a) and a? for various values of the variance of the logarithm of x given log-mean of −2 and
a .01 hazard rate of c

E Simulations

Another illustration of our results may be obtained by deriving exact optimal policies for a
particular distribution f . This helps to check the validity of our theory and requires the devel-
opment of techniques that allow experimentation with various distributions. It also provides
the foundations for Figure 10.

A natural class of distributions to try are ones with parameters corresponding clearly to
the notions of genius and materialism, as these will help determine both the validity of our
theoretical predictions as well as its robustness across a values. One simple way to do this
is to have x = m

σ be distributed log-normally, conditional on σm, so that its variance can be
manipulated and have c be distributed exponentially so that its (reversed) hazard rate and
thus elasticity can be manipulated. It is easy to show that at every point the elasticity of
innovation supply is negatively related to the hazard rate of the exponential distribution of
costs.

A simple way to implement this basic idea is to allow σm to have some arbitrary, simple
distribution, such as uniform over some interval, and then have c and x distributed exponen-
tially and log-normally respectively, independently of one another. This independence both
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Figure 12: W̃ (a) and a? for various values of the variance of the hazard rate of c (elasticity increases as it
declines) given log-mean of −5 and log-variance of 1.5 for x.

simplifies calculations, as we will see, and obviates the need for demand ironing as it implies
that demand curves are flat74 in cost.

An intuitive result is shown in Figure 11. As the variance of the log of x increases, a?

steadily rises to 1, while as it declines, a? gradually falls to 0. This result is robust across all
specifications we have tried and confirms75 the basic intuition of Theorem 2. Similarly, Figure
12 shows that as the hazard rate of c declines, and thus the elasticity of innovation supply (ma-
terialism) increases, a? gradually rises towards 1. This confirms our prediction about the effect
of materialism. Python code for our simulations is available at http://www.glenweyl.com.

74Because demand is flat under independence, the optimal reward is always the value of demand at any point and
is therefore just an expectation. The log-normal form for the distribution of x and uniform for σm allows this to be
computed analytically. Social surplus along each isoreward curve can then also be calculated analytically requiring
computation only to determine W . Graphing W and/or applying Newton’s method easily yields a? as we find in
every case that W is quasi-concave. Comparative statics can then easily be performed by perturbing parameter
values.

75It should be noted that we have graphed the value W̃ that could be achieved if monotonicity constraints were
not imposed, not the true W that would result from ironing. This is to avoid the difficulty of an ironing routine;
however, it does not bias the results on a? as we have verified that, in every example, T ?? is in fact monotone at
a?. It is only at sub-optimally low a that ironing may be necessary and there it only makes these a values further
unattractive. Whether it is “typically” the case that ironing is unnecessary at or above optimal a is a question we
hope to investigate in further simulations.
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