
PR E F A C E

This book could be classified under the heading of 
“metastatistics.” Statistics is the theory of inferences 
ideally drawn from data. Metastatistics is the theory of 
inferences actually drawn from data. Statistical theory 
takes as given the model, the data, and the purity of the 
researcher’s motives. Metastatistics analyzes how the 
researcher’s motives and opinions influence his choice 
of model and his choice of data. Metastatistics includes 
the study of memory and computing failures; it also 
deals with the social mechanism by which information 
is transmitted among individuals.

Most of this book deals with a special topic of 
metastatisties—specification searches. Traditional sta
tistical theory assumes that the statistical model is 
given. By definition, nonexperimental inference cannot 
make this assumption, and the usefulness of the tradi
tional theory is rendered doubtful. Moreover, once the 
model is known, the inferential puzzles that remain are 
trivial in comparison with the puzzles that arise in the 
specification of a model. The latter puzzles form the 
subject of “specimetrics.” Specimetrics describes the 
processes by which a researcher is led to choose one 
specification of the model rather than another; further
more, it attempts to identify the inferences that may be 
properly drawn from a data set when the data-generat- 
ing mechanism is ambiguous.
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vi Preface

My interest in metastatistics stems from my observations of economists
at work. The opinion that econometric theory is largely irrelevant is held
by an embarrassingly large share of the economics profession. The wide
gap between econometric theory and econometric practice might be ex-
pected to cause professional tension. In fact, a calm equilibrium permeates
our journals and our meetings. We comfortably divide ourselves into a
celibate priesthood of statistical theorists, on the one hand, and a legion of
inveterate sinner-data analysts, on the other. The priests are empowered to
draw up lists of sins and are revered for the special talents they display.
Sinners are not expected to avoid sins; they need only confess their errors
openly.

In this book I discard the elitism of the statistical priesthood and
proceed under the assumption that unavoided sins cannot be sins at all.
For several years I have observed colleagues who analyze data. I report
herein my understanding of what it is they are doing. The language I use to
describe their behavior is the language of the statistical priesthood, and
this book may serve partially to bridge the gap between the priests and the
sinners. The principal outcome of this effort is an appreciation of why
certain sins are unavoidable, even desirable. A new sin does emerge,
however. It is a sin not to know why you are sinning. Pointless sin must be
avoided.

I began thinking about these problems when I was a graduate student in
economics at the University of Michigan, 1966-1970. At that time there
was a very active group building an econometric model of the United
States. As it happens, the econometric modeling was done in the basement
of the building and the econometric theory courses were taught on the top
floor (the third). I was perplexed by the fact that the same language was
used in both places. Even more amazing was the transmogrification of
particular individuals who wantonly sinned in the basement and meta-
morphosed into the highest of high priests as they ascended to the third
floor.

As I struggled against the schizophrenia, I found comforting the Bayes-
ian theory of inference that I was studying in the math department. This
truly seemed to be the key toward understanding the difference between
the basement and the third floor. Perhaps a complete reconciliation could
be achieved.

I am now less optimistic. I am confident that the Bayesian approach
helps us understand nonexperimental inference. It helps also to avoid
certain errors. But I do not think it can truly solve all the problems. Nor
do I foresee developments on the horizon that will make any mathematical
theory of inference fully applicable. For better or for worse, real inference
will remain a highly complicated, poorly understood phenomenon.
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In trying to give a theory of nonexperimental inference, I have accepted
an enormous task. The phenomenon of inference is within the purview of
statisticians, philosophers, psychologists, and historians. I have found it
impossible to master all four fields, though I have tried to understand the
central ideas of each. My greatest familiarity is with the theories of
statistical inference, but even in that area I am certain that there is much
material I have overlooked. My knowledge of philosophy, psychology, and
the history of science is spotty, but you will find occasional reference to it.
Once I thought I should try to master that literature, but, frankly, I found
it inaccessible. Mastering it would have put off the completion of this work
for several years. It seemed to be more efficient to say what I have to say,
and to be prepared to explore other literature in response to critical
comments. Thus I shall welcome the criticism that I am unfamiliar with
various materials. Believe me, I have learned much since this project
commenced and I do not regard publication as a termination of the
process. On the contrary, I feel I had better get it published before I
change my mind.

This book is logically divided into three parts. The core of the book
consists of Chapters 4 through 9, which analyze six different kinds of
specification searches. The first three chapters are introductory, and the
last chapter constitutes a footnote describing the inability of anyone
actually to behave as described in the first nine chapters.

Chapters 2 and 3 make the book relatively self-contained. It is not
necessary that the reader be familiar with Bayesian inference, since a
complete (though opinionated) introduction is given in these chapters.
Familiarity with classical inference, particularly the normal linear regres-
sion model, is assumed, but a review of the standard propositions is
provided. Mathematical sophistication is not required to read this book.
Matrix algebra is used extensively, but graphs are used whenever possible
to clarify the logic. The problems in Appendix 4 may also be helpful.

I can hope, but it seems unlikely, that this book will be used as a text at
many universities. I myself have used it as a text for special topics courses
both at Harvard and at UCLA. Students in these courses had already been
through the usual sequence in graduate econometrics. Many had some
first-hand knowledge of econometric practice and were happy to learn that
someone else thought econometric theory to be rather remote.

Although it may not be used as a principal text, this book would usefully
supplement the fare offered in the standard texts. Some of the material
from Chapter 5 on interpretive searches has already filtered into the
econometrics courses at the better universities. Chapter 7 on proxy
searches could supplement the traditional, rather meager treatment of
errors-in-variables problems. Chapter 4 contains two easily read sections
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on choosing the significance level of a test. Chapter 8, on data selection,
has several sections that ought to be valuable reading--especially the
unified treatment of multivariate regression, error-components models, and
Kalman filtering. The introduction to Chapter 9 on data-instigated models
makes informally the important point that there is a fundamental dif-
ference between statistical inference and "Sherlock Holmes" inference.
What in this book, I ask myself rhetorically, would not make profitable
reading?

Which chapters are my favorites? Clearly, the greatest conceptual con-
tribution is the recognition of the difference between statistical inference
and "Sherlock Holmes" inference described in Chapter 9. One may doubt
whether the discipline suggested there is practical, however. Is the Bode's
law example serious? As for practical advice, turn to Chapter 5 on
interpretive searches. It includes what I believe to be a correct statement of
the problem of collinearity. I also think the distinction between interpretive
searches and simplification searches is important. Chapter 10, on judgmen-
tal errors (largely a review and interpretation of psychological literature),
was the most amusing to write. Chapter 7 was personally useful to me
since I learned in writing it that the metaphysical distinction between
endogenous and exogenous variables has little to do with the inferences it
is proper to draw from a given body of data.

The impossible task of properly listing my debts is now at hand. As far
as I can remember, the first time I did any independent thinking was in
writing my undergraduate thesis at Princeton under the direction of John
Hartigan. It may be interesting to note that I first read Bayes' Essay in his
course. It made no particular impression on me at the time. At the
University of Michigan the statisticians William Ericson and Bruce Hill
taught me Bayesian inference at a perfect time in my life. Were it not for
that contact, this book would never have been written. Nor would it have
been written had I been unable to observe econometricinns at work. At the
University of Michigan, Daniel Suits, Saul Hymans, and Harold Shapiro
were the (unknowing?) rats in my laboratory. Later, at Harvard, Martin
Feldstein, Dale Jorgerison, and Zvi Griliches passed under my microscope.
My friend Richard Freeman was a constant source of ideas and encour-
agement. Also at Harvard, I had the good fortune to spend several years
with Gary Chamberlain, who served as a student, a collaborator, and a
friend. More recently, Herman Leonard has been a stimulating coworker.

Many of my ideas have been influenced by attendees at the semi-annual
Seminars in Bayesian Inference in Econometrics. Arnold Zellner especially
should be mentioned. He and Jacques Drez6 were the first to carry the
Bayesian fasces into the econometrics arena. Another attendee at these
seminars (and a Harvard colleague), John Pratt, has had a significant
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influence on my thoughts. Though they may wish to deny it, I have
discovered kindred souls in the form of James Dickey and Thomas
Rothenberg.

There is a long list of statisticians whose written contributions have
influenced me. That debt is acknowledged in the text with references to
their work. Parts of Chapters 2 and 4 were originally prepared jointly with
Howard Raiffa for an introductory book that remains unpublished. Earlier
versions of this book were read in part and commented on by colleagues at
UCLA: Mike Darby, John Riley, Bob Clower, and Jack Carr. Walter
Vandaele provided useful detailed comments on several chapters. Lynn
Shisido and Tom Means checked the entire manuscript and uncovered
numerous errors.

I acknowledge also my debt to the National Science Foundation, Social
Science Division, headed by Dr. James Blackmaul for grants GS-31929
and SOC 76-08863, without which this book would not have been pre-
pared.

Lastly I would like to bring to the attention of interested parties the
existence of SEARCH, a computer package designed to implement some
of the ideas in this book.

EDWARD E. LEAMER

Los Angeles, California
February 1978
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"Data mining," "fisMng," "grubbing," "number crunch-
ing." These are l�he value-laden terms we use to
disparage each other's empirical work with the linear
regression model. A less provocative description would
be "specification searching," and a catch-all definition
is "the data-dependent process of selecting a slatistical
model." This definition encompasses both the estima-
tion of different regression equations with different sets
of explanatory variables and also the estimation of a
single equation using different subsets of the data.

The fact that specification searching invali�Ltes the
traditional models of statistical inference is implicit in
the pejorative content of the word "fishing," but the
industrious implication of the word "mining" s�nggests
that the activity may,, in fact, be productive. ! Although
"fishing"too might seem to be a productive activity,
the term is usually us;ed in a derogatory way to indicate
both the fisherman's great uncertainty over the quan-
tity and quality of fish that might �cppear in his net and
his willingness to accept anything that sbows up.
Mining, in contrast, is an activity intended to bring to
the surface a specific valuable commodity whose ex-
istence is likely to be relatively well established before
mining commences?

�Compul�r programs for data analysis are given names that reflect
this use and abuse of the power of the computer: RAPFE (regression
analysis program for economists), ESP (econometric softw�ure pro-gram), TROLL (time-shared reactive on-line laboratory).
2Commercial fishing that involv es greafiy reduced unce�tinty issometimes Vailed "mining �he sea."
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This book is about "data mining." It describes how specification
searches can be legitimately used to bring to the surface the nuggets of
truth that may be buried in a data set. The essential ingredients are
judgment and purpose, which joinfly determine where in a data set one
ought to be digging and also which stones are gems and which are rocks.
Without judgment and purpose, a specification search is merely a fishing
expedition, and the product of the search will have � value that is difficult
or impossible to assess.

The subtifie of this book, "Ad Hoc Inference with Nonexperimental
Data," was chosen to suggest that the phenomenon of specification search-
ing is an order of magnitude more common in nonexperimental inference.
This can be made definitionally true by asserting that an experiment
defines a model. When a specification search occurs, the researcher reveals
that he does not think an experiment was conducted. Given this definition,
I'offer both a descriptive and a prescriptive theory of nonexperimental
inference. My observations of economists have led me to the conclusion
that there are six logically distinct varieties of specification searches, and
each is discussed in this book. The resultant theory is descriptive, in the
sense that it springs from observation of nonexperimental scientists at
work, but it is also prescriptive, in that it offers alternatives to what seems
to be going on now.

A Bayesian approach is used almost exclusively. Anyone who is familiar
with the extent to which judgment is used in the analysis of nonexperimen-
tal data should have no difficulty in accepting the Bayesian, personal view
of inference that is espoused here. Arguments concerning Bayesian versus
classical inference are implicit in much of this book, but the battle over the
proper philosophical foundations for inference is largely ignored. That
battle is intellectually stimulating, and, as far as I am concerned, decidedly
one-sided. But it is a battle evidently of little interest to analyzers of real
data, perhaps because the practical consequences of accepting the Baye-
sian view are either ambiguous or minor.

I offer here a different argument in favor of the Bayesian position. The
phenomenon of specification searches completely invalidates the tradi-
tional models of inference, both Bayesian and classical. But the Bayesian
approach is sufficiently flexible that, with suitable alterations, specification
searches can be made legitimate, or at least understandable. This does not
seem to be the case with the classical model of inference. I a.m definitely
not arguing that one must be a formal Bayesian. I am only claiming that
the Bayesian view yields insights. A formal Bayesian encounters in-
surmountable difficulties in constructing meaningful prior distributions.
Thus, most uncertain judgments elude precise quantification. But a way to
deal with the fuzziness of quantified probability judgments is to explore
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the implications of many different, precisely described judgments, a proce-
dure which seems to me to be better than the other approaches that
compound the judgment fuzziness with methodological fuzziness. The
myth that inference with nonexperimental data (or any data) could be
judgment-free creates an insidious and a counter productive goal.

To the extent that I have' been successful in identifying all the reasons
for specification searches, this book offers a nearly complete normative
theory of personal learning with the linear regression model. It parallels to
a �reat� degree the commonsense "ad hoceries" that are characteristic of
nonexperimental inference. In this book there are, however, several aspects
of learning that are either not mentioned or incompletely discussed. First,
no mention is made of the simultaneous-equations problem that plagues
nonexperimental inference. The simultaneous equations model does bring
up the interesting problem of inferring causality, but from the standpoint
of specification searches, it is a formal variant of the simple linear model
and therefore implies no interesting methodological issues that are not
discussed herein. A second shortcoming is the brief treatment of memory
failures. The shortcomings of memory seem quite important for any
positive theory of personal inference, although a normative theory may
proceed usefully with a perfect memory assumption. The usual Bayesian
model implicitly does make this assumption, and memory failures may cast
doubt on any of its implications. A third shortcoming of this book is its
neglect of social learning. It is obvious that the accumulation of opinion is
partly, if not largely, a social phenomenon. Unfortunately, the currently
available mathematical models of social learning are primitive and are
hardly worth discussing, except that they, rightly, remind us of the social-
learning phenomenon. It is useful to observe that the social-learning
problem is a special memory problem. Social memory is simply the
accumulated set of experiences of all individuals, and your access to the
totality of experiences depends on your contact and communication with
the people who had or who heard of the particular experiences. There are,
of course, various distortions for various reasons in the communication of
these experiences, just as there are features of personal memory that make
some events more memorable than others. Thus the significant shortcom-
ing of this book is its inadequate treatment of memory problems, personal
and social.

1.1 The Axiom of Specification

In searching for a model of nonexperimental' inference, we may easily
discard the textbook version of classical inference. It makes implicit use of
the following unacceptable specification axiom.
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The Axiom of Correct Specification

(a) The set of explanatory variables that are thought to determine (lin-
early) the dependent variable must be
(1) unique,
(2) complete,
O) small in number, and
(4) observable.

(b) Other determinants of the dependent variable must have a probability
distribution with at most a few unknown parameters.

(c) All unknown parameters must be constant.
If this axiom were, in fact, accepted, we would find one equation

estimated for every phenomenon, and we would have books that compiled
these estimates published with the same scientific fanfare that accompanies
estimates of the speed of light or the gravitational constant. Quite the
contrary, we are literally deluged with regression equations, all offering to
"explain" the same event, and instead of a bOOk of findings we have
volumes of competing estimates.

The phenomenon of specification searches thus represents an unambigu-
ous rejection of the axiom of specification and literally pulls the founda-
tion from under classical inference. This bOOk presents an alternative
theory of inference that either formally allows specification searches or
suggests alternatives. The theory rests on the firm. (but fuzzy) foundation
of probabilistic judgments. It makes use of formal decision theory in those
cases in which a specification search seems to be solving a decision
problem.

I am certainly not the first to notice the discrepancy between inference
as it is described in the textbooks and inference as it is practiced at the
computer center. There is a wide spectrum of opinions concerning the
effect of specification searches on inference. "Believers" use ad hoc tech-
niques to search for specification, throwing out iusignificant variables here
and there, for example, but they continue to regard the end result of such a
methodology to be identical to the end result obtained in the experimental
sciences (or at least cynically to act that way). Believers report the
summary statistics from the nth equation as if the other n-I were not
tried, as if the nth equation defined a controlled experiment.

At the other extreme are the agnostics, who gladly admit the irrelevance
of classical inference. They argue that a nonexperimental scientist is
merely identifying relationships that exist in the historical data. He is
describing the salient features of the data' accurately but economically.
Ideally, the data analysis generates hypotheses that need new data to be
tested. Agnostics may thus discount any statistical result until it has been
employed in a prediction outside the data period. We might interpret such
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statements in a statistical context as the absence of information concerning
the standard errors. A point estimate without an associated standard error
does not imply an hypothesis test, nor can it determine unambiguous
inferences.

Somewhere between these two extremes is a group of pragmatists. They
feel that the believers' contentment stems only from ignorance but that the
agnostics have gone too far. This group argues that estimated standard
errors are properly enlarged by a specification search but not to the extent
that they become infinite. Theil 0960, for example, writes:

The obvious result 'is that, if a 'maintained' hypothesis '[a specification, in our
terms] gives unsatisfactory results, it is not maintained but rejected, and replaced
by another 'maintained' hypothesis; etc. It is hardly reasonable to say that this kind
'of experimentation is incorrect, even if it affects the superstructure built on such
'maintained' hypotheses. [In a footnote, he explains that he is referring specifically
to the standard errors calculated by classical formulae.] It is especially unreason-
able to reject such an experimental approach, because... the statistical theory which
forbids the rejection of a 'maintained' hypothesis is not fully satisfactory either in
view of the difficulty of its application.

What is incorrect, however, is to act as if the final hypothesis presented is the
first one, whereas in fact it is the result of much experimentation.

Although Theil is rejecting classical inference as unworkable and berat-
ing the na'ivet6 of the believers, he does not offer a procedure that would
allow valid inferences in the context of a specification s�arch. By how
much are the standard errors to be enlarged? And which of the many
estimates are we to choose? A theory of specification searches is needed to
answer these important questions.

1.2 The Six Varieties of Specification Searches

A theory of specification searches can be constructed first by identifying
the reason a researcher engages in a search, and second by building formal
inferential models that properly carry out his legitimate intentions. By
observation of economists analyzing data, I have come to the conclusion
that there. are six different reasons for specification searches. Each is
discussed in a separate chapter of this book. The six searches are listed
with chapter references in Table L1.

For illustrative purposes, imagine a researcher interested in exploring
empirically the theory of demand. In its simplest form the theory may be
stated as follows: "Ceteris paribus, an individual's purchases of some
commodity depends on his income and on the price of the commodity."
The problem of the empirical worker is to translate this theoretical asser-
tion into a statement about observable phenomena. He must identify the
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Table 1.1

Specification Searches

Name of Search Designed to Chapter
Hypothesis-testing search
Interpretative search
Simplification search
Proxy search
Data-selection search
Postdata model

construction

choose a "true model"4
inteipret multidimimsional evidence 5
construct a "fruitful model" 6
find a quantitative facsimile 7
select a data set 8

improve an existing model 9

observable counterparts of the theoretical variables, he must select other
variables that may significantly affect purchases, he must choose a particu-
lar functional relatiomhip between the variables, and he must decide
which individuals are actually to be observed. Because he cannot make
these decisions with complete confidence, the researcher is willing to
change his mind if his original choices seem not to work out as well as he
might have liked. He does so by changing the specification of his statistical
model. He may include more explanatory variables; he may omit certain
variables; he may substitute one variable for another; he may discard
observations, or he may include new observations.

Suppose the initial model is logD i = a + fllog Y� + 3'log Pi + ui, where D�
is the purchases of oranges by household i, Y� is monetery income, Pi is the
the price of the commodity, and ui is a "random disturbance" assumed to
be normally distributed, independent of �, for i-�j. The variables are
observed by asking a random selection of heads of households, "How
much did you earn last month, how many oranges did you purchase, and
how much did they cost?" Using the replies of 150 households, the
following regression equation is estimated:

logD�=6.2 + .851og Y/-.671ogP�, R2=.15,
(1.1) (.21) (.13)

with standard errors in parentheses. For a variety of reasom, it is likely
that other equations would be estimated with the same data set. Without
endorsing the procedures, I now describe a typical search program.

Of special interest is the hypothesis that the fraction of income spent on
oranges is not a function of price, 3'=-1. To test this hypothesis, the
equation is reestimated with the constraint applied:

1ogDi+logP�= 7.2+ .961ogY,.. R2=.14.
(1.0) (.20)
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Using a standard F test, this hypothesis is rejected at the .05 level, and it is
inferred that the data cast doubt on the hypothesis 3'---1. This is an
example of an hypothesis. testing search in which different specifications
describe different hypotheses about the phenomenon.

The theory of demand describes the behavior of a single individual, but
this sample varies across individuals. The nutritional importance of
oranges is greatest in areas with the least sunlight, and it may be inap-
propriate to treat southerners as if they were identical to northerners in
their taste for oranges. Separate regressions are therefore computed for
southerners and northerners:

1ogD/v-- 7.3 +.891ogYff -.601ogP/v R2=.18,
(1.9) (.41) (.25)

1ogD� s= 7.0 +.821og y�s_ 1.101ogp�S R2=.19.
(2.2) (.31) (.26)

These regressions suggest that in the North, income is the relatively more
important variable and price the relatively less important variable, but the
hypothesis that the coefficients are different is not rejected at the .05 level.
This is an example of a data-selection search. The same theoretical hypothe-
sis underlies all three specfficatiom: the one estimated with all the data
and the pair estimated with subsets. The specifications differ in their
choice of data sets.

Next it must be observed that the answer to the income question may be
a very poor measurement of the household's true income. As it tums out,
households were asked to report their expenditures on a fairly inclusive list
of other commodities, and it may be that their total expenditures E i is a
better measurement of income than Y�. The variable E� is substituted for
Y�, and the estimated equation becomes

1ogD�= 5.2 + 1.11ogE�-.451ogPi, R2=.18.
(1.0) (.18) (.16)

The R 2 has increased, and the coefficient on the income variable has
become more significant, which suggests that Ei is the better measurement
of income. This is a proxy variable search. Competing specifications in a
proxy variable search all derive from the same underlying hypothesis.
Different estimated regressions reflect different ways of measuring a com-
mon set of hypothetical variables.

The R 2s in all these equations are unhappily low. Perhaps there are
other variables that might be added to the specification to improve the fit.
After all, the theory makes use of the Latin phrase, ceteris paribus, other
things corotant, yet it is the nature of nonexperimental research that other
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things are not held constant. Although I prefer oranges, if grapefruit are on
sale, I will sometimes buy them instead. Adding the price of grapefruit �ri
to the equations yields the result

logDi= 3.1 + .83logEs+ .01 logP�- .561og�r� R2=--.20.
(1.0) (.20) (.1�) (.60)

This specification represents the broader theory: "Ceteris paribus, an
individual's purchases of some commodity depends on his income, on the
price of the commodity, and on the price of 'similar' commodities. �' The
process of revising the underlying theory in response to the data evidence
is called post data model construction, and the resulting hypothesis is called
a data-instigated hypothesis. Whereas all other specifications are implicit in
the original theoretical statement, a dam-instigated hypothesis is not.

In the regression last reported, the coefficients on the price variables are
insignificant and of the "wrong" sign. Furthermore, the sum of the
coefficients (.83 +.01-.56=.28) is rather far from zero. The presumption
that these coefficients sum to zero derives from the homogeneity postulate
that asserts the following. "There is no money illusion: if money income
and all prices are multiplied by the same constant, purchases will not
change." Applying this homogeneity constraint yields the regression

1ogDi--4.2+ .52logEs- .611ogPi+ .091og�r�, R2--.19.
(.9) (.19) (.14) (.31)

The R 2 has fallen only slightly, and the coefficients all have the right sign,
two of them significantly so. Thus the constraint seems to improve the
specification. This is an example of an interpretive search. The underlying
hypothesis is taken as given. Restriction� are imposed in the hol�s that the
estimates may be "' "maproved.

The regression equation now includes three variables, one with a very
small coefficient and the other two with coefficients approxi�nately the
same size in absolute value. A simple equation would result if �r were
omitted and the other two coefficients set equal to each other (but opposite
in sign):

logD�--3.7+ .581og(E,./P�) .R2--.18.
(.8) (.18).

The R 2 is only slightly smaller, and this simple equation is selected. This
sixth and final search is a simplification search, the function of which is to
fired a simple but useful model. '.

The six kinds of specification searches may not yet be clearly different in
your mind. In practice, there is little effort made to distinguish one from
the other, and it is unsurprising that at first consideration it is difficult to
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discern the real differences. Moreover, since the searches differ sometimes
only in the intent of the researcher and not in his actions, it may bedifficult to infer which kind of search actually occurred. By this I do not
mean 'to imply that it is unimportant to identify the type of search. Quitethe contrary, the effectiveness of a search must be evaluated in terms of its
intentions. An apparently successful simplification search may be judgedcompletely unsuccessful as an interpretive search, and so forth.

It is always possible for a researcher to ]�ow what kind of. search he is
employing, and it is absolutely essential for him to communicate that
information to the readers of his report. The differences in the searches
will perhaps be most clear after this book is read in its entirety, but more
may be said in this introductory chapter. Hypothesis-testing searchesinvolve alternative models that have "truth value." It is difficult to find
non-Bayesian language that can make such a statement less ambiguous,but in the Bayesian language, hypothesis..testing searches make use of
alternative specifications that are assigned positive subjective prior proba-bility. 3]�is can be contrasted with an interpretive search, in which only themost general specification is assigned positive probability. In an interpre-tive search an hypothesis, say, "3,--0," is thought to be false with probabil-ity one, but the hypothesis, "3, is close to zero," is thought to be quitelikely. 3]�at is to say, the prior distribution for 3, concentrate� the probabil-ity mass. in the neighborhood of 3, = 0 but assigns zero probability to zero.Given any such probability distribution, it is always possible to find a goodapproximation to it that does allocate positive probability to 3,--0, and thedistinction between hypothesis-testing searches and interpretive searches is
thereby blurred. But in a large sample the value 3,=0 almost certainlybecomes uninteresting unless it is allocated[ a positive prior probability.Thus one practical difference between interpretive searches and hypothesistesting searches is that the former are strictly small-sample phenomena. To
put this in the language of classical hypothesis testing, the significancelevel of a test should be a decreasing function of sample size in an
hypothesis-testing search but should be relatively constant in an interpre-tive search. Incidentally, real examples of hypothesis-testing searches are
extremely rare. The most general models �used in nonexperimental in-
ference are themselves not regarded to be complete descriptions of the
phenomena under study. Restrictions on these "false" models could hardlylead to potentially true models. Hypothesis-testing searches are discussed
first in this book only because the formal theory of hypothesis testing is 'most familiar, not because it solves an important problem.

A simple formal example contrasts three of the searches. A researcher
may estimate the pair of equations Y= x/� + z3, + u and Y= x/� + u where/�and 3' are uncertain parameters, Y and x are observable variables, and u is
the "residual error.': From this fact alone i�t is impossible to determine
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whether he has engaged in an hypotbesis-testing search, an interpretive
search, or a simplification search. In an hypothesis=testing search, the
hypothesis �--0 means "the model Y= �x + u is. true." In an interpretive
search the same hypothesis implies only that "it is better to estimate �
acting as if Y--�x + u were the true model than to estimate � using the
more complete model." An analogous simplification hypothesis might be
"if prediction of Y is the goal, the value .of � is usefully set to zero."

The motivation for hypothesis-testing searches and interpretive searches
is prior information. Hypotheses are conjectured to be true or to be
approximately true. The motivation for simplification searches is a loss
function that penalizes complexity. Hypotheses are not conjectured to be
true, or even approximately true. It is only hoped that a simple model
would, turn out to be adequate.

The data-selection search described above apparently is also an interpre-
tive search, or possibly postdata model construction. In that example, the
data set was split into two subsets, and separate regressions were estimated
for each. An interpretive search might make use of a general model with
two sets of parameters and might test the hypothesis that better estimates
would result if the parameters in the two regimes were treated as if they
were identical. But since the more general model was not explicitly stated
in the beginning it might be better to think of the search as post data
model construction. Data-selection searches could thus be treated as
special cases of these and possibly other searches, but the category is
nonetheless useful. A theory rarely indicates an experiment that could be
used to test it or to estimate its uncertain parameters. A researcher must
construct his own experiment, or in the nonexperimental sciences, he must
select observations from the set of recorded nonexperiments. The problems
he confronts in doing so lead to a data-selection search, even though these
problems may be formally similar to the problems associated with other
searches.

To understand this more clearly, consider again the theoretical state-
ment, "Y depends linearly on x and z: Y= a + xfl + z�." To estimate this
model, a researcher must select a data set over which the parameters a, t,
and � can be thought to be constant, or he must append to this model
some description of how the parameters change from observation to
observation. In practice, he will often treat the slope parameters fl and � as
constants and try several different probabilistic descriptions of the variabil-
ity of the level a from observation to observation. By defimtion, a
data-selection search deals with the variability of unobservables (parame-
ters and "error" term). An interpretive search introduces prior information
about the means of the unobservables. Postdata model construction adds
new unobservables to the model.

The Six Varieties of Specification Searches 11

There is little difficulty in identifying a proxy variable search, but there
is great difficulty in determining the inferences that may be legitimately
made in the context of a proxy search. At one extreme, the theory is taken
as given, and the data are used to construct a quantitative facsimile of the
unquestioned theory. The evidence is completely spent to select a proxy,
.and no evidence is left over for inference about the theoretical parameters.
At the other extreme, perfect measurement is assumed, and none of the
evidence is spent to select a proxy. Real proxy searches lie somewhere
between, with the evidence partly spent to estimate the theoretical parame-
ters. It is difficult to position a search very precisely between the two
extremes.

The last search is what I have called postdata model construction. I also
like to call it "Sherlock Holmes inference." Sherlock solves the case by
weaving together all the bits of evidence into a plausible story. He would
think it indeed preposterous if anyone suggested that he.should construct a
function indicating the probability of all possible configurations of evi-
dence for all possible hypotheses about the crime. In response to a
question from Dr. Watson concerning the likely perpetrators of the crime,
Holmes replied, "No data yet .... It is a capital mistake to theorize before
you have all the evidence. It biases the judgments. "3

Sherlock avoids formulating the hypotheses because the set of viable
alternatives is immense and any attempt to formulate it completely will
involve intolerable costs. If an incomplete set of hypotheses is formulated
before the data are observed, there is a great risk of not realizing that the
data favor some yet unspecified hypothesis. Instead, evidence is used to
direct the construction of a set of "empirically relevant" hypotheses,
thereby reducing both the cost of formulating hypotheses and the risk of
not identifying the "best" hypothesis. There is, ..unfortunately, an opportun-
ity cost to this process: the data may not also be used in any obvious way
to discriminate among the data-instigated hypotheses. This dilemma is
most excruciating when the data set is strictly limited, as in astronomy.

Because statistical inference requires a well-specified theory in advance
of the data, Sherlock regards statistical 'inference to be a "capital mistake."
Unlike most of us, however, Sherlock has the luxury of the ultimate extra
bit of data 'the confession. Even under the greatest coercion, our data sets
usually resist our efforts to force a confession from them. Without the
confession, it is no longer possible to be confident that any inferences are
legitimate.

A solution to this dilemma is to act as if Sherlock Holmes inference
solved a certain statistical decision theory problem. Given the model

3Doyle (1888), A Study in Scarlet.
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Y-- xfi + z� + u, it is possible to determine before seeing any data whether
it is necessary to observe z. The variable z may be. thought to be
uncorrelated with x, or � may be thought to be small. Then inferences
about fi may be made without observing z, in the context of the model
Y= xfi + u. If the resulting estimate of fi is the wrong sign, or if the patternof estimated residuals is peculiar, one may legitimately change his mindand observe z.

This formal decision theory problem mimics Sherlock Holmes inference
in that the data may induce the use of a more general model, but there is a
very important difference. In the decision theory problem, the second
model must have been explicitly defined before the data were observed. In
sharp contrast, Sherlock Holmes admonishes Dr. Watson against formulat-
ing models too completely: "It biases the judgments." Although Sherlock
Holmes inference is not, and cannot be, a formal statistical decision theoryproblem, it is nonetheless desirable to act as if Sherlock were solving thedecision theory problem, since legitimate statistical inferences are thenimplied by a Sherlock Holmes procedure.
Consider again the example of postdata model construction. After

getting a low R 2 in a regression of demand for oranges on the price oforanges and monetary income, the price of grapefruit is added to the
equation. Any economist will explain that the price of close substitutes
surely influences purchases of a commodity, and the use of the price ofgrapefruit does not reflect a new theory but only a more complete version
of the theory that was available all along. Excluding the price of grapefruitcannot be sensible theoretically, although it may be desirable practically.This sounds just like the formal decision theory problem, in which it wasfirst determined that observation of the price of grapefruit was unneces-
sary. Although the researcher did not explicitly solve this problem, I thinkhe did so implicitly. As a result, it is possible to broaden statisticalinference to encompass Sherlock Holmes inference.
In general, the consequence of a specification search is what you mightexpect. There is greater uncertainty over the parameters than is suggestedby the final specification. The data evidence is spent partly to specify themodel, and only a part of' it is left over to estimate parameters or todiscriminate among competing models. The one exception to this rule is a

simplification search. Simplification is a decision problem that properlyoccurs after inferences have already been drawn. It is not necessary todiscount the evidence because of the search, but it is quite important tounderstand that the simplified specification is a tool for some anticipateddecision problem and is not a model for inference with the given data set.With the exception of postdata model construction, the other searches
produce an equation that tends to understate the uncertainty, because the
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equation is estimated as if some parameter were known with certainty,
when in fact the parameter remains uncertain. The equation is estimated as
if the specification were given, whereas the very fact that a search occurred
reveals that there is uncertainty over the specification. Loosely speaking,
the apparent statistical evidence implied by the final equation must be
discounted; the greater the range of search, the greater 'must be the
discount.

The discount applying to a data-instigated model is somewhat different.
A data-instigated model is treated as ff it were the model the researcher
always believed in. As a result, the final specification is certainly better
than the original specification, and there can be no discounting because of
uncertainty in the specification. A discount nonetheless applies to the final
specification. In estimating the original specification the researcher reveals
something about his prior information. He thinks that the variables he has
omitted are not important. When he decides to add them to the specifica-
tion, he is obligated to retain his original prior. This prior tends to adjust
his estimates back toward the estimates obtained with the simple model. In
that sense, the evidence implied by the final specification is discounted.

The various specification searches can be connected with the axiom of
correct specification described in Section 1.1. When the set of explanatoryvariables is not unique, an hypothesis-testing search occurs. The incom-
pleteness of the list of variables leads to postdata model construction.
When the list of variables is excessively long, interpretive and simplifica-
tion searches may be used. Unobservable variables imply proxy variable
searches. Finally, data-selection searches are a response to the researcher's
uncertainty over the choice of error distribution or to his concern that
parameters may have shifted.

1.3 Data in Economics

There is a growing cynicism among economists toward empirical work.
Regression equations are regarded by many to be merely stylistic devices,
not unlike footnotes referencing obscure scholarly papers. It is the phe-
nomenon of specification searches that has made the profession uneasy,and a theory of specification searches may help.

Distinguishing the various kinds of Specification searches is a step in the
right direction. Researchers currently do not distinguish one kind of search
from another. Casual examination of papers in economics s.uggests that
interpretive searches are the most prevalent, although these are hardly
distinguishable from simplification searches. Hypothesis-testing searches
are certainly the least common. Regardless of the type, the rules of search
are informal and rarely stated explicitly. As a consequence, there is
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considerable doubt whether the average nonexperimental scientist is get-
ting what he wants from his techniques. There is even some doubt that he
knows what he wants.

Readers of this book are strongly urged not to conclude either that real
learning processes could be fully mathematized and therefore trivialized, or
that actual learning should be altered to meet fully the mechanical features
of any mathematical model. To paraphrase an analogy of Polanyi's (1964),
this is a book about violin playing, and while mastery of the technical/
mechanical aspects of violin playing is essential, no one would suggest that
studying a book alone would lead to great artistry; nor must a great artist
completely conform to mechanical standards, the functions of which are
primarily to improve the performances of the great mass of lesser artists.

One mathematical model of learning can be discarded, but it is not clear
that the other should be retained. I refer, respectively, to classical and
Bayesian inferences. Classical inference apparently allows judgments that
are either completely certain or "completely uncertain." We are asked to
be certain about the parameter spaces but peculiarly uncertain about the
choice of parameters within those spaces. Typically, when selecting a
parameter space economists also formulate judgments about the likelihood
of various values of the parameters within that space. If they do have these
uncertain judgments, they may want to make use of Bayesian tools.

It is perhaps more accurate to describe the classical judgmental inputs
relative to the strength of the sample evidence, rather than in an absolute
sense. The judgments are not absolutely certain or absolutely uncertain;
rather they either overwhelm or are overwhelmed by the sample evidence.
.The process of learning is a "herky-jerky" reaction to the sample evidence,
consisting of phases of complete disregard of sample evidence (failure to
reject a null hypothesis?) and phases of complete disregard of nonsample
evidence (rejection and discarding of the null hypothesis?). A Bayesian
approach can obviously deal with the trivial cases of overwhelming sample
evidence or overwhelming nonsample evidence, but it considers also the
nontrivial problem of mixing two sources of information. 4

No one who has worked with economic data or who has watched others
work with it could retain the notion that economists have either over-
whelming sample or overwhelming nonsample information. If this were so,
economic research would often involve fitting a single regression equation.
No reference to the process that generated the data would be made, no
discussion of peculiar coefficients. There would be no collinearity problem,
no proxy variables.

4The adjective trivial applies to the data-interpretation problem, obviously not to the
mathematics that has been developed to solve these problems.
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Necessarily, practicing economists have discarded the formal constraints
of classical inference, and they have added the essential bits of subjective
uncertain information through ad hoc specification searches. This involves
trying not two or three different equations but literally thousands. Curi-
ously, they retain a verbal commitment to classical inference, talking about
such irrelevant things as "best linear unbiased estimators," "t-ratios," and
the like.

When these specification searches are most effective, the final result may
be an appropriate mixture of sample and nonsample information, essen-
tially a posterior distribution. This process may be accurately captured by
a Bayesian learning model, according to which we begin with a well-speci-
fied set of certain and uncertain judgments and enlist the data to en-
courage or discourage subsets of those judgments. (Another possibility,
discussed below, is that economists are not doing statistical inference at
all.)

It is highly unlikely that an ad hoc specification search could be as
effective in implementing quantifiable uncertain judgments as the Bayesian
approach. Even if the two techniques were to yield identical descriptions of
the postdata uncertainty, the specification search approach has the critical
defect that it cannot clearly distinguish sample from nonsample informa-
tion, and the researcher thus has no way of effectively communicating the
judgments that were required to analyze the data. It is then impossible for
a reader to evaluate the reported results.

The inferential problems of nonexperimental scientists thus seem to be
especially well suited to Bayesian inference. It is apparently astounding
that Bayesian theory, which has been available in rudimentary forms for
two centuries and in highly developed forms for several decades, has had
so little impact on real data analysis. Can it be that the Bayesian philoso-
phy attracts poor salesmen? Or is the product better in theory than in
practice? I'm afraid it may be the latter.

In practice the Bayesian model has two defects. The first is that it
requires the researcher actually to select a prior probability function. There
is no doubt in my mind that uncertain prior information is used to analyze
nonexperimental data. But there is also no doubt in my mind that
uncertain prior information is impossible to quantify precisely. Ad hoc
procedures may, in fact, be efficient methods of using iraprecisely defined
priors. I like to comment on this suggestion with a slogan: "The mapping
is the message." The mea 'ning of a data set is that it changes opinions. It
takes particular prior opinions into particular posterior opinions. A data
set may thus be fully described in terms of the mapping that it implies
from prior distributions into posterior distributions. It is not necessary and
it is even undesirable for a researcher to select a particular prior distribu-
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tion. That task properly belongs to the reader of the report. A researcher
should instead describe as completely as possible the mapping from priors
into posteriors. He may properly recommend a particular Prior, but he has
no business forcing it on his reader.

An interesting Bayesian analysis of data, therefore, need not use a single,
precisely. specified prior distribution, and this hurdle need not be
surmounted. But in deflecting our course from this one hurdle, we are
forced to surmount another: How can the mapping of priors into pos-
teriors be economically analyzed? This is a question that has not been
asked often; it seems to me to be the major issue involved in practical use
of the Bayesian tools.

There is, unfortunately, a second, potentially insurmountable difficulty
with the Bayesian approach. Whereas I am confident that economists
interested in statistical inference should be Bayesians, I question whether
they should be interested in statistical inference at all. If, instead, they are
doing Sherlock Holmes inference, the choice between a distorted Bayesian
and a distorted classical approach is ambiguous. The Bayesian approach
encourages more careful formulation of the model space, and to the extent
that this is the right direction for the profession to move, the approach
seems desirable. But Sherlock warns us against excessive theoretical devel-
opment before seeing the facts. The process of assigning probabilities to
models tends to make a researcher believe and cling to his original set of
hypotheses. This straitjackets his Sherlock Holmes instincts, and he may
ignore important evidence simply because the relevant hypothesis is out-
side his immediate field of vision.

I hope that this book will make clear the contribution Bayesian in-
terence can make toward understanding the processes of research with
nonexperimental data. In many cases it is enough that we understand what
we are doing. In several cases specific alternatives are suggested--alterna-
tives that are unambiguously superior to current procedures. Also, a long
chapter is devoted to Sherlock Holmes inference, and it is hoped that the
reader will understand the importance of this problem in real research as
well as its implications for models of inference.

1.4 A Sehem� Model of Inference

The model of inference that is being suggested in this book is indicated
schematically in Figure 1.1. Inputs into the inferential process occur at
ovals l, 2, and 3. Major elements of the data analysis are indicated in
rectangles 4 to 8. The specification search decisions to redo the, analysis
with a different set of models or propositiom are indicated in diamonds 9
and I0. Solid line linkages may be discussed as problems in statistical
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inference as it is currently conceived. Dotted line 'linkages are philosophi-
cally outside the scope of statistical theory.

An individual is thought to have an enormous set of innate but precon-
scious propositions (oval 1), with innate degrees of belief assigned to them.
These are determined, for example, by inherited sensory apparatus. Pro-
positions about heat, hardness, taste are not learned but rather are built
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into the nervous system. The experiences indicated in oval 2 are used to
select from this set of propositions a relatively tiny set of conscious beliefs
(rectangle 4). Remembered experiences (rectangle 5) may then be used to
determine which of the still large' set of conscious proposRions are to be
used as a basis for a data analysis. The resulting set of working hypotheses
(rectangle 6) is only remotely connected to the set of innate propositions,
and the degrees of belief assigned to these propositions must be at best
crude approximations to the degrees of belief of a Bayesian with unlimited
memory and cognitive skills.

The preobservation '"theoretical" work terminates temporarily when the
set of working hypotheses is established and degrees of belief are assigned
to them. Data are then observed (oval 3). The line linking the working
hypothesis rectangle to the current experiences oval allows the choice of
data to be a function of the working hypotheses. The dataL and the prior
are mixed in rectangle :seven to form tentative posterior degrees of belief.

Peculiarities in the data may then force a reconsideration of the several
decisions that were explicitly or implicitly made earlier. The data may
suggest that one of the excluded conscious hypotheses should now be
included in the set of working hypotheses (diamond 9); or the data may
induce the researcher to think up "new" hypotheses (diamond 10); or
memory may be searched again (diamond 11). If the researcher changes
his mind about one or more of his decisions, he will reanalyze the same
data set with different working hypotheses or different priors.

Having satisfied himself with his analysis of the given da� set, he must
either make use of his newly formed OPinions for the imminent decision
toward which his efforts had been aimed, or he must make re�ady for future
inference and decision problems as yet ill-defined. In either case he may
wish to simplify the set of working hypotheses (rectangle 8).

Most treatments of statistical inference deal with a much more restricted
description of learning. The set of hypotheses is ordinarily. l�reated as if it
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were complete; that is, the set of working hypotheses, the set of conscious
propositions, and the set of preconscious propositions are implicitly treatedas if they were identical. Furthermore, the problem of fallible memory isignored, and if prior information is used, it is assumed to represent
accurately alii previous experiences. The 'postdata simplification problem(rectangle 8) is also not discussed. The result is Figure 1.2. �

It is possible to extend' the logic of statistical decision theory to include
both predata and postdata simplification problems. In the case of predatasimplification we may formally ask the question: given the costs associated
with working with a complete set of hypotheses, is it not better to use a
restricted set of hypotheses? Given current experiences, it is logically
proper to re-evaluate that decision and therefore to redo the analysis withan enlarged set of hypotheses. The result is Figure 1.3.

,/heses and innate�
,gro_.___es,f belie�._�,/

� $imp/ify.'formulate
� Pormulgfe posteriors

Is the set of
wer#ing hypotheses

a#equate ?

� �'es
$im,olify fur/her
the set of wer#/ng

hypotheses

��ovious experiences�

�Curronf experienoes�

Complete statistic. a/inferenoe.



20 INTRODUCTION

That part of Figure I. l that is not also part of Figure 1.3 is philosophi-
cally outside the range of statistical inference. There is, first of all, the
problem of memory failure associated with rectangle 5 and diamond 11.
Second, there is the problem that the set of conscious hypotheses or
propositions is a small subset of the complete set of propositions. This
leads to rectangle 4 and diamond 10, which deal with the elicitation of
hypotheses from the enormous file of innate propositions.

Four of the six kinds of specification searches lie within the framework
of simple statistical inference: interpretive searches, hypothesis-testing
searches, proxy searches and data-selection searches. Simplification
searches (postdata) also are a straightforward problem in statistical in-
ference, albeit not in the simple versions. The sixth search--postdata
model construction--is either within the framework of statistical inference
or not, depending on whether the models that are instigated by the data
were conscious or preconscious before the analysis began. If the models
were preconscious, inference may usefully proceed as if they were, in fact,
conscious, and an inference problem that is necessarily outside the
framework of statistical inference can be treated as if it were within.

CHAPTER 2
./IN INTRODUCTION TO
BA YESIA N INFERENCE

2.1 Objective or Subjective Prolmbility 22
2.2 Bayes' Rule 39
2.3 Inference Ahem a Proportion 40
2.4 Inference About a Mean 51
2.5 Noninformative Priors 61

An inference is a logical conclusion drawn from a set
of facts. Statistical inference is concerned with drawing
conclusions about unobservables 0 from a set of facts,
including observed data x and a conditional probabil-
ity distribution f(xl0), that indicates the probability of
various values of x given various values of 0. Bayesian
inference is distinguished from classical inference by its
inclusion of a "prior" probability function f(0) in the
set of facts. To a Bayesian there is no sound logical
reason why the distribution f(x]0) should be regarded
to be more of a "fact" than the distribution f(0). A
classicist, however, argues that the distribution f(x10 ) is
an objectively verifiable feature of the world, whereas
any distribution f(0) is purely a figment of someone's
imagination. The foundation of the dispute between
Bayesians and classicists can thus be found in their
definitions of probability, discussed in Section 2.1.

A theme that is developed in this chapter and
elsewhere is that data analysis involves three distinct
phases. The data x is first summarized, then it is inter-
preted, and lastly decisions are made. Summarization
and interpretation jointly constitute the process of
learning or inference?

�Of course, much of the learning activity is aimed explicitly or implic-
itly at some decision problem, and the sharp distinction between
inference and decision is misleading.

21
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The Bayesian method of data analysis involves each of these three
phases. Learning from observations is governed by Bayes' rule

f(xlO)f(O)
S(�l")= SO0

which describes how the uncertainty in 0 summarized by the probability
function f(O) is influenced by the data x. Summarization can occur to the
extent that f(x I 0) depends only on some summary of the event x. Interpre-
tation of the evidence x amounts to changing the uncertainty about 0 from
f(O) to f(O Ix). Lastly, decisions can be made, given the distribution f(O Ix).

Classical inference lacks a formal interpretation phase. Strictly speakingo
it is only a method of data summarization. Of course, practitioners are
interested in learning from data and have built elaborate ad hoc methods
of data interpretation. It is hardly surprising that these methods are
sometimes in agreement and sometimes greatly at odds with Bayes' rule.
Following a brief discussion of Bayes' rule in Section 2.2, Bayesian
inferences about a proportion and about a mean are described in Sections
2.3 and 2.4, and the theme of the three phases of data analysis will be
elaborated on.

One feature of Bayes' (1763) original essay that brought the greatest
scorn was his choice of a prior distribution f(O) to represent "knowing
nothing" (a contradiction in terms?). Opponents of Bayesian inference
focus their attacks on the problem of choosing the prior distribution, and
Bayesians have responded defensively by trying to find objective subjective
priors. My negative attitudes toward the likely fruitfulness of such en-
deavors are reported in Section 2.5.

2,1 Objective or Subjective Probability?
Classical inference, although based on a seemingly never-ending list of
principles, remarkably admits only a single confusing viewpoint, and the
principal statistical texts differ mostly in pedagogy and very little in
substance. Paradoxically, Bayesian inference, which is based on the single
principle of Bayes' rule, admits a basketful of distinctly different
viewpoints. The rule straightforwardly describes a way of combining
presample (prior) information packaged in a probability distribution with
sample information packaged in a likelihood function. Bayesians who
accept the rule as their principal commandment find time in their busy
missionary schedules to argue vigorously over the Correct Interpretation.
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The apparently innocuous rule is simply the conditional probability rule

P(AIB)--
e(AnS) e(SIA)P(A)

P(B) P(B)

describing the probability of an uncertain event A given the uncertain
event B in terms of the probability of B given A, the probability of A and
the probability B. What distinguishes Bayesians from non-Bayesians is not
their acceptance of the conditional probability rule but rather their willing-
hess to apply it to events A that clearly admit no frequency interpretation.
For example, A may be the hypothesis that the gravitational force between

objects decreases with the square of the distance between them. To a
Bayesian P(A) summarizes the weight of evidence in favor of A before B
is observed, and P(AIB) summarizes the weight of evidence after B is

Non-Bayesians argue instead that A is either true or false and
P(A) is appropriately either one or zero, depending on whether A is
or not. Bayes' rule under those circumstances amounts to either 1 = 1

or 0=0.

The distinction between Bayesians and non-Bayesians should thus be
understood in terms of the deZnitions of probability, and it is, therefore,
necessary here to discuss the various definitions. The number of conflicting
opinions is enormous; for a fuller treatment the reader should consult

;:Barnett (1973, Chap. 3). The viewpoint offered in this book is that
iprobabilists are naturally divided into objectivists, who believe that a
probability is usefully regarded as an objective description of physical

reality, and subjectivists, who believe that a probability ought to be
explicitly as a subjective description of man's perception of his

gs.

PROBABILITY AXIOMS

From the standpoint of mathematical theory, probability is a set function
obeys certain axioms. To use the theorems of mathematical probabil-

ity, it is enough to satisfy yourself that these axioms apply. However, as is
subsequently the interpretation of the results of such exercises

on your understanding of the primitive concept of probability.
probability is described as follows. Let U be a universal

reference set. A function P that associates to every subset .4 C U a real
P(.4), is said to be a�robability measure on U provided it satisfies

following:

AXIOM 1 For every .4 c U, P(,4)>0
AXIOM 2 P(U)-- 1
AXIOM 3 If `4 and B are disjoint, then P(`4 U B)= P(.4)+ P(B).
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These axioms apply in many circumstances in which no one would use
the word probability. For example, your arm may contain 10 percent of
the weight of your body, but it is unlikely that you would report that the
probability of your arm is .1. Objectivists and subjectivists have quite
different ideas about the use of the word "probability," and their debate is
now to be discussed.

OBJECTIVE PROBABILITY

Objectivists define probability with reference to repetitive phenomena such
as dice, roulette, and cards. Although gamblers doubtlessly had some idea
how to compute odds in games of chance long before the sixteenth
century, it was the Italian mathematician Gerolamo Cardano (1501-1565)
who is given credit for the first correct probability calculations. To
Cardano, the probability of an event .4 such as pulling a red card from a
deck is simply the ratio of the number of (equally likely) outcomes that
lead to the event .4 divided by the total number of (equally likely)
outcomes. This may have been intended only as a formula for calculating
probabilities, but deMoivre in 1718 and later Laplace adopted it as a
definition, and it is now called the classical definition of probability. As
such, it has obvious deficiencies.

To give an example, two flips of a coin can lead to one of three events: a
pair of heads, a pair of tails, or a head and a tail. The classical definition
might lead us to say that the probability of two heads is one-third` Not so,
you "probably" would object; these three events are not equally likely.
There are, in fact, four equally likely events: two heads, two tails, a head
followed by a tail, and a tail followed by a head. But how are we to know
which events are equally likely? And if by equally likely we mean equally
probable, have we not circularly presupposed a definition of probability
when we defined probability?

Although probability was defined by early writers as a ratio of favorable
cases to the total number of cases, the frequency interpretation of probabil-
ity lurked informally in the background to check the appropriateness of
what was meant by "equally likely." This naturally led to a definition of
probability in terms of the frequency itself: Let n be the number of trials or
experiments (tosses of a coin, rolls of a die) and-let m be the number of
occurrences of the event .4 (coin lands heads up, die stops ace up); then we
will define the probability of .4 as

number of occurrences of A m
P (.4) = number of experiments n

The ratio m/n, by definition, changes as n changes. If we want to avoid
the embarrassment of having our probability assignment to .4 depend on
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the number of hypothetical trials, then we must let n grow hypothetically
without bound

P(.4) = lim m,
n-*co gt

that is, we define probability in terms of the limit of a relative frequency.
This, of course, requires that the limit exists, which is, by its definition,
impossible to verify. In practice, one always checks his probability assign-
ment by observing the (converging) behavior of m/n in a finite number of
trials.

Although it was not until 1837 that Denis Poisson formally defined
probability as a limit of a long-run relative frequency, surely gamblers long
before the time of Poisson--and before Cardano for that matter--would
quote odds based on the relative frequency of occurrence in a limited
number of trials. As long as one dealt with repetitive phenomena of a
standardized variety--such as in games of chance, actuarial science, genet-

and statistical mechanics--the relative frequency point of view and the
classical view equating probability to the ratio of favorable to total cases
were adequate. For nonstandardized, nonrepetitive phenomena, however,
the frequency definition of probability simply does not usefully apply. A
frequenfist cannot calculate a nontrivial probability that Andrew Jackson
was the eighth President of the United States, or that someone named
Andrew Jackson will be the President in the year 2000. To calculate a
frequency, we must define the class of relevant experiments. For Andrew

there is (apparently) only one relevant experiment, and the relative
is necessarily either one or zero. A frequentist, therefore, would

the following trivial statement. The probability that Andrew Jackson
the eighth President of the United States is either one or zero, one if he
zero if he was not.

In other cases it may be difficult to define exactly the class of relevant
experiments. We often appeal to the vague adjectives "standardized" and

�'repetitive." All flips of a coin may (intuitively?) be regarded as repetitions
the same experiment. But in a trivial sense, repetition of the same

must lead to the same outcome. And a great many things are
different each time we flip a coin. This discussion leads to the
that in order to calculate a relative frequency we must subjet-

define the class of events over which to count the frequency. We
agree on the class of events and in that sense have an "objective"

but that objectivity is something in us and not in nature.
A related problem is that a frequency is a property of a class of events,

property of individual events. It is quite unclear whether a frequency
then be applied to individual events. For example, may we

legitimately discuss the probability of getting a head on the next flip of a
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coin? There apparently are three positions that frequentists have taken on
this issue:

fl: Probabilities are defined for events that have not occurred. They arenot defined for events that have already occurred. We may, therefore, talk
about the probability of a head on the next flip of a coin until it is flipped.
After that it is either a head or a tail, and no probability applies.

f2: Probabilities are not defined for individual events regardless ofwhether they have occurred. Probabilities are objective properties of classes
of events, and they do not apply to individual events.

f3: Probabilities are defined for individual events, both before and afterthe event occurs under certain circumstances to be discussed subsequently.
The position f� makes special reference to the time of occurrence of the

event, which is something we may not even know. Imagine that a coin is
flipped on a star so distant that it takes 1 hour for light to arrive here. Wewill see the flip an hour after it occurs. Is it then the case that for the
previous hour we will have the mistaken impression that the probability ofa head is one-half, when in fact the probability was not defined since the
event had already occurred? More generally, when is an event determined?
Precisely when does the probability cease to be defined? When the coin
stops vibrating? When it stops rolling but is still vibrating? When it is
sailing through the air? When it is resting on the flipping thumb?

Another difficulty with position f� is that it can generate probabilities fo.r
individual events only in a somewhat circular manner. The frequency is
said to apply to an individual event when the experiments determining the
hypothetical sequence of events are standardazed and repetitive." If bythat statement we have elliptically asserted that all sequences are equally
likely, the frequency definition of the probability of an individual event
degenerates into the classical definition, with the universe of potential
outcomes being all sequences that have a certain frequency. But, as we
have already pointed out, that presupposes a definition of probability. It is
thus not clear how a probability can be defined for an individual event
without first defining probability.

Position f2 amounts to a negation of the concept of probability as
indicating the likelihood of an uncertain event. The usefulness of probabil-
ity theory is thereby greatly reduced, but there are certainly circumstancesin which properties of classes of events are sufficient. It is possible to write
insurance, for example, given only the knowledge that 10% of enrollees will
suffer some loss. Probabilities applying to particular enrollees are unneces-
sary. For particular inferences, probabilities applying to particular events
�eern absolutely essential, however.
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The third position f3 applies the frequency to an individual member of
when there are no recognizable subsets within the class. A subset is

reco�i7able if its frequency is known to differ from the frequency of the
complete class of events.

The following illustrates the notion of recognizable subsets. Of all flips
of a coin 50% may land heads up, yet it is possible that 75% of those flips
that rotate in a primarily north-south direction are heads and only 25% of
those flips that rotate in a primarily east-west direction are heads. If this
were true and if we knew in which direction a particular coin rotates, then
we, clearly, would not say that the probability of a head is one-half, even
though the frequency in a large number of trials is one-half. The probabil-
ity is one-half if we do not know which way the coin rotates, that is, if
there are no recognizable subsets in the class of all coin flips.

The existence of recognizable subsets is clearly personal, and the posi-
implies a personal definition of probability. Classical inference built

around frequency probability takes either f� or f2. That is, probability
are made about classes of events not individual events (f2) or

about events that have not occurred (f�). It is useful here to recall the
standard confidence interval statements that students learn to repeat but
rarely understand. A 95% confidence interval comes from a class of

95% of which cover the true value. A particular interval either
covers or does not cover the true value, and no probability statement can

made concerning whether it does or does not. This seems to be the
position f2. The position of fl is also possible: the probability that an

covers the true value is .95 until a particular interval is generated.
Then the interval either covers, or it does not.

If you are scratching your head in confusion, you have perfectly under-
stood the problem with a frequency definition of probability. I just do not

how a frequentist can make meaningful probability statements at all.
He can talk about classes of events and their respective physical, possibly

frequencies. But if we reserve the adjective "probability" for set
functions that both obey the probability axioms and also indicate the

events, a frequentist statement that two times out of
pull a red ball from the urn is no more a probability statement

statement that 20% of the balls are red or that the red balls make
20% of the total mass of the balls. Only under certain subjective

can we allow the frequency of .2 to be translated into the
"The probability of drawing a red ball from the urn is .2."

PROBABILITY

alternative to the objectivist view that probability is a physical concept
as a limiting relative frequency or a ratio of physically described

is the view first enunciated by James Bernoulli in Ars Con-
jectandi (1713) that probability is a "degree of confidence"--later writers
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use degree of "belief "--that an individual attaches to an uncertain event
and that this degree depends on his knowledge and can vary from
individual to individual. Three important questions arise: (1) Why should
they be or why in fact are degrees of belief also probabilities, in the sense
of obeying the probability axioms? (2) What is the relationship between
degrees of belief and relative frequencies? (3) Are degrees of belief
measureable?

Concerning the first question, there are two competing answers. Some
statisticians and philosophers assert that a degree of belief is an inherent
property of a body of knowledge in the same sense that height is an
inherent property of a physical body. As an axiom, they assert that given
two uncertain propositions A and B and some body of evidence that
relates to the "likelihood" of A and B, one of the following relationships
holds: A is more likely, B is more likely, or A and B are equally likely. The
word "likely" is not defined by such a statement; only the existence of an
ordering is asserted. This is to be compared to the statement that given two
individuals it is possible to order them by their height: A is taller than B, B
is taller than A, or A and B are equally tall. Height is not thereby defined,
but rather is taken as a primitive concept.

Given an individual's ordering of the "likelihood" of uncertain events,
we may ask if this ordering is consistent with a probability ordering. That
is, do there exist probabilities such that P (A)< P(B) if and only if event A
is judged to be less likely than B? Clearly, some orderings of the events
rule out probabilities. For example, suppose A is judged more likely than
B, B more likely than C, and C more likely than A. It is simply not
possible to find numbers P(A), P(B), and P(C) such that P(A)> P(B),
P(B)> P(C), and P(C)> P(A). Such an intransitive ordering of events
must be ruled out either directly or indirectly.

In fact, several assumptions are necessary for the ordering of uncertain
events to be consistent with a probability interpretation. The interested
reader is referred to DeGroot (1970, Chap. 6) for a discussion. It is enough
here to understand that degrees of belief are asserted to exist and to obey
the probability axioms in the sense that certain, apparently compelling,
simpler assumptions can be shown to imply the probability axioms. One of
these assumptions is briefly discussed: for the probabilities to be unique
there must be a reference standard capable of generating all possible
probabilities.

Imagine a pointer perfectly balanced on a pin in the middle of a perfect
circle as in Figure 2.1. The pointer is to be spun and allowed to come to
rest pointing somewhere on the circle. Propositions are arcs such as A and
B on the circumference of the circle. The word perfect refers to those
requirements that make the degree of belief you hold in any arc dependent
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1�. 2..1 A canonical experiment.

on the length of the arc alone. More than that, a proposition (an arc) A is
more probable, equally probable, or less probable than a proposition B if

the length of A is greater than, equal to, or shorter than the length of B. If
is the circumference of theCircle and d(A) is the length of arc A, we may

arbitrarily assign to the degree of belief in A the numerical measure P(A)
called the probability of A

e(A) = --
c

We now have a reference standard, sometimes called a canonical experi-
ment which can be used to assign particular numbers to the degrees of
belief we hold in any propositions. That is, an individual i is said to have
degree of belief Pi(X)--P(A) in a proposition X if he regards the proposi-
tion X to be equally likely as the arc A in our canonical experiment, where
� (A) is the length of arc A divided by the circumference of the circle.

Subjective probability can also be defined in the context of a real or
problem of decision making under uncertainty. Frank

(1926) was the first to give a theory of action based on the dual,
.g notions of judgmental probability and utility. To Ramsey,
is defined operationally in terms of a person's willingness to act

some decision-making situations in which eventual rewards are uricer-
As an example of such a definition we may say that two uncertain

events A and B have the same probability if you are indifferent between
�inning a dollar if A occurs and winning a dollar if B occurs. For some

there are obvious problems with this definition. Suppose A is the
"Brown will be President of the United States in 1990" and B is the
"the consumer price index will more than quadruple between 1974

and 1990." Although you may regard A and B to be equally likely in some
sense, you may prefer to bet on event A since the dollar is likely

be worth more if A is true than if B is true. To give an analogy in
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another measurement problem, would you say that individual A is "taller"
than B ff you would prefer A on your basketball team?

Keeping in mind this difficulty with any decision-based definition of
probability, we would like to review here deFinetti's 0937) analysis of
betting odds and show in particular that betting odds obey the probability
axioms. Suppose you are asked to quote betting odds on a set of uncertain
events A, B,..., and accept any wagers others may desire to make about
these events. That is, you must assign to each event ,4 a "probability"
P(A), thereby indicating a willingness to sell lottery tickets that pay $S a if
A occurs for the price $P(A)Sa where S a are the stakes (positive or
negative) to be selected by your opponent. What properties seem desirable
for these "probabilities"? Well, you certainly do not want to assign
probabilities such that your opponent can select the stakes to guarantee
that you will lose regardless of the eventual outcome. This simple
coherence principle is sufficient to imply the three fundamental axioms of
probability:

(a) 1� P(A)�O. If your opponent bets only on A and if A occurs, his
winnings are W� = S(I- P(A)), where S may be negative. If A does not
occur, he wins W 2 = - SP (A). Coherence requires that W� W 2 < 0 for all S.
(If W� W 2 is positive for some S, then Wi and W 2 have the same sign. If
they are both positive, you are a sure loser. If they are both negative, your
opponent may change the sign of S to make them both positive.) The
condition W� W 2 < 0 implies [1 - P (A)]P (A) � 0, which implies 0 � P (A)
�1.

(b) P (U)= 1. The universal set U is certain to occur. Thus your losses on
bets about U are, necessarily, Wu = Su[ 1 - P( U)]. By coherence, there must
be no S, such that W, < 0. This implies P (U) = 1.
(c) If A Cl B=4�, then P(A U B)=P(A)+P(B). Suppose you make bets on
the events A, B, and C =A U B. The following events and winnings are
possible:

Event Winnings

AN�B
B N�A
�A n �B

w� = Sail -- P(,�)]- SoP(B)+ Soil - P(C)]
l, Ve = - SaP(A)+ So[I - P(B)I + S�[1 - P(C)I
W 3 = -- SaP(A ) - SoP(B ) - ScP(C )

Coherence requires that there be no values of the stakes (Sa, So, S�) such
that the winnings (W�, W 2, W3) are all positive. If this linear system of
equations expressing the winnings as a function of the stakes is invertible,
it is possible to specify stakes to make the winnings take on any values
whatsoever. To avoid this, the determinant must be zero. Setting the
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determinant to zero yields

II-P(A) -P(B) I-P(AuB)IO=-P(A) 1-P(B) 1 P(AuB)
-P(A) -P(B) P(AUB)

31

= - P(A u B )+ P(A)+ P(B ).
P(A U B)= P(A)+ P(B).

This treatment of subjective probability, although terribly appealing, has
two flaws which have received a certain amount of attention. The first

the units in which the stakes S are measured; the second
the possibility that the other party to the wager has better

information about the event in question. Both are related to the fact that
allowed to drop out of the game (when the stakes are too high

the cards are marked).
Suppose that you are asked to quote odds on the flipping of a coin, with

stakes being a penny. Even odds is the natural choice, and the bet
fair, if a bit dull. What about stakes of a thousand dollars7 Or a

The nature of the game seems to change as the stakes go up, and
is an acceptable wager for low stakes becomes unacceptable (for

most of us) at high stakes. Does this mean that the probabilities change as
stakes go up? No, there is a better explanation. You are interested in

happiness, not dollars. If you lose a penny you lose almost the same
of happiness as you would gain if you were to win a penny. For

stakes, this is not true. The stakes in terms of happiness are
with even odds of gaining a little and losing a lot. This is

the problem discussed previously when probabilities were defined
terms of indifference between lotteries. Expected dollar winnings is not
only thing that matters in choosing lotteries.

express this graphically in Figure 2.2, which depicts a utility (or
function in terms of dollars. The utility function has the

that continued increments to your wealth provide ever de-
increments to your happiness. If you do not play the game, you

level U0. If you do play, you are equally likely to be at U,�
U� with U,� only marginally above U 0 but with U� considerably below
When the stakes are small the discrepancy between (U,,-Uo) and

U�) becomes imperceptible, and the choice between playing and not
becomes ambiguous.

point of all this is simply to demonstrate that probabilities can be
of stakes and also that the stakes can influence the acceptabil-

of a gamble.
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Utility�/./ Uo�/"'"'�
Lose Don't Win

Play

Fig. 2.2 A utility function that discourages gambling.

There is a second problem with this decision-based definition of proba-
bility. Although the true probability is naturally thought to be independent
of the stakes, the announced probability may not be. The previous discus-
sion implicitly assumes that the second individual has the same opinions as
the first and that failure to quote the true probability would result in an
advantage to the second player. When the second player has a different
probability, the first may want to quote a probability different from the
one he truly believes, either to take advantage of the second player or to
avoid being taken advantage of himself. The problem is further com-
plicated if the first individual is allowed to drop out of the game. We
conclude that, at least for our purposes, it is better not to define probabil-
ity in the context of some specific decision problem.

This concludes the answer to the first question: why should they be or
why in fact are degrees of belief also probabilities? Among the answers are
that (1) measures of uncertain knowledge are probabilities for intuitively
compelling reasons; or (2) anyone who makes decisions under uncertainty
in a "rational" way will act as if he had degrees of belief that obeyed the
probability axioms.

Our second question concerns the relationship between degrees of belief
and relative frequencies. More generally, what further constraints other
than the probability axioms must degrees of belief obey? Consider, for
example, the tossing of a coin. It has been generally accepted that a head
and a tail are equally likely and are to be assigned an "objective"
probability of one-half. The subjective description of probability casts
doubt on that statement. After all the central function of a scientific
inquiry is to eliminate the uncertainty and to be able to quote longer odds.
It is certainly conceivable that a scientist could carefully analyze the coin,
landing surface, the size and strength of the flipping thumbs, and the like,
and could with confidence conclude that the head is more likely than the
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tail on this particular flip. A subjectivist would, therefore, assert that there
is no compelling reason why the probability of a head must be one-half.

In fact, subjectivists are divided into two warring factions: the persona-
lists and the necessarists. Personalists such as deFinetti (1937), Ramsey
(1926), and Savage (1954) argue that since knowledge obviously varies
from individual to individual, the quantitative measure of knowledge must
vary from individual to individual, also. Any individual is advised to
constrain his degrees of belief to obey the probability axioms but is
otherwise free to assign them as he sees fit (or, more accurately, as is
appropriately determined by his knowledge). Necessarists such as Jeffreys
(1961) and Keynes (1920, on the other hand, argue that a probability is
the degree of belief it is rational to hold regarding some uncertain proposi-

given some other propositions. This is a subtle distinction, if it is a
at all. Just what do we mean by "rational"?

who had the same joint probability function over all
events would, conditional on the same propositions, have the

same (posterior) degrees of belief. Do we mean, then, by rationality that
everyone's primitive (preobservation) degrees of belief are identical? This is
a conceivable proposition, but it does not seem to have any practical

given that everyone's knowledge (i.e., set of known proposi-
is distinctly different. Another possible definition of rationality is

computation of degrees of belief. For example, it is "irrational" to
something to be true merely because you want it to be. But on this

point, personalists agree with necessafists; probabilities are descriptions of
measured hypothetically without error, indicating the weight of
favor of uncertain propositions and independent of the desires

(or the decision problems) of the individual. A third definition of rational
is the one that most clearly distinguishes personalists from neces-
There is a set of propositions that are socially known to be true in

sense that some "reliable" observer includes them in the set he regards
be true. This whole set of propositions is to be used to compute a social

set of degrees of belief. Probability calculus applies only to these
degrees of belief, because any other degrees of belief are
For example, consider the proposition "Andrew Jackson was

eighth President of the United States." A personalist might select an
whose knowledge about this proposition is incomplete and

�t to measure his degree of belief in the proposition. A necessarist
retort that Jackson either was or was not the eighth President, and

degree of belief is either one or zero. Any other probability
the correct one is mistaken.

own feeling is that information transmission among individuals is so
Lmperfect and so poorly understood that it makes little sense to consider

"rational" degrees of belief. At best, the probability calculus could
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apply to personal beliefs, although a substantial part of this book implicitly
makes the point that for a variety of reasons real learning is poorly
described by this mechanistic mathematical model. At any rate, there are
no well-defined "necessary" probabilities.

Although I take the personalist view that probabilities describe personal
knowledge, I recognize that there are situations in which many or most
people have essentially the same degree of belief in some uncertain
proposition. This uniformity of subjective opinion should not be confused
with objectivity. The personalist James Dickey has suggested that the
words "public" and "private" might informatively replace the words "ob-
jective" and "subjective." Public probabilities most often are based on a
given relative frequency, in which case a personalist will constrain his
probability to be consistent with the publicly known frequency. For
example, if it is known that the relative frequency of heads in the next two
flips of a coin is exactly one-half, then the personal probabilities of the
sequences HH and TT must be zero. Or suppose there is a class of n
propositions. The ith proposition, for example, might be "the ith flip of a
coin will land heads up." If it is known that exactly f of these propositions
are true and if each proposition is equally likely, then the probability of
each proposition is, necessarily, fin. That is, the probability is equal to the
relative frequency.

This constraint may be expressed more generally and more formally in
the following result, stated in deFinetti (1937). Let the universe consist of
rn events, U= {e l, e2,...,em}, and let the probability function defined on
this universe be P({ek}). Suppose that there are n compound events A l,
A 2 .... ,A n defined as unions of one or more simple events. Let Pi = P(Ai)
and � = P (exactly j of these events occur). Then it can be shown that

i=1 j=O

the average probability is equal to the expected relative frequency.
Before this result is proved, note that if the frequency of occurrencej of

the n compound events is known to be f with probability one, the
right-hand side of this expression becomes just f �and the formula can be
written

i=l

In words, the average probability is just equal to the relative frequency.
Furthermore, if each of the events A i is equally probable, the formula

becomes

In words, the probability is equal to the relative frequency.
This is an important result that indicates when a personal probability is

necessarily equal to a relative frequency. It is a formalization of the notion
of recogn/zable subsets discussed previously. When a class of events is
known to have relative frequency fin and when it is impossible to divide
that class into subsets that have greater or lesser probability of occurrence
than the class as a whole, we are obligated to adopt the relative frequency
as our personal probability.

The proof of the proposition (2.1) is straightforward. Let aik indicate
whether the simple event e� is included in A�

1 if ek�A iaik =
0 otherwise.

Then

Pi-- � ait, P(et,).
k�l

The number of events A� that occur if the simple event e� occurs is

j(eO =
i=l

and the expected frequency can be written

�] j�9 = � j(e�,)e(e�,)
j�O k=l

= � �aik'P(e�)
k�l i�l

=
i=l

This concludes our answer to the second question: what constraints
must degrees of belief obey? The answer is, they must be probabilities but
are otherwise free. If the relative frequency is known and if each event is
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judged to be equally likely, a personal probability will coincidentally equal
a frequency.

The third question to be discussed is "are degrees of belief measurable?"
Although we hypothesize a complete ordering of uncertain events, we have
not indicated how well, if at all, this ordering can be determined. It is
useful here to think, again, in terms of heights. We believe that individual
`4 is either taller or shorter than individual B, but we may be unable to
identify which one is, in fact, the taller. This is especially true if they are at
opposite ends of a football field, but even if we stand them right next to
each other, we may have difficulty comparing their heights. Thus the
existence of an ordering need not imply the existence of measuring devices
sufficiently accurate to disclose the ordering.

The absence of perfect measuring devices does not prevent the use of
such concepts as "length," "weight," or "temperature." A designer of a
house, for example, at times proceeds as if perfect measurement were
possible--he calls this angle a right angle and this length 5 inches, even
though no physical angle could be exactly 90 � nor any physical length
exactly 5 inches. It is essential for him also to consider the effect of likely
departures from his design. If the house would fall down unless the angle
were 90 � to the fifth decimal place, he would alter his design to be more
"robust" to departures. We can thus idealize the design of a house into
those phases that proceed as if measurement were perfect and those phases
that consider the consequences of imperfect measurement.

We take a similar attitude toward probabilities. Although we hypothe-
size the existence of degrees of belief, it is clearly impossible to measure
them without error. It nonetheless makes sense in constructing a theory of
inference or a theory of decision making to proceed sometimes as if
degrees of belief were measured perfectly. But it is also essential to
consider the consequences of measurement error. If our inferential house
were to fall down with the slightest discrepancy between the measured and
the true degrees of belief, we would surely want to build a different kind of
house.

When measurement is very imprecise, it may be argued that we should
disdain design altogether and proceed directly to the building of the house.
We can expect to learn effective construction in the process, since we will
be encouraged to build houses somewhat differently when they fall down.
House-building would be taught under such circumstances not by
textbooks and lectures but by apprenticeship. In terms of data analysis, it
may be argued that the impossibility of measuring degrees of belief makes
learning an art, and we should concern ourselves not with designing
mathematical models of learning that presuppose perfect measurement of
probabilities, but rather with trying different "styles" of learning and
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selecting those that turn out best according to some criteria. In principal, I
agree with this position, but I think it is useful nonetheless to describe
actual learning in formal terms. Mathematical models can be used as

teaching devices and perhaps also as guides for improving the learning
processes.

We, therefore, consider the inferential implication of certain probabilis-
tic structures suggested by the techniques of data analysis used by
economists. We consider the consequences of minor and major changes in

probabilistic structures. And we analyze some forms of measurement
error, for example, memory failures.

; OBJECTIVISM VERSUS SUBJECTIVISM

We are now in a position to draw the battle line clearly between the
objectivist and subjectivist schools. The following list defines functions

the probability axioms and which might be called probabilities in
sense of indicating the likelihood of uncertain events:

1. Proportions.
2. Relative frequencies.
3. Degrees of belief.

4. Betting odds.

Representative objectivists and subjectivists were asked to comment on
the following pair of statements:

The probability of getting a six in the roll of a die is one-sixth.
The probability that Andrew Jackson was the eighth president of the
United States is one-sixth.

"Statement A is a perfectly good probability statement. Of
six ways that a fair die may land, there is one way favorable to the

'six'. There is, moreover, no experience with rolls of a die that
that "six" occurs more or less often than that. Statement B may

someone's betting odds or even be someone's 'degree of belief,' but
is certainly not a probability statement in the same sense as statement A.

either was or was not the eighth President of the United States, a
we can look up in a book."

"Both statements may represent someone's degrees of belief
someone's betting odds, and may, therefore, be proper probability

statements. Statement .4 may, on the other hand, be a frequency statement
even just � statement about the proportions of events favorable to the

'six.' If so, it is no more a probability .statement than is the statement
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'my legs make up 20% of the weight of my body.' By this I mean that I
think the word probability should be restricted to describe the 'likelihood'
of uncertain events. A frequency statement indicates only the proportion
of a class of propositions that is true. It does not unambiguously indicate
the likelihood--the probability--of particular propositions such as 'a six
on the next roll of a die.' Of course, there are situations when a frequency
statement should be directly translated into a probability statement in my
sense. I would think rolling dice would be one of those situations and can
well imagine that statement A describes a degree of belief (a probability) as
well as a frequency of occurrence."

It is important here to notice that neither the objectivist nor the
subjectivist questioned whether the four functions indicated above do,
might, or should obey the probability axioms. The subjectivist, in fact,
acknowledges that both proportions and frequencies satisfy these require-
ments. At issue is only which of these functions should be called probabil-
ity functions in the special sense of indicating the "likelihood" of uncertain
events. The objectivist, or more specifically, the frequentist, takes the
position that there is a special class of phenomena that lend themselves to
probability (frequency) descriptions. He is either uninterested or sees no
meaningful mathematical content in statements such as "Andrew Jackson
was probably the eighth President." The diametrically opposite position is
taken by the subjecfivist. He regards the frequency as uninteresting except
under those special circumstances when it is also a degree of belief.

In an effort to achieve greater clarity and perhaps a resolution of this
conflict we have asked our witnesses the following questions, which as yet
have not been answered.

To the subjectivist: You have admitted the difficulty of assessing or
measuring these abstractions you call degrees of belief. Would you not
admit that a person with some confidence can say he holds degree of belief
one-sixth in the proposition "a six will occur on the next roll of a die."
What person could be so precise about the degree of belief he holds in the
proposition "Andrew Jackson was the eighth President" (assuming he was
uncertain about it)? In particular, can you not imagine that a person who
thinks this proposition is unlikely might only be able to say that he holds
degree of belief in it less than one-half? Is the frequency/nonfrequency
distinction that the objectivist draws thus not also useful to you in thinking
about the precision with which degrees of belief may be determined?
To the objectivist: The subjectivist has admitted the difficulty of assigning
a particular number to many degrees of belief. Does your lack of interest
in degrees of belief derive from the apparent difficulty of translating
statements such as "Jackson was unlikely to have been the eighth Presi-
dent" into a precise number? Do you not also recognize that any frequency
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statement makes a number of implicit assumptions concerning the replica-
tion of an event? Is it not true that these assumptions are at best

and that a frequency statement is thus necessarily somewhat
And if so, is not your distinction between frequencies and

of belief based on a distinction in degree and not in kind?
2.2 Bayes' Rule

The probabilistic rule that plays the central role in Bayesian inference is
the conditional probability axiom or "Bayes' rule"

P(ADB)
P(AIB )-

P(BIA)P(A)
P(B)

the personalist point of view, it indicates that the degree of belief in
A given proposition B is equal to the joint probability of A and

divided by the probability of B. It is sometimes called the rule of inverse
since it describes how a conditional probability, B given A,

be turned into or inverted into a conditional probability, A given B.
The rule can be written in terms of odds ratios as

P(AIB) P(BIA) P(�)

the posterior odds ratio (given B) equal to the relative likelihood
B under the two hypotheses times the prior odds ratio. The evidenfial

of B can be completely summarized in terms of the relative
P(B]A)/P(B[�A).

principle of coherence can be used to derive the conditional
rule (deFinetti, 1937). The first individual establishes his bet-

odds by announcing a willingness to sell for $P(A)S lottery tickets
pay $S in the event that A occurs, where S is the stakes selected by

individual. The conditional probability P (A[B) should be taken
a willingness to wager on A if B occurs; otherwise, the bet is

off. For ease of notation, we indicate P(A]B), P(A r3 B), and P(B)
tp, p', and�", with the corresponding stakes S, S', and S" to be chosen

the second individual.

is a subset of B, three distinctly different events can occur, and the
of the second individual are

�r�B W,=S'(1-F)+ S"(1-p")+ S(1-p)
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If this linear system is invertible, the second individual will be able to find
values of S, S', and S" which will make W�, W 2, and W 3 take on any
values whatsoever; in particular, he will be able to inflict arbitrarily large
losses on the first individual regardless of the eventual outcome� Thus,
coherence requires that p, p', and p" be selected so that the system is not
invertible, that is, so that the determinant p'-pp" is zero. But this is just
the conditional probability axiom.

A complete theory of learning is implied by Bayes' rule. A "primitive"
joint distribution indicating the personal probability of every event is
updated by conditioning on observed events. Learning amounts to merely
selecting the appropriate conditional probability. It should be obvious that
it is impossible to construct the required joint distribution consciously.
Although Bayes' rule may be used unconsciously, it seems unlikely that
learning proceeds unconsciously strictly according to Bayes' rule. Three
features of this book make overt reference to this author's lack of complete
belief in the rule. In Chapter 10 we analyze some simple models of
memory failure. In Chapter 9 we discuss "concept formation." In many
chapters we report sensitivity analyses which are intended to identify the
probabilistic assumptions that crucially determine the nature of the in-
ferences that may be made from a given body of data. In so doing we
implicitly admit that no probabilistic assumptions can be made with
complete confidence.

2.3 Inference About a Proportion

Consider a population that, of its elements, has a proportion p that possess
a given attribute. For example, the population might consist of United
States residents of voting age, and p might be the proportion who are
currently registered voters. Suppose that the proportion p is not known
with certainty, although there is some more or less vague information
concerningp. It seems unlikely, for example, that as many as 90% or as few
as 10% of the eligible voters are, in fact, registered. Suppose, finally, that n
members of the population are asked sequentially if they have the given
attribute. What information does the sequence of answers to this question
contain concerning the unknown proportion p? What if, for example, no
one whom we asked was a registered voter?

The meaning of this sequence of answers depends first of all on how we
found the members of the population that we questioned. If we had
decided only to ask convicted murderers, it would not be surprising to find'
no one registered, and the fact that we received such a set of answers
would have little impact on our opinions about the proportion p who are
registered in the whole population.

Some definitions are now in order. The answers to our query given by
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the selected population members are called a sample. The process by which
members of the population are selected for questioning (or sampling) is
called the sampling process. The set of possible sequences of answers is
called the sample space. The probability function defined on the sample
space indicating the probability of each possible sample is called a sam-
pling distribution. Thus the foregoing paragraph indicates that the informa-
tion content of a particular sample--the extent to which it influences our
opinions about p---depends on the sampling process.

The meaning of a sample also depends on prior information about p.
Interpretation of a particular sample is quite different if before sampling
we thought p was almost exactly .9 than if we thought p was almost exactly
�1. We proceed as if our prior opinions about p could be put into a precise
distribution, with density, say, f�(p), indicating that the degree of belief
that we hold in the uncertain proposition a <p < b is f�bf�(p)clp. We do,
however, want to analyze the extent to which the interpretation of a
sample depends on minor changes in the prior density functionf�(p), since,
of course, a prior distribution cannot be specified unambiguously.

A word about assumptions is in order. Anyone who insists that personal
probabilities be assessed precisely cannot perform statistical inference for
the same reason that no spaceship .would ever have reached the moon if
measurement of lengths had to be perfectly precise before construction
could commence. To say something is 6.5 centimeters long is only to say
that for the purposes at hand we may proceed as if it were. An assumption
is not, therefore, a statement of unquestioned truth. It is a tentative
statement on which initial action can usefully be based.

We make assumptions about sampling distributions and prior distribu-
tions not because they could possibly represent accurately anyone's de-
grees of belief but rather because they seem sufficiently representative of a
class of interesting opimons that they may be used as a useful starting
point for an analysis. A statistical analysis is most emphatically a two-way
street, however. It involves both the mathematical process of inference
given assumptions, and also the artful process of challenging and discard-
ing inadequate assumptions. More is said of this in Chapter 9.

SAMPLING DISTRIBUTIONS

Suppose, first, that only two members of the population are to be sampled.
Indicating a positive answer, that is, possession of the given attribute, by S
(mnemonic for success) and the contrary event by F (mnemonic for
failure) there are four possible outcomes: SS, SF, FS, FF. Both, one, or
neither individual may have the attribute. The sample space is the set of all
possible samples

Sample space: { SS, SF, FS, FF }.
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The probability of obtaining one of the samples--one element in the
sample space---depends on how members of the population are identified.
The probability function defined on the sample space indicating the
probability of each sample is called the sampling distribution.

Sampling distribution: P(SSIp),P(SFIp),P(FSIp),P(FFIp) �
A special sampling distribution applies if "independent random" sam-

pling is the sampling process. This requires the dual assumption that the
probability of selecting a member of the population is independent of the
other selections and also that each member is equally likely to be selected
at each "draw" from the population. If each member is equally likely to be
selected at any given draw, we know from Section 2.1 that the probability
of a success on the particular trial (draw, experiment) must be equal to the
class frequency p, in this case,

P(Slp)=p, P(Flp)= 1-p.
Furthermore, if each draw is independent of the others, the sampling
distribution becomes

P(SFIp ) = P(S [p)P(Flp)--p(1 -p)
P( SS IP) -- P( S Ip)P( S IP) =PP
P( PSlP) = P(FIP)P( s IP) = (1 -p)p
P(FFIp)-- P(FIp)P(FIp)--(1 -p)(1 -p).

How do we know if the sampling process yields independent random
samples? The answer is, we don't. Remember that these probabilities are
personal degrees of belief that, necessarily, are difficult to specify precisely.
We can identify processes that clearly do not generate independent ran-
dom samples. The sequence SF may be unambiguously more or less likely
to occur than an arc of our canonical experiment coveringp(1 -p) 100% of
the circumference of the circle. We will never be able to say that SF is
exactly as likely as this arc, any more than we can say that two rulers are
exactly the same length. We will, however, be willing to proceed in many
circumstances as if we were observing an independent random sample. We
must be aware, however, that this is a working hypothesis that ought not to
be retained too tenaciously.

Some examples of dependence in the samplin� scheme are worth dis-
cussing. Suppose the population in question consist� of a finite number of
members, say, N, with proportion p--R/N possessing the attribute.
Suppose we draw from this population one member who has the attribute.
If we do not return him to the population, the probability of another
success is (R-1)/(N-1). Thus the outcome of the second draw is
dependent on the outcome of the first draw. The sampling distribution
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would then be

?(SFip)= R /V-RN N- 1 --p(1 -p)(1 -N-�) -�
P(SS[p) = R R- 1N N- 1 =P(P-N-�)(I-N-�) -�

N N-1 =(1-p)p(1-N-�) -�
e(FFIp)-- N- R N- R- 1N N- 1 �(1 -p)(1 -p-N-�)(1- N-�)-�.

Note, however, that for N large this sampling distribution is inconsequen-
tially different from the independent random sampling distribution.

Another form of dependent sampling occurs if bunching of successes
and failures is likely. Suppose we wanted to know the proportion of
families in Boston that have incomes less than $5,000, and suppose we

a "random home" as the first element in our sample. Suppose
also that, for the second element of the sample, instead of a random
choice, we selected the family who lived next door. The fact that poor

tend to live next door to each other almost guarantees that these
neighbors will answer the question identically. The resultant samplingdistribution would then be

P(SFIp)--O
P(SSlp)--p
?(rSlp)--- 0
e (trip)-- 1 -p.

We henceforth assume independent random sampling. A sample of size
n will consist of a sequence of Ss and Fs, n in all. The sample space

of the 2 n different possible samples, and the sampling distribution

P (Sample: SFFSF..., Sip ) =p(1 -p)(1 -p)p(1 -p)--.p
=Pt( 1 --P)n-r (2.2)

r is the number of successes and n the sample size.
AND POSTERIOR DISTRIBUTIONS OF A PROPORTION

sampling distributions just discussed describe degrees of belief in
about samples given that p is known. The proportion p is also

and degrees of belief in propositions concerning p may be fully
in a density function f�(p), thereby indicating that for anyP(a < p �< b)= f�f �(p)dp.
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Given the sampling distribution (2.2), the prior distribution, and Bayes'
rule, we may write the posterior distribution as

e (sample]�)f,(�)
f2(P) =f(plsample) = P (sample)

= pC (1 _p)n-cf�(p) (2.3)
P (sample)

where P indicates a probability function, f a density function, and where
we have been mathematically sloppy in not distinguishing the two more
carefully.

The part of this function that deals with the outcome of the sample,
namely, pC(1 _p)n-c, is called the likelihood function of p given that the
sample resulted in r successes in n trials. The extent to which the posterior
distribution depends on the sample is completely determined by the
likelihood function. Multiplying the likelihood function by a constant will
not alter the posterior distribution, since it has to be normalized to
integrate to one. The likelihood function is, therefore, defined only up to a
multiplication constant, and we indicate it as

L(p[r,n) ocpC (1 _p)n-c
where cr indicates "proportional to." Observe that as a function ofp we
have

L (p]sample) cc P ( sample I P ).

The right-hand side is apparently a probability function defined on the
sample space for a particular value of p. The likelihood function is a
function of p, however; it is computed from the sampling distribution by
identifying how the probability of the particular observed sample depends
on p. The fact that the observed sample is twice as probable ifp=p I than
if p =P2 is taken as evidence that p =Pl- Given this sample, we would say
thatp� is twice as likely asp2.

The fact that both the likelihood function and the sampling distribution
can be written with the same expression causes great confusion for the
beginning student, and the reader should examin, e and understand the
following example if he is at all confused by this phenomenon.

Example. A sample consisting of one observation has a sampling distrib-
ution P(SIp)=p, P(FIp)= 1-p depicted graphically in Figure 2.3. If a
success is observed, the likelihood function is L(pIS)czP(S[p)=p, also
depicted in Figure 2.3. That is, p = 1 is most likely; p = 1 is twice as likely
as p=.5; p--0 is impossible. If, however, a failure is observed, the likeli-
hood function is proportional to (1-p), and p--0 is most favored.
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Likelihood Functions
Fig. 23 Sampling distributions and likelihood functions.

Now consider again Equation 2.3. Suppose our prior information con-
is extremely vague in the sense that we have no reason to believe

that p is more likely to lie in one interval rather than any other interval of
the same length. More specifically, suppose f�(p) is taken to be rectangular

the interval from zero to one. Then f�(p) = 1, and hence by (2.3)
f2(P) = UP r (1 _p)n- r.

Appendix 2 this p.d.f. is recognized as a beta p.d.f. with parameters
r+ 1 and n + 2, f2(P) =fg(p[r+ 1, n + 2). More generally, suppose our prior

is itself a beta p.d.f. with parameters n� and r�. Then the posterior
distribution is also a beta distribution:

THEOREM 2.1. (BINOMIAL SAMPLING AND BETA PRIOR). If the prior
p.d.f. on p is beta with parameters r� and n�, fo (p Ir�, nO, and a random
sample yields n observations, r of which are Ss, then the posterior p.d.f.

/:(P) = �P ['-p) n2-r:-'
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where

n2 �- nl -J- n ,
and

r2=rl+r.

Proof.' Substitute

1 pr,-� (l_p)n,-r,-I
in (2.3) and collect terms.

SOME QUALITATIVE CONCLUSIONS

From (2.3) we see that the shape of the posterior p.d.f. is obtained by
multiplying the likelihood function, L(�lsample), by the prior and scaling
so that the area under f2 is unity. The likelihood function is shaped like a
beta p.d.f. with parameters r + 1, n + 2. Now, by observing graphs of beta
p.d.f.'s with different (r, n) combinations, a number of general observations
can be made that agree with one's intuition. For example:

(a) As the sample size becomes larger, one's prior distribution and
information are "washed out," in the sense that the prior has less and less
influence on the posterior.

(b) If one's prior is vague or diffuse, then even with little sample
information, the posterior corresponds closely with sample results. (See
subsequent discussion.)

(c) If one's prior information is great or his prior distribution "tight,"
that is, has small variance, say, then reinforcing sample information serves
to make the posterior even "tighter."

(d) If one's prior is "tight" and the sample evidence is contradictory,
then increasing amounts of such sample information (increasing sample
sizes) tends at first to leave the prior relatively unchanged, then may cause
the posterior to become more diffuse (representing iocreasing uncertainty),
and finally increasingly large amounts of contradictory information cause
a gradual shift to a "tight" posterior position conforming to this sample
evidence.

SUMMARIZATION AND INTERPRETATION

We should like for emphasis to point out again that learning can be
usefully separated into a summarization phase and an interpretation phase.
In this chapter we are discussing inference from a sequence of observable
events that can be entirely summarized in terms of two numbers: the
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of successes and the number of trials. More formally, let us define
two concepts.

Our data consists of an n-dimensional unknown vector of ones and
zeroes where a one indicates success and a zero failure, (Xi,X2,...,Xn, X i =
0, 1) distributed as f(xl,x 2 .... ,XnlP) where p is an unknown parameter.

Definition. A statistic t is a multivalued real function of the data
X 1 ..... X n �

Example. In this chapter the data are a sequence of successes and
failures. The number of failures is a statistic. Another statistic is the whole

that is, an n-dimensional vector of ones and zeroes indicating the
trials on which the successes and failures occurred.

I)ef'mition. A statistic t is a sufficient statistic if the density function of the
can be written as

f(Xl,X2 .... ,xnlp)= k( t( Xl,X2 .... ,Xn);p)U(X ),
where u is a function independent off and k depends only on t(x), that is,
if the likelihood function depends only on t (up to a factor of proportional-

ity).

Example. We have already seen that r and n are sufficient statistics for a
p.

A posterior distribution is the product of a likelihood function times a
prior distribution. The data can affect the posterior only as .they affect the

function, and the likelihood function depends only on a
sufficient statistic. Thus a sufficient statistic offers a complete summary of

data evidence. To the extent that we can agree on the process that
the data, we can agree on the sufficient statistics and thus can

the appropriate summary of the evidence.
Interpretation of the summarized evidence means changing one's mind,

is, discarding a prior distribution and adopting a posterior distribu-
This interpretation obviously depends on the prior distribution in the
way that the summarization depends on the sampling distribution.

illustrate this fact, consider the meaning of 2 successes in 10 trials if p
one of the following five phenomena:

The proportion of times a head occurs in flips of a coin.
The proportion of trees in Cambridge that have green leaves on a
randomly selected day in 1978.
The proportion of Harvard students who have IQs over 150.
The proportion of Harvard students who have IQs under 150.
The proportion of Martians who weigh more than 150 Marspounds.
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Table 2.1

Interpretation of 2 Successes in 10 Trials
Phenomenon r� n I 95% Prior Interval P (success on first thai)
Coin lands heads up 50 100 [.419 '.581] 1/2
Green leaves .25 .5 [0, .1] O [.9, 1.0] 1/2
IQ over 150 1 22 [0, .13] 1/22
IQ under 150 21 22 [.867, 1.0] 21/22
Martian weights > 150 0 0 ? ?
Phenomenon r 2 n2 95% Posterior Interval P (another suc�ss)
Coin lands heads up 52 110 [.417, .579] 52/110
Green leaves 2.25 10.5 [.009, .43] 2.25/10.5
IQ over 150 3 32 [.12, .20] 3/32
IQ under 150 23 32 [.54, .87] 23/32
Martian weights > 150 2 10 [.009, .433] .2

We have summarized our opinions about these five phenomena in terms of
beta distributions with parameters r� and n� given in Table 2.1. That is:

1. We are almost certain that the proportion of heads is nearly one-half,
and our 95% prior interval runs from .419 to .581.

2. Depending on whether the randomly selected day is in winter or in
summer, almost all or almost none of the trees will have green leaves.
Our 95% interval is, therefore, the union of the intervals [0,. 1] and [.9,
1.01.

3. Smart as they are, we do not think many Harvard students have IQs
over 150. Our 95% interval runs from 0 to .13.

4. The mirror image of (3).
5. We have very little information about Martians, and have adopted the

diffuse prior that is nonintegrable and has no well-defined 95% inter-
val.

The probability of a success on the first trial given p is just p. This is a
conditional probability. The marginal probability of a success is just

e (success) = fP (success{p) fa(Pl r(, n,) dp
-- f pfa(plr,,n,)dp

r 1

n 1

This may be found in the fourth column of Table 2.1.
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The posterior parameters, the posterior 95% interval, and the probability

of another success (r2/n2) may all be found in the same table. The
of 2 successes in 10 trials is seen to depend on the process
the outcomes in the following way.

If we are talking about flips of a coin, 2 in 10 is hardly evidence at all.
Both the 95% interval and the probability of a success are hardly
changed.
Two trees in ten with green leaves suggests that it is winter, but there
are more green trees than we would have guessed for winter. We thus
essentially eliminate the summer branch of our 95% interval [.9, 1.0],
but lengthen the winter branch to [.009, .43]. The probability of
another success is greatly reduced from .5 to approximately .2.
Two in ten students with IQs over 150 is largely corroborative evi-
dence, although it is somewhat more than we expected. We accord-
ingly shorten but adjust rightward our 95% interval from [0, .13] to
[.12, .201.
Two in ten students with IQs under 150 is startling evidence. [Note this
is a different sample from (3), since success is defined differently.] We
react to this with confusion by increasing greatly our interval from
[.86, 1] to [.54, .86].
Where before we were "ignorant" about Martians, we now know a
great deal. Notice that Martians and green leaves end up with essen-
tially the same posterior, and arguments over fine adjustments to our
definition of ignorance are likely to imply only minor adjustments to
the posterior distribution.

LE EVENTS ANT) PREDICTIONS

formulating Equation (2.2) we have used the independence assumption
is known, observation of one outcome does not alter our opinions

the probability of other outcomes. In his paper on probability cited
deFinetti argues that independence is not a phenomenon about

we have very useful intuition. In place of independence, he sub-
the notion of exchangeability. A sequence of random events is said

be an exchangeable sequence if the probability assigned to particular
does not depend on the order of successes and failures, for

if the sequence SF has the same probability as the sequence FS.
The following remarkable theorem is due to deFinetti (1937):
T�EOREM 2.2 (INFINITE EXCHANGEABLE SEQUENCE). Any coherent �roba-
bility assignment to an infinite exchangeable sequence of binomial events is
equivalent to the (marginal) assignment derived from the following joint
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distribution

(a) Conditional on p, the events are drawn independently
r ($SF... FSIP)---pr( 1

(b) p has a (unique) (prior) distribution f �(p).
The marginal is, of course,

P (SSF... FS) = f0'pr (1 -P)n-rf,(p)dp �
Example. A proper proof of this theorem is beyond the scope of this
book, but an example can illustrate the ideas. Suppose coins are flipped in
such a way that the probability of a head on any flip is one-half.
Restricting o. urselves to the first two flips and assuming that the sequence
is exchangeable, P(HT)= p(TH), the class of proper probability assign-
ments is

' Event Probability Probability if independent
p2HH a

, p(1 -p)HT - -a2

' p(1 -p)TH - -a2

TT a (1 _p)2
1for � > a > 0. Theorem 2.2 asserts that there exists a distribution for p such

that the expected value of the third colunto is equal to the second. You
may verify that this is true for any distribution such that

Ep = � , Ep: = a
I

with Vp =
1Note that this cannot be satisfied for a < 3. But for a < �, we do not

have an infinite exchangeable sequence. Suppose a = 0, for example, then
the events HHT, HHH, TTH, and TTT have zero probability, and by the
exchangeability assumption, so must HTH, THH, HTT, THT, leaving no
event with positive probability. The value a -- 0 is; therefore, not allowable.
For two events, two moments of the distribution are determined. For n
events, n are determined; hence, the distribution in an infinite sequence is
unique.

Suppose now that we have a proper probability assignment on an
infinite sequence of exchangeable events. Given that we have observed r
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successes in the first n trials, the probability of another success is

P ( Sn+ ,IS, S2F3' " Fn ) = P ( SlS2F3' " FnSn+ , )
P(SiS2F3" . Fn)

1p r+l (1-p)n+l-r-lfl(P)d p
f01pr(1-p)n-rfl(P)d p

� where

51

f2(p) = PrO --p)n-rfl(p )
f01pr(1-p)n-rfl(P)d p

That is, our prediction of the next outcome is as if there were a true
proportion p and a prior distribution on p, f�(p), which we updatedaccording to Bayes' rule to f2(p) with independent sampling. In fact, boththe proportion p and the notion of independence are mathematical fictions
(or at least unnecessary accoutrements), since our subjective probabilitydistribution, in fact, applies (need only apply?) to the observable exchange-able sequence of successes and failures. Of course, once we. decide that weare observing an infinite exchangeable sequence, it is terribly convenient informulating our probability assignment to make use of the fictional p andto concentrate our efforts on formulating a prior distribution for p. Thissometimes tums back on itself, since in attempting to formulate this priordistribution we properly may ask ourselves questions about the implieddistribution on the observable events.

2.4 Inference About a Mean

have considered in the 'previous section how inferences may be madeabout p, the proportion of a given population that possess a given attri-bute. For attributes that are numerically defined another interesting hum-is/�, the population mean. For example, /t may be average income,average height, or average IQ. In this section wemay be made about a population mean. discuss how inferences

Theessentialprinciplesofsubjectivistinferencehavebeencompletelyestablished in the previous section. We first select a sampling distribution
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P (sample[/t) that describes our predictions about the sample if we knew
the population mean/t. For a particular sample this distribution is treated
as a function of /t and is called a likelihood .function. The posterior
distribution that describes opinions about/t after the sample is observed is
computed by multiplying the likelihood function times a �rior distribution
that is selected to summarize our knowledge of/t before we see the sample.

There is one new wrinkle in this section. Interpretation of the evidence
about the population mean /x depends on the population variance a 2.
When o 2 is not known with certainty, we make inferences jointly about
both/x and 02. That is, we have a two-parameter problem. Although the
principles of inference already described do not change, the two-parameter
problem is subtly different from the one-parameter problem.
SAMPLING DISTRIBUTIONS

Our first item of business is the construction of a sampling distribution.
This is a two-step problem involving, first, the selection of the sample
space and, second, the assignment of a probability distribution over that
space. In general, we may think of the attribute under study (height,
income, etc.) as necessarily lying between minus infimty and plus infinity.
If n members of the population are to be sampled, the set of all possible
samples is an n-dimensional space

sample space= ( (xpx2 ..... Xn) I -oo < x i < oo }.
The very special distribution defined on this space that will take up most

of our time is

f( x,,x2,... ,Xnl t�, 02) =f�v( X,I t�, 02) f N( X2I t�, 02) '" f N( Xnl t�, 02)
where f�v(-[/x,o 2) indicates a normal distribution with mean/� and variance
o 2. This distribution follows from two assumptions:

(1) The population is normal with mean/� and variance o 2.
(2) The sampling process yields independent random samples.

Both of these assumptions are worth discussing. Let us consider the first.
When can we know that the distribution of attributes in a population is
normal? Never. Nonetheless, the assumption is a useful starting point. A
wide variety of phenomena do have symmetric unimodal distributions that
are well approximated by bell-shaped normal curves. In other cases a
transformation of the attribute may be approximately normally distrib-
uted, for example, the logarithm of income.

Like the assumption of normality, the assumption of independent ran-
dom sampling can never be asserted to be certainly valid. Various forms ol
dependence and nonrandomness are likely to be inherent in any samplinl
process. In some cases departures from independent random sampling wil
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but when they are not, assumption (2) makes a useful starting
for the analysis. Again, we emphasize that it is a working hypothesis,
true proposition.
sampling distribution can be written as

f(x,,x2 .... ,Xnltt, 02) = f�,(x,l�,o:)
i�l

the sample mean

= fi (V�o)-'exp (xi-/�)2 (2.4)i = I 202

i

= (� o)-nexp
202

be rn=Y. xi/n , the exponent in (2.4) can be

2
i=1 i=l

= � (xi-m)2+2(m--tO � (xi--m)+n(m--I�) 2
i=1 i=l

(2.5)

=D2+n(m-i�) 2,

D2=Y.7=�(x�-m) 2, and where we made use of the result that
=0. Substituting (2.5) into (2.4) we obtain

f(xl ,02) = { (2�ro2)-(n-l)/2n-'/2e-D:/2��)
{(2�r�2/n) -'/2e-O'-m)2n/2�2 } (2.6)

----- Cf�v( I�lm, o2/n)
C stands for the first expression in braces, and where �e second

M braces iff�(�[m, o2/n). Note that: (1) the expression for C
not depend on �, and (2) the second expression coMd eq�lly well
b�n written as f�(m I �,o:/n) where � aM m are foreally inter-

We prefer to use the fore M (2.6) became of what comes next.
POSTERIOR ANALYSIS: KNOWN VARIANCE

have now specified a conditional probability distribution for the
given the population parameter/� with 02 assumed known. A joint

over all the uncertain events f (sample,/t) is the product of the
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distribution above and a marginal on It denoted by f(it). Symbolically,

f(sample, It) =f(samplel It)f(It)
where f(it) simply describes our opinions about the population
before any observations are made. From this joint distribution we
straightforwardly calculate the conditional distribution

f(sample, It)
f(it[sample) = f(sample)

f(sample[ It)f(It)
f(sample)

indicating opinions about It given any particular sample.
In this context, for obvious reasons, f(it) is called a prior distribution

and f(itlsample) is called a posterior distribution. Although f(samplel It)conditional probability distribution, once a particular sample is observed
is treated as a function of It and called a likelihood function denoted by

L(It;sample) �cf(samplel It).
Note that the posterior distribution is proportional to the Product of the
likelihood function and the prior distribution. The normalizing constant
P(sample) is often called a predictive p.d.f., because it summarizes our
opinions about the sample before the sample is observed; that is,
predicts the sample.

Making use of (2.6) and Bayes' rule, we may write
f 2( It) ---- k/N( Itl m'�Z/ n) f '( It)

where k is a proportionality constant and f: and f� are posterior and
p.d.f.'s.

Now consider the following two special cases:

C^SE 1. Suppose our information concerning It is extremely vague in
sense that we have no reason to believe that It lies in any interval
than any other interval of the same length. Thenf�(it) can be taken as
constant in (2.7), and we get

s2(it) =SN(itlm,�2/ni
since the constant in (2.7) must be selected so that f�_�f2(it)dit = 1
since f�oof N( Itl m,�2/n) dit = 1.Strictly speaking, a flat prior distribution is not a valid p.d.f. since
does not integrate to one. It therefore violates the principles used to
our opinions about uncertain events. Nonetheless, there are, as we
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valid prior p.d.f.'s so nearly flat that for all practical purposes (2.8) is
corresponding posterior distribution.

2. Suppose our prior is normal with mean m* and variance v*. Then
(2.7),

f2(it) = kfN(tt[m, o2/n)fN(tt[m*,v*) (2.9)
substituting the analytical forms for fN we get, after a lot of elemen-
algebra, the following result

THEOREM 2.3 (NoRMaL SAMPLES AND NORMAL ProORS). If the condi-
tional distribution of the vector x given the parameters It and 0 2 is normal
with mean vector E(x)--l�it, where 1� is a vector of n ones, and variance
matrix V(x)= o21,, and if It is normal with mean m* and variance v*,
then the distribution of It given x and 0 2 is normal with
moments

E ( it]x, o2)= (v*- ' + (o2/n)- ')- '( m.v.- ' +

V(itlx, o�)--(v*-'+(o2/n)-�) -'
where m is the sample mean, m=x'l�/ n.

m(o2/n) -') = m**
(2.10)

=v** (2.11)

These prior and posterior distributions deserve further comment. (1)
first that the posterior distribution is in the same family as the prior

; that is, both are normal. This is terribly convenient, since the
evidence can be straightforwardly interpreted in terms of the
in the (two) parameters. If the distribution were to be altered by

outcome, there would be rather serious difficulties in discussing
nature of the sample evidence. (2) The posterior mean m** is a

average of prior mean and sample mean with weights propor-
to v *-� and (n/o2), which may be called the precisions of the

sources. Note that for very diffuse priors, that is, for v* very
the posterior mean and variance are effectively m and o2/n, the
summaries. This is the situation described in case 1. (3) Suppose

our sample came in two bundles: the first n* observations yielded a
of m*, and the remaining n observations yielded a mean of m. If we
with a uniform prior, after we had seen only the first bundle, we

opinions about It that are normal with mean m* and variance
fn*. Thus we may think of our prior information with mean m* and

v* as being equivalent to a certain preliminary experiment with
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sample size n* = o2/v * and with mean m*. Note that if formulas
(2.11) are defined in terms of n*=o2/v * instead of v* they become

o 2
(n*+n)

m** = (n* + + nm),
that is, the posterior mean is a weighted average of prior mean m*
sample mean m with weights proportional to effective prior sample size n*
and sample size n. (4) The posterior variance v** does not depend on
sample mean m. A seemingly desirable property of a posterior
is that when the sample and prior distribution are in conflict with
information source dominating the other, then the posterior
should be fairly diffuse. We might also want it to be bimodal. This is
property of normal sampling with known variance and normal priors,
the posterior distribution is normal with a variance that depends on
size alone. We may view this as a shortcoming of the normality
tion. (5) The difference between v* and o: should be clearly
The former indicates the uncertainty about/�, and the latter indicates
extent to which a particular observation can wander from/�. There is
reason why these numbers should be the same, or even related.
Sufficiency of the Sample Mean. Given the prior distribution of /�,
posterior distribution of/� depends on the sample outcome (x� ..... Xn)
through the sample mean

i�l

We, therefore, say that for prior-to-posterior analysis it is sufficient to
only the sample mean. This strongly depends on the fact that the sample
known to have been drawn from a normal population with
of 02 and unknown mean/�.

SUMMARIZATION AND INTERPRETATION

Again, it is useful to emphasize the difference between summarizing
interpreting data evidence. We have assumed a sampling
process that generates the data--that admits the sufficient statistic
Y�xi/n. That is, the evidence about /� (when o 2 and n are
completely summarized in the single number rn, and, for example, we
not remember the particular value of the first observation x� if
remember rn. The way that we interpret this summarized evidence
on our prior information about/�.

Inference About a Mean

To illustrate this, let us form prior distributions for p when p is
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Average age in years of Harvard undergraduates
Average age in years of Harvard faculty members
Average height in feet of American males
Average number of cars per day in thousands in Cambridge during
1978.

have chosen normal prior distributions for these four averages with
and variances indicated in Table 2.2. The content of this table is

We think Harvard undergraduates are most likely to have an average
age of 20 years. We are willing to bet at roughly 20: l odds that the
average age is between 19 and 21.

members tend to be older, say, around 50, but most likely
have an average age between 40 and 60.
The average height of American males is likely to be between 5 and 7
feet.

We have very little information about the average number of cars in
Cambridge but would guess that it is between 0 and 100,000.

now we observe a sample with mean m--20 and variance
/n =5. The posterior parameters and posterior 95% intervals for each of
four phenomena are also indicated in Table 2.2. The content of these

Table 2.2

Evidence From A Normal Sample, rn = 20, o2/n = 5
Prior Posterior

Phenomenon m* v* 95% Interval m** v** 95% Interval a
� of Harvard

e of Harvard
members

of cars
in Cambridge

20 .25 [19,211 20 .24 [19.1, 20.91

50 25 [40, 601 25 4.2 [21, 291

6 .25 [5, 71 6.7 .24 [5.8, 7.61

50 625 [0,1001 �20 �5. [15.5, 24.5]
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results is

a. Our opinion about the average age of Harvard undergraduates is
supported, though weakly, by the evidence and we narrow our 95%
interval to [19.1, 20.9].

b. Observing a sample of Harvard faculty members with average age 20 is
astounding. Naive application of the formulas leads to a 95% posterior
interval for average age of [21, 29]. It may be more meaningful to
question the nature of the process that generated the data.

c. Observing males with average height of 20 feet is even more astound-
ing. Again, we might want to examine the rulers that did the measur-
ing. If we are satisfied with both the sampling process and our prior,
we will have a 95% posterior internal of [5.8, 7.6], slightly taller than
our prior interval.

d. We began with essentially no information about the number of cars in
Cambridge. We now have much better information with our 95%
interval reduced from [0,100] to [15.5, 24.5].

We have seen, therefore, that although in all cases the summary of the
data is identical, the interpretation of the evidence depends on prior
information about the process. We have also seen that naive application of
Bayes' rule can lead to some silly results, especially when we have incor-
rectly described the sampling process. Note also the fact that although the
sample supports the prior in Case (a) and contradicts it in Case (c), the
posterior variance is the same for both. This is the property of normal
sampling with known o 2 and normal priors that makes us question the
wisdom of the normal priors. An apparently desirable property of a
learning model is that contradictory evidence induces confusion.
NORMAL SAMPLING WITH UNKNOWN MEAN AND UNKNOWN vARIANCE
When 02 is unknown the problem of inference is subtly altered. Beginning
with a diffuse prior for ta with 02 known, a posterior 95% "credible"
interval is given approximately by m-2o/X/� < I� < m+ 2o/X/�, where
m is the sample mean and n is the sample size. The center of this interval rn
does not depend on 02 , but the width of it does., The smaller is 02 , the
shorter is our credible interval and consequently the more precise is our
opinion about ta. In this sense we may say that m represents the informa-tion we have about /�, and that o2/n represents the quality of that
information.

With 02 unknown, the quality of the information afforded by the sample
is necessarily uncertain. As we shall see, the sample contains information
about 02 we want to use to help "estimate" the quality of the sample

information. We also want to use any available prior information. The
interesting feature of this two-parameter problem is that the interpretation
of the sample evidence about ta depends on uncertain prior information
about 02 . To the extent that the prior for 02 is difficult to specify, the
interpretation of the evidence about ta is ambiguous.

For convenience alone, we now would like to replace the process
variance 02 with a new parameter h = 1/o 2, called the process precision.
We express the prior, likelihood, and posterior in terms of h, keeping in
mind that distributions in terms of 02 may be easily calculated by a
suitable transformation of variables. The likelihood then becomes (from
2.6)

2fid e- 2hn(,, �). (2.12)L( l�, h; sample)= kh "/2e -' : '
The prior distribution which is most convenient for this likelihood

function is a normal-gamma distribution

/,( h) .e, (hn*)- '2,
indicating that conditional on the process precision h, /� has a normal
distribution with mean m* and precision hn*

f�v(�lm*,(hn*)-') 1 -' _-� � _ ,�= (hn*)2e 2h. O, ,.)

and h has a gamma distribution

f�(hls '2, �,*) = e - ��*s*2nh��*-'.

Relevant properties of this gamma distribution are discussed in Appendix
2. Here it may be observed that the marginal on/� is a Student density

/(/0 TMfo��f�v( glm*,(hn*)-')S�(h[s*a,�,*)dh
[ S '2

with mean and variance

S '2
E(/�)--m*and V(/�)= n* t�*-2'

We may rewrite the likelihood function as

ke- �a� h�e- �n�(,,�) h�L(/�,h;sample)= , : i i : ,



60 AN INTRODUCTION TO BAYE31AI� 11�r�v,�t:�n�

where

vs 2= D:= � (x,- m):.
The posterior distribution, as us�l, is fo�ed by no�al�ng the

uct of the likelihood function and the prior distribution
f2(�,h) = kL( �,h; sample)f l(�,h)

� e- 2hvs h2Ve- 2hn(m- �) h2

hSe-

where irrelevant constants have been subsumed into k. �is �y
rewritten as

f2(�,h)�(hn)Sexp[_�hn**(�_m**)�]exp[ ' � , � .. �
where

n**=n*4-n

m**=(n. + n)-l(n*m* + nm) (2.13)

p**S**2m p*S'24- n-m*2 + pS 2 4- nm 2 -- n**m *.2.

By inspection, (2.12) is a normal-gamma distribution. This establishes the
following result.

THEOREM 2.4 (NORMAL SAMPLES AND NORMAL-GAMMA PRIORS).
the conditional distribution of the vector x given t� and 0 2 is normal
moments E(x] p, o2) = lng and V(x I/�,O2)= O 2I, and if (p,o 2) has a
real-gamma distribution with parameters (m*,n*,s*2, v*), then (p,o 2)
given x has a normal-gamma distribution with parameters (2.13).
The first two comments made about sampling with known

apply here as well. The prior and posterior distributions are in the same
four-parameter family of distributions. The posterjot mean is a
average of prior and sample means. However, the posterior variance
depends on the sample and prior means, since

F**S *'2 -� p*S '24- FS 24- n*m '2 4- nm 2 -- n **m**2
(m-- m*)2n*n= p*S'24- pS24- ,

(n*+n)
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the greater the discrepancy between m and m*, the larger is s *'2, and
the flatter is the distribution on/�. Thus conflict between

prior and the sample may be so great that the posterior variance of/�
the prior variance. Note also that the variance of/� depends on the

02 .

2.5 Noninformative Priors

a Bayesian. compute a posterior distribution for a parameter if he has
xior distribution? Decidedly not; Bayes' rule requires a prior distribu-
:Well, then, is there a prior distribution that represents ignorance, and
you use Bayesian inference if you are ignorant? Like the issue of

sin, this is a question that remains unresolved, that attracts a fair
of theological interest, but that seems rather remote from the
of the man on the street.

argument begins chronologically with Bayes' An Essay Towards
a Problem in the Doctrine of Chances, which suggests by the
of insufficient reason that ignorance is represented by a probabil-

function that assigns equal probability to all events. Of course, there
be no such probability function, since if mutually exclusive events A
B are assigned equal probability, the event A union B is implicitly

twice the probability. Or if a continuous random variable 0 is
a uniform distribution, the variable � = 0- l has density function

to �-2. In a situation of "real ignorance" there is insufficient
to select one event space rather than another, or one parameteriza-

than another, and the principle of insufficient reason is appar-
insufficient to determine probabilities. 2

(1961) is the modern-day proponent of the Bayes-LaPlace
of insufficient reason. He suggests that for a parameter/t defined

-oo to o% one should use the (improper) uniform prior distribution
f ( g ) dg oc dp,

seems to me to be implying that/� almost certainly is either enor-
large positive or enormously large negative, since the ratio of the

outside any finite interval to the mass inside any finite interval is �
can get away with making such a ridiculous statement

since the data will imply even more strongly that the parameter
not enormous.

and B equally tall, merely because there is insufficient reason to regard
taller than the other?
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This last observation suggests a philosophically sound method of
puting a diffuse prior distribution. Assuming that a particular
is about to be observed, we can find a prior distribution that will have little
impact on the posterior distribution. It is important to understand that this
is not a prior intended to represent ignorance. It is defined only in the
context of a particular experiment. It is a prior that represents
that will be dominated by the sample information. For example,
to formula (2.10) that describes the parameters of the posterior
for/�, observe that as the sample size increases and the sample i
dominates the prior information, the parameters converge to n and
if we set v* to zero and use a uniform prior for/�, the posterior and prior
will bare this same relationship to each other regardless of the sample
Thus a uniform distribution is a prior that is dominated by any
from a normal population?

In practice, the sample may dominate the prior information and
posterior distribution may be inconsequentially different from a posterior
distribution corresponding to an improper noninformative prior. A prior
density that is relatively uniform where the likelihood function attains its
maximum is likely to imply such a posterior. This is discussed by Savage
(1962) under the title, "stable estimation." But for any proper prior, there
are samples that do not generate information that dominates the prior, and
it is impossible to know in advance of observation whether a diffuse prior
is an adequate approximation to the proper prior that is truly
tive of your opinions.

Of course, there are difficulties in precisely defining a noninformative
prior. But much more important is the fact that the use of '
noninformative priors can sometimes lead to very undesirable
many of which are discussed by Lindley (1971). In the
problem of Chapter 4, noninformative priors imply that all
with more than the minimal number of parameters should certainly
rejected. A noninformative prior can lead to inadmissible decision rules,
discussed in Chapter 5. Quite pragmatically, however, since we have
to all this trouble to develop a method that formally incorporates subjec-

3Another way of defining priors in relation to anticipated sample information is due
Jeffreys. He suggests that ff a researcher is ignorant about a parameter 0, then his opinions
about 0 given some evidence x should be the same whether he regards 0 to be the
or some one-to-one differentiable transformation of it, g(O). A prior that has this
property is

f( o ),�l- E ( a21ogf(xlO )/ao 2 )1 '/2
where the expectation is with respect to the densityf(xl#). In words, the
to the square root of Fisher's information measure. For a proof and discussion see
(1971) where minimal information priors are also discussed.
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prior information, it seems a shame in the end to use priors that are
to represent ignorance. Is the Bayesian logic to be used only to

the likelihood function?

One reason statisticians have spent so much time looking for priors to
ignorance is that in practice it is extremely difficult actually to

a prior. The word "ignorance" is suggestive of a prior that is not
relatively uninformed but also difficult to determine with adequate

It may make sense in that case to let the data help in measuring
he prior by determining a class of dominated priors, all of which imply

the same posterior distribution as does the diffuse improper
One need only ask himself if this particular sample outcome seems

If the answer is no, one might as well use the posterior
implied by the diffuse prior, since careful measurement of the

lead to only minor adjustment of the posterior.



CHAPTER

THE LINEAR-REGRESSION
MODEL

3.1 ClasMcul Inference with the Linear-Regression Model'..
A Review

3.2 Pooling Two Samples
33 Bayesian Inference with the Linear-Regression Model
3A Multivariate Normal Sampling

This chapter reviews theories of inference with the
linear-regression model. The first section
the standard theorems of classical inference. The
ond section deals with pooling information from
samples. The third section describes Bayesian
of information from one sample with prior
And the fourth section describes Bayesian
about the mean vector and variance-covariance
of a multivariate normal distribution.

For more complete introductory material the
is referred % classical treatments by Johnston
Theil (1971), and Rao (1965), and to Bayesian
ments by Lindley (1965), Zellner (1971), and Box
Tiao (1973).

3.1 Classical Inference with the
Linear-Regression Model: A Review

Theoretical descriptions often amount to nothing
than the statement that some hypothetical variable
might depend on some vector of hypothetical
X- Empirical workers daringly translate this
ment about observable variables such as

where Y� is the observable counterpart of 7,
--(X�,,X2t .... ,X�,,) is the observable counterpart

indexes a set of T observations on each variable t--
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:., T, and where the unobservables fi�, fi2 ..... fik and u t represent features
precise relationship between � and X that are not disclosed by the
The functional dependence of Yt on Xt is thereby assumed to be

with an unknown parameter vector [3'=(fi�,fi2,...,fik) , and the
; is asserted to be incomplete, u t �0, or at least the linear approxima-

to it is incomplete.
model may be written in matrix form as

V=Xfi+u (3.1)
Y is a T x 1 vector of observables, X is a T x k matrix of observ-
e8 is a k x 1 vector of unobservables, and u is a T x 1 vector of

Traditionally, fi is called a parameter vector and u a
or error vector. By definition, u is all of those things that
excluding X�, and (3.1) is merely a tautological definition of

, u--Y-Xfi. To be more explicit, write Y as
Y=Xfi+Z�

Z� is the part of Y left out of Equation (3.1), with Z a (Tx m)
of variables and � an (m x 1) vector of fixed effects, and where m

not be finite.

content is introduced into the analysis by assigning to
a frequency distribution, say, multivariate normal with mean zero

variance matrix �. It is thereby asserted that if the matrix X were held
and the matrix Z allowed to vary within the confines of some

well-defined experimental conditions, the vector Z� would
lear to have been drawn from a particular normal distribution. More

it is assumed that there is no tendency for any of the T residual
to exceed or fall short of zero on the average, E(Z�1X)=0. Or in the

familiar parlance, the left-out effects are assumed to be uncorrelated
included effects.

uirement E (Z�1X) =0 is a crucial and quite unlikely assumption.
a trivial example, suppose in a sample of individuals the dependent
Y measures sunburn susceptibility and the explanatory variable X
hair color. The correlation between these two variables may lead

to conclude that red hair causes sunburn, when in fact,
inheritance (Z) determines both sunburn susceptibility and hair

most foolish errors of inference derive from this kind of model

; yet books about statistical inference hardly mention it. Of
as discussed in Chapter 1, the choice of specification in this sense is

within the purview of the theory of statistical inference, which almost
tion takes the model as well defined. This enormously restricts the

of statistical theory in nonexperimental research. It is sensible
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sometimes during a data'analysis to take the model as well specified; but it
is senseless always to do so. Any inference will be thoroughly discredited
by the identification of particular left-out variables. In devoting a whole
chapter to post-data model construction, this book places relatively great
emphasis on this topic. Even here, the heavy allocation of space to
problems that presume the definition of the underlying causal model
reflects what can be said about the various topics, not what should be said.
More is said of this in Chapter 9, but until then the specification assump-
tion E (u]X)= 0 should be taken as given.
FINDIN(} A COMPLETE THEORY

An initial question that may be asked of the data is whether the theory is,
in fact, complete, u--0. In particular, is there a value of 18, say, b, that
makes the theory appear to be complete, Y-Xb---0? Whenever the num-
ber of observations T exceeds the number of parameters k, such a value of
b is quite unlikely to exist. We can, however, find a value that makes the
theory appear as complete as possible by making the residual vector
e--Y-Xb as small as possible. One (arbitrary) measure of smallness is the
square of the length of e,e'e. Minimizing e'e by setting its derivatives to
zero implies the equations

0 -- �-�(Y - Xfi )'(Y - Xfi ) = - 2X'Y + 2X'Xfi.
Solving this with the assumption that X'X is invertible yields the least
squares value of 18

b --- (X'X) - lx'v. (3.2)

THE MULTIPLE CORRELATION COEFFICIENT

Although e'e is one measure of the completeness of the theory, it is more
�common to use an R e defined by

Re=I�t (yt_�)e_e,e]/�t (yt-7)e , (3.3,
where 7= Y� Yt/T. The R e can be shown to lie between zero and one. A
model with only a constant term Yt--fii + ut cari be written in vector
notation as Y=lTfil+u, Awhere IT is a TX 1 vector of ones. The least-. , -i , _ 7isthe of thesquares estimate of fii �s fii =(ITIT) ITY-- 7, where mean
observations Yt, t =� 1,..., T. The corresponding residual sum of squares is
(y_ lr�l),(y - lr�l)= y�(yt_ �)e. Assuming that the first column of_X is a
vector of ones, it is always possible to make e'e equal to Y�(Yt-
setting 18 '= (Y, 0, 0 .... ,0). Since we are choosing b to make e'e as small as
possible, it must be true that 0 < e�e < Y�(Yt - �)e and thus 0 < R e < 1. An
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R 2 of one means that the model is possibly complete, e'e=0, whereas an
R e of zero means that the model is totally incapable of explaining the

in the observed data.

ESTIMATING 18
least squares vector b has properties other than making the theory

as complete as possible. A frequency distribution for u with
and Vu= oelr implies a frequency distribution for b. (I r is the

x T identity matrix. Or is a T x 1 vector of zeros.) Since b is a linear
function of u,

b = (X'X)- 'X'(X18 + u) = 18 + (X'X)-iX'u,
the moments of b are straightforwardly calculated as

Eb= 18 + (X'X)- iX'E (u) = 18,
Vb = (X'X)- iX' v (u)X(X'X)-I = o2 (X'X) -i

is important to understand that these moments describe the behavior of
b in repeated samples. This is, if the "experiment" is repeated over and

with fixed X matrix, the average value of b would be 18. In that sense
a particular value of b is taken as indicating where 18 lies. These

are summarized as follows:

THEOREM 3.1 (MOMENTS OF LEAST-SQUARES ESTIMATOR). Assuming
X'X is invertible, Eu=0 r and V(u)= oelr, the least-squares estimator of
18 is b= (X'X)-iX'Y, with mean 18 and variance oe(X'X) - i.

A desirable feature of the estimator b from the standpoint of calculation
it is a linear function of Y. It is also an unbiased estimator of 18,

It is of interest to deter,urine if some other unbiased linear
might be better. Suppose we wished to estimate the scalar
0=4/'[3 where q� is a k-dimensional vector of constants. The

estimator of 0 is taken to be q/b. An alternative linear
is

tJ=A'Y+a

a vector of constants, and a is a scalar constant. The estimator
only if

is, only if
�'18 = EO, for all 18,

q/18= A'EY + a = A'X18+ a.
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For this to be true for all/{ we must have
a =0, �' =A'X.

The variance of the estimator 0 is
VO=A' V(Y)A = o2A'A.

Minimization of the variance of {J subject to the unbiasedness restriction is
a simple constrained maximization problem. With A as the vector of k
Lagrange multipliers, this requires the derivatives of the function o2A'A+
2X'(q�-X'A) to be set to zero; that is,

0 = � = 2o2A ' - 2A'X'
(3.4)

0= �-� =q� -AX
Postmultiplying the first equation by X we obtain

o2A'X -- A'X'X ---- 0

which implies

X' = o2 A'X(X'X)- I = o2�,(X,X)-,.
Substituting this last expression into (3.4) yields

'0 = 2o�A ' - 2o�/ (X'X)- 1X'
or

A' -_ 4/(X'X) - IX '.
Thus the minimum variance linear unbiased estimator of q//{ is

O--A'Y = q/(X'X)-iX'Y,
which is, of course, just the least-squares estimator, and we have estab-
lished the following result.

THEOREM 3.2 (GAUSS-MARKOV). Assuming X'X is invertible, E(u)=0
and V(u) = o2I with 02 finite, the least-squares estimator �b'b of the linear
combination of coefficients �V /{ has minimum variance among the class of
unbiased linear estimators.

If u has a normal distribution, the least-squares estimator b which is a
linear function of u is also normally distributed. Furthermore, b is 'the
maximum likelihood estimator of/{. The distribution of Y is

f(Y,X,/{,o2)- - (2�ro:) - r/2 exp[- �o2 (Y-X/{ )'(Y-X/{)]
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Using the fact that

(Y - X/{ )'(Y- X/{ ) -- (Y- Xb + Xb- X/{ )'(Y - Xb + Xb- X/{ )
--(Y-Xb)'(Y-Xb) + (/{-b)'X'X(/{-b) (3.5)

since X'(Y-Xb)= 0, we may write the likelihood function as

(/{ - b)'X'X(/{ - b) ]�c(02)-r/:exp[ - �o2(Y- Xb)'(Y- Xb) ]exp[ - 2o2
which attains its maximum at

/{=b, o2__ (Y- Xb)'(Y-Xb)
T

Summarizing these results in a theorem:

(3.6)

THEOREM 3.3 (MAXIMUM LIKELIHOOD ESTIMATOR). Assuming that
X'X is invertible and that u is normally distributed with mean vector 0 T
and variance matrix 02IT, the least-squares estimator b is the maximum
likelihood estimator and is normally distributed with mean/{ and varianceo2(X'X)- L

ESTIMATING 0 2

The maximum likelihood estimator of 0 2 is 0 2= (Y- Xb)'(Y- Xb)/T. With
I-X(X'X)-iX ' this estimator can be written as

since M,,X =0. The expected value of 62 is E (62)= E (u'M,,u/T)
/ T) = E (tr[M,:uu']/T) -- 02trM,: / r = 02(T- tr [X(X'X) * iX')]tr[(X'X)-iX'X])/T= 02(r - k)/T. Therefore 62 is biased esti-

E (62) =p 02. The unbiased estimator is .

s: _= (V - Xb)'(V - Xb)
T-k

REGIONS AND HYPOTHESIS TESTS

construction of confidence intervals and hypothesis tests makes use of
following result.

LEMMA. If the p X 1 vector z is normally distributed with mean E (z) and
variance V(z), then the quantity [z-Ez]'[V(z)]-l[z - Ez] is the sum of
squares oft v indeivendent, standard, normal, random variables, which by
definition has a chi-square distribution on iv degrees of freedom.
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The proof of this lemma follows straightforwardly from the observation
that there exists a matrix C such that CV(z)C' is the identity matrix, and
therefore, Cz-CE(z) has mean vector zero and an identity variance
matrix. Thus [Cz- CE(z)]'[Cz-CE(z)] =[z- E(z)]'C'CIz- E(z)]=[z-
E(z)][ g-l(z)][z - E(z)] is the sum of squares of p independent standard
normal random variables.

Partitioning the matrices conformably,
b' = (b;,b))

(Xtx)_l=[[(Xtx)-l],,, -1 t -1 '[(xx) ]j, [(xx)].
and making use of the fact that' marginal distributions of multivariate
normal random variables are themselves normal, we have the following
consequence of this lemma.

THEOREM 3.4 (THE CHI-SQUARE TEST STATISTIC). The scalar random
variable

[bi_[�l]t[o2(Xtx)-l];ll[bl-[�l]=X 2 (3.6)
has a chi-square distribution with p degrees of freedom, where p is the
dimension of b�.

Thus if X2�(p) is the upper a percentage point of the chi-square distribu-
tion withp degrees of freedom, then the ellipsoid l

[bl_Oi]t[ o2(XtX)-l]�ll[bl_Ol] < X2a(p) (3.7)
is a 1 - a% confidence region for fl. Similarly, an a-level test of the point
null hypothesis 18�- 187 versus the alternative fi�-�fi?, would reject the null;
hypothesis if 18�--fi}' were outside this region.

If 0 2 is unknown, these statements, although still.true, lose their
ness, since the regions described are functions of 0 2. It seems natural to use
some estimate in place of the unknown 0 2 . Remarkably enough, for
normal linear regression model this is approximately correct. To show that.
we need the following result.

;Actually, this is an ellipsoidal cylinder with Ilj unconstrained.
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THEOREM 3.5. The quantity (Y - Xb)' (Y - Xb) / o2 = ( T- k )s2 / o 2 has a
chi-square distribution with T- k degrees of freedom and is independent of

The residual sum of squares O r- Xb)'O r- Xb) can be written as Y'M,,Y
M,, = IT--X(X'X)-IX'. Making use of M,,X =0, the residual sum of

uares can also be written

(Y-Xb)'(Y- Xb) = u'M,�u.
matrix M,� is shown in Appendix 1 to have k characteristic

equal to zero and the remaining T- k equal to one. Thus u'M,,u can
written as u'C'ACu=u*'Au* where u* is normally distributed with

mean zero and variance matrix o21r, and where A is a diagonal matrix
with k zero diagonal elements and T-k elements equal to one. We have
thus written (Y-Xb)'(Y-Xb)/o 2 as the sum of squares of T-k indepen-

standard, normal, random variables, which by definition is distrib-
with T-k degrees of freedom.

The independence of the two random variables in the theorem follows
the independence of Y- Xb = M,�u and (fi - b) = (X'X)- lX'u. Given

normality assumption, these quantities may be shown to be indepen-
computing their covariance E [M,�u][(X'X)- IX'u]' = o2M,�X(X'X)- l

=0.

If the random variables X� and X22 are independent and have
distributions with �1 and �2 degrees of freedom, respectively,

(X21/Pl)
F = --

(x/p2)

an F-distribution with degrees of freedom parameters Pl and P2-

THEOREM 3.6 (THE F-TEST STATISTIC).
and that u is normally distributed with
matrix o2Ir, the quantity

Assuming that X!X is invertible
mean vector 0 r and variance

[bl--�I]t[(Xtx)-l]�iI[bi--�i]
ps 2 =F (3.8)

has an F distribution with p and T- k degrees of freedom, where p is the
dimension of b�.
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This is a direct consequence of Theorems 3.4 and 3.5 and should be
compared with Theorem 3.4, which applies when 02 is known. The state-
ment implies 1 -a% confidence ellipsoids of the form

[b,-i$,]'[(X'X)-' ]�' [b,-i$,] < ps2F�(p,r-k)
where � is the dimension of Ih� � < k, and F�(�, T- k) is the upper a
percentage point of an F distribution with p and T- k degrees of freedorr[
In the special case when �= 1, F 1/2 is said to have a Student's t distribu-
tion, and this ellipsoid becomes a confidence interval for a particular
coefficient

Ibi - �il < $[ (XtX) -I ]i� lta( T- k).
Furthermore, an a-level test of the hypothesis iB I -- iB} ) versus the alternative
iB�&iB� would reject the hypothesis-if 18; ) were not within the confidence
region.

The quadratic form (3.3) can be written in another informative way. We
may partition X'X as above,

x;x, x;xj ]x'x= x,x, x;xj ]
and, by the partitioned inverse rule, we have

[ (XtX) -1] -1 = X;X/-- X;Xj (X�Xj) -lx;x,.11

Let the minimum error sum of squares be
ESS = (� - Xb)'(� - Xb),

and the constrained minimum error sum of squares with constraint
be

ESS O -- (Y - X,iB� - Xjb;)'(Y - X,iB� - Xjb; )
with b;=(X)Xj)-IX)(Y-X�iB�). By some tedious manipulations we may
show that

(iB;)_ b,),[ (X,X)-' ] 3' .([J?-b,)=ESSo,- ESS (3.9)
and therefore the numerator of the F statistic is just the increase in the
error sum of squares implied by the restriction iB I =

r= ESSo- ESS (3.10)
ps 2

Furthermore, using the definition of R 2 given by Equation (3.3) and letting
R 2 correspond to the unconstrained regression and Rg correspond to the
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constrained regression, the F statistic may also be written as

F=( R2-Rg�_--�' )(�--�) (3.ll)
CONSTRAINED ESTIMATION

The consequences of constraints other than iB l = iB] ) are easy to compute.
Minimization of the sum of squares Or-XlB)'Or-XlB) subject to restric-
tion RiB=r is a Lagrangian problem requiring the derivatives of the
following expression to be set to zero.

(Y - Xfi )'(Y - Xfi ) - 2X'(R/I - r).
That is

R0-r=0 (3.12)
X'(Y-X0)-R'A=0. (3.13)

Premultiplying (3.13) by R(X'X)-l yields

R(X'X) - X'Y - R(X'X) - ' (X'X) 0 = R(X'X) - IR'X
and using (3.12)

which can be reinserted into (3.13) to yield, finally, the constrained
least-squares value

t� (R, r) = (X'X) - 'X'Y - (X'X) -'R'(R(X'X) - 'R') - '(Rb - r)
=b- (X'X)-'R'(R(X'X)-'R')-'(Rb_r). (3.14)

Using this value of 1� in the sum of squares expression we have
)'(Y - XIJ ) = (Y - Xb)'(Y - Xb) + (Rb - r)'(R(X'X)-'R') -'(Rb - r)

where the last term in the last line is, therefore, the increase in the error
of squares implied by the restriction R/l=r. By inspection, this

the validity of Equation (3.9) with r=/1� and R = (le0). Corn-rotation of the mean and variance of i0 is left as an exercise.
OF THE CONSTANT TERM

regression function ordinarily has a constant as one of the "variables."
y, one of the columns of the X matrix is a vector of ones.

everything that has been said still applies, it is informative to
the constant somewhat differently.
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Let us remove from the X matrix the vector of ones and write the
,'gression as

Y---XlB + 1Ta +O

'here 1 T is a vector of ones and a is the scalar constant. The error sum of
tuares may be minimized with respect to a as

0 = a-� (Y- XlB - 1ra)'(Y-XlB - 1
= -21�(Y-XlB)- 21�lra

1ms as a function of iB, the least-squares estimate of a is
a ( lB ) = �;(Y - XlB )0;�T)- '.

nserting this value into the error sum of squares yields
(y_ XIB_ 1Ti�[Y-XIB ] T -I )'(Y- XlB- 1TI�[Y- XlB ]

--_ (My- MXlB)'(MY- MXlB )
vhere M----IT--1T(1T1T) I T. The least-squares estimate of lB can, there-
ore, be computed by transforming the observations (Y, X) by the matrix M
Lnd minimizing the transformed error sum of squares. It is straightforward
o show that this yields

b -- (X'M'MX) - l (X'M'MY).
But now notice the effect of the matrix M on a vector Y:

My=y-�T0�Y)T -I =Y--�T�
�here � is the average value of the observed variables. In words, the
matrix M subtracts out the mean of a variable, and the least-squares
�stimate of the slope coefficients can be computed by first subtracting the
means from all the variables and then computing the least-squares value in
the usual way.

Parenthetically, if the regression process is written Y--XlB+Z�+u
where X and Z are observable matrices, the least-squares estimate of lB is
b = (X'M'zM:X)-IX'MzM� Y = (X'MzX)-IX'M,Y where M: -- I T -
Z(Z'Z)-IZ'. The residual vector formed from the regression of Y on Z is
y_Z(Z'Z)-IZ'y=M,Y and the residual matrix formed from the regres-
sion of each of the columns of X on Z is X-Z(Z'Z)-IZ'X--M, X. The
least-squares estimate b is then just the regression of the residual vector
MzY on the residual matrix M,X.
THE ^DrOSTED R: ^ND p, EORESS�ON SELECT�ON STP. ATE�ES

The R: given by (3.3) has been suggested as a measure of the "complete-
ness" of a theory. For that function it has the defect that if there are as
many independent variables as there are observations, the R 2 takes on the
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value one. Moreover, as variables are added to the equation, the R �
necessarily increases. This creates an unwarranted preference for models
with many explanatory variables, and some adjustment for the number of
explanatory variables seems desirable. An analogous problem occurs when
estimating o�. The maximum likelihood estimator of o � is biased upward,
and the unbiased estimator, s �= ESS/(T-k), is usually preferred. � If we
think of 1 - R: as estimating oz/oy Z it is by the same logic natural to define
the adjusted R � by the equation

_� s � �SS/(T-�) (3.16)
s�2 Z(yt-)7)�/r-1 '

The relationship between R � and/� is then

1_/�= (T-l) (3a7)
No book on specification searches would be complete without the

following two results. The first, due to Theil (19_71, p. 543), has been used
to justify search strategies that maximize the R �. The second defines a
simple algorithm for increasing the �.

THEOREM 3.7 (ExPECTED /�2). Given two normal regression models,
one of which is assumed to be true, the expected value of s 2 for the true
model is less than or equal to the expected value of s 2 for the other model.

To prove this, suppose that Y = XlB + u is the true model and Y--Zy + u
is the alternative, where X and Z are T x k� and T x kz matrices. Then

s� = ( T- k�)- IY'M�Y, sf = ( T- kz) - IY'M,Y
where

M� = I - X(X'X)- iX' and M: = I - Z(Z'Z) -
The expected error sum of squares for the false model is

E (Y'M�Y I lB ) = E ((XlB + u)'M�(XlB + u)[ lB )
= lB 'X'M:XIB + E (u'M, ul D ) -- D'X'M, XIB + ( T- k:)o 2
> ( r-

Thus E (Y'M:YI lB)/(r- k0 > o 2-- E (Y'MYI lB)/(r- kO.
Proof of the next result is left to the reader.

THEOREM 3.8 (INCREASI__NG THE /�2). Omitting a variable from an
equation will increase the R 2 if and only if the square of the t-statistic (the
F) for that coefficient is less than one.

:It is also preferred by this Bayesian, but not of course because of the bias. See section 7. !.
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3.2 Pooling Two Samples

ayesJan inference is different from classical inference in that it makes use
F information that is not contained in the sample under study. Bayesian
leory is concerned with the optimal pooling of sample information with
onsample information. Classical theory can also be used to pool informa-
on from more than one source, provided the information is generated by
�periments that admit a frequency interpretation.
Suppose, in particular, that a given data set was arbitrarily split into two

arts. Then the regression equation could be written as

�here the * indicates the first subset of the data. The usual least-squares
stimate of lB would be

b**=(I�*l'[X*l) -' X* ' Y* ]---(X*'X* +X'X)-'(X*'Y* +X'Y)
= (x*'x* + x'x) - '(X*'X*b* + X'Xb) (3.18)

�here b*--(X*'X*)-�X*Y* and b---(X'X)-�X'Y. In words, the least-squares
stimate of IB is a matrix-weighted average of the pair of estimates
omputed from each of two subsets of the data, b* and b.
Another possibility is that the variance of the residuals in the first part

�f the data set is different from the variance in the second. Indicating these
ariances by o*: and 02, respectively, the model may be transformed to
aake the residual covariance matrix equal the identity matrix by dividing
� and X by a and Y* and X* by a*. The resulting estimate of lB is

b** = (o*-2X*'X* + o-:X'X)-'(o*-2X*'X*b* + o -2X'Xb). (3.19)
The notation just used may seem confusing, but it is chosen to anticipate

he Bayesian analysis of the next section, in which personal prior opinions
nd up being equivalent to the preliminary observations Y*,X*. The prior
nformation is pooled with the current information exactly in accordance
vith formula (3.19). 3

The variances o 2 and 0 *2 may also be estimated. The likelihood function
mplied by the model is

L( lB,o2,o*2; Y, Y*,X,X* )oz(o2)- T/2expI - �-oe(Y- XlB )'(Y- XlB ) 1
, 1.(0.2)-�2 exp[- 2o--�

3A schizophrenic attitude toward probabilities allows Theft and Goldberger (1961) to
atroduce prior information into classical inference in this way. An earlier paper of the same
,enre is Durbin (1953).
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The reader may verify that maximizing this likelihood function implies
choosing lB in accord with Equation (3.19) and choosing the variances as

= (Y - Xb**)'(Y - Xb**)T (3.:0)

6.2_ - (Y* - X*b**)'(Y* - X'b**)T* (3.21)

3.3 Bayesian Inference with the Linear-Regression Model
Bayesian inference with the linear-regression model is now introduced and
shown to be formally equivalent to the pooling problem just discussed.
Bayes' rule applied to the uncertain parameters (lB,o 2) is

f(�,Xl lB, o2)f( lB,o 2)f(IB,o2IY, X) ---
f(V,X) '

where Y and X are observable data. The linear-regression model Y = XlB +
u, where u is normally distributed with mean 0 and variance o2I, implies a
conditional distribution for Y: fN(YlXlB, o21), indicating that Y is normally
distributed with mean XlB and variance o2I. If, furthermore, X is distrib-
uted independently of lB and o 2, the posterior distribution can be written as

f( lB, o2]Y, X) = f�' (Y[XIB, o2I)f(X)f( lB,o 2)
/(YlX)f(x)

= f/v (YIXIB, o2I)f( lB, 0 2)
f(YlX)

Before discussing the choice of prior, f( lB, o2), a few things may be said
about the immediately preceding formula. It implies that randomness in
the matrix X is irrelevant for inference if X is distributed independently of
lB and o 2. Classical inference, in contrast, cannot easily ignore the random-
ness in X, since sampling properties are necessarily affected. Another
important point is that both the vectors of unobservables, lB and u, are
assigned personal probability distributions. Classically, the residual vector
u is thought to have a frequency distribution and the parameter vector lB is
thought to be a fixed vector of constants. But from the Bayesian point of
view, your personal opinion about both lB and u is described in probabilis-
tic terms, and the extreme distinction between lB and u is regarded as
unwarranted.

Having assumed that the residual vector is normally distributed, only the
choice of a prior distribution for (lB, o 2) remains. Two alternatives are
suggested here. The resulting posterior distributions are described in the
following pair of theorems, and further discussion follows. Both results
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�ake use of the assumption that Y given X, iB and o 2 is normal with mean
lB and variance o21.
)NJUGATE PRIOR

THEOREM 3.9. Given the normal linear-regression model and a normab
gamma prior distribution for ( lB, o - 2):

f(lB,o-2)----f�,( lB lb*, o2 (N*)- ') f�(o-2ls*2, �,* ),
which indicates that lB given 02 is distributed normally with mean b* and
variance o2(N*) - � and that o-2 is distributed gamma with parameters s '2
and t,*, then the posterior distribution of (lB,o -2) is in the normal-gamma
family with parameters

b** --- (N* + X'X)-' (N'b* + X'Xb).
N** =N*+XfX

p**=p*+ T

(3.22)
(3.23)
(3.24)

(s**) 2-- [�,** ]-'[ v*s '2 + ESS + (b- b*)'N*(X'X + N*)-'X'X(b-b*)].
(3.25)

The marginal posterior distribution of lB is multivariate Student with
parameters b**, (s**)2(N**) -�, and t�**.

,ol.' Let h=o -2 and use the likelihood function (3.6) together with the
��or to obtain

f( lB, hiT, X) o: h T/: exp[ -- �hESS]exp[ - �h( lB-b)'X'X( lB-b) ]
h �/2 exp[ - �h( lB- b*)N*(lB-b*) ]h{- ' exp [ - ��,* s*2h ].

sing result (TIO) in Appendix 1, this can be rewritten as

f( lB, h[Y,X)< h*/2exp[
hr�- ' exp[ - �v**s**2h ],

hich by inspection is the normal-gamma distribution described in the
eorem above.

The normal-gamma prior is Raiffa and Schlaifer's (1961) "natural con-
gate" prior. The member of this class of distributions that is sometimes
;ed to represent prior ignorance is

ith N* =0 and �,* =0. Given these prior parameters, the posterior parame-
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ters become b, X'X, T, and ESS/T. The marginal posterior distribution of
lB, therefore, reproduces the classical result, except that the degrees of
freedom parameter is T instead of T- k, a point further discussed below.

Observe also that the posterior mean (3.22) is formally the same as
Equation (3.18), which describes the pooling of two samples of the same
regression process. Thus the normal gamma prior is equivalent to a
previous sample of the same process with estimate equal to b*, "X'X"
matrix equal to N*, degrees of freedom equal to t,*, and error sum of
squares equal to t,*s '2.

The posterior distribution for lB associated with this normal-gamma prior
has the dual features that it is unimodal and located at a fixed, weighted
average of the sample location b and the prior location b*. In that sense it
never distinguishes sample information from prior information, no matter
how strong their apparent conflict. This is so because a conjugate prior
treats prior information as if it were a previous sample of the same process.
It may be argued that most prior information is distinctly different from
sample information, and when they are apparently in conflict, the posterior
distribution ought to be multimodal with modes at both the sample
location and the prior location. A distribution that has this feature is
described in the following theorem, which uses a prior suggested by Dickey
(1975).

STUDENT PRIOR

THEOREM 3.10 If lB has a multivariate Student prior distribution inde-
pendent of 02, and if o -2 has a gamma prior distribution

, -2 ,2 ,f( lB, o-2)=J*s( lBlb*,n*-',�,l� )f �(o Is ,v;),
then the marginal posterior distribution for lB is proportional to the product
of two Student functions 4

y oc * bH -� v** kf(lBI ) fs(lBI, ,o )Ss(lBlb, H*-',�,�)
where b is the least-squares estimate, and

H= (s**)-2X'X
-,,o + T-k

0**) 2 = (,,:*) -'(p:s ,2 + ESS ).

4The product of two Student distributions can be written as a one-dimensional mixture of
Student distributions (Dickey, 1975).
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)off Integrate o 2 from the product of the likelihood function and prior:

�11Y) cr fo -2f(Y[ IB' �2) f ( IB'� -:)do -2
= fo_: f�v (YIXIB, o2I )f� (�-2[s'2, vo*)rs ( IB lb*, H*-', v� ) d�-2
--rs r (YlXCl,s*2I, vo*) fs ( IB lb*, 8'-', v�).

e Student distribution in Y can be written as a Student function in IB as

. ff (YlX0, s.2I, <) cr [ < s '2 + (Y - X0 )'(Y - X0 ) ] - (� + r)/2
cr [ vo* s'2 + ESS + ( [3 - b)'X'X( 0 - b) ] -('" + k)/2

f� (0lb, s**2(X,X)-,
.h v** and s**defined as before.

Fhe difference between the prior of Theorem (3.9) and the prior of
eorem (3.10) is in the latter case 0 and 02 are independent. The former
�jugate prior implies that if information is obtained about 02, opinions
)ut 0 change. Either 0 becomes more. uncertain or more certain. Of
�rse, your priors are your own business, but I can say that I tend to
:fer to have 0 and 02 independent. A counterargument is that if you
cover that the process is noisy (o 2 large), you may come to doubt the
idity of your prior information. 5
�,s pointed out earlier, the conjugate prior cannot reproduce classical
st squares because it does not allow loss of degrees of freedom. The
tdent-gamma prior with H* = 0 and vo*--0 does exactly reproduce classi-
least squares with

t=

'en Y, having a t distribution with T- k degrees of freedom.
Fhe natural conjugate prior was shown to be equivalent to a previous
nple of the same process. The Student prior for 0, together with the
fuse prior for o2(vo*=O), is equivalent to a previous sample of a regres-
n process with a different variance. Bayesian pooling of two such
nples without any other information would lead to the "double-Student"
sterior of Theorem 3.10. Also, the modes of the posterior distribution

STo anticipate Chapter 9, it may make sense to write the regression process as Y=K(18+
I+u where 18� reflects the specification error. Although your prior for the true parameter 18
y be independent of 02, your prior for 18c may not be.

bayesian rolerenee wire tile a anear-Regre$sion Mo�I BI

may be found by setting its logarithmic derivatives to zero

0 = O In/( 0 [Y)/OlB = XX'X( 0 - b) + X'H*( 0 -b*)
where

vo*+T

X = vo*s .2 + ESS + ( 0 - b)'XqK( 0 - b) (3.26)
v� + ( 0 - b*)'H*( 0 -b*)' (3.27)

With a suitable choice of vo*, rS, and H*, these equations are equivalent to
(3.19), (3.20), and (3.21) which describe pooling information from two
different processes.

A GRAPHICAL PRESENTATION

A graphical analysis of inference with the linear regression model is
instructive. The graphs now to be discussed apply to the results just
reported, but they also apply to a wider class of distributions. We need
only assume that A/] and u have independent, spherically symmetric
distributions. 6

A random variable z is said to have a spherically symmetric distribution
if its density function depends only on the length of z: f(z) = cg(z'z). Thus
the assumption of spherical symmetry implies that the densities of Y and i�
may be written as

f (YI 0 ) cr g.[ (y- X 0 )'(y - XO ) ]
f ( [3 )oz g�[ ( [3-b*)'A'A( [3-b*) ].

Using (3.5) and setting A'A--N*, the posterior distribution can be written
as

f(O[Y) cr/(V I O)f(O)

crgu[ESS+([l-b)'X'X([l-b)] gt�[ (0 - b*)'N*( 0- b*) ].
The full posterior distribution, of course, depends on the functions gu

and gt�' The mode, however, necessarily lies on a curve. To find the
equation for this curve, we may differentiate the logarithm of the posterior

Olnf(OlY)
�[3 --g�g�'2N([3-b)+g/�g�(2N*([3-b*)). (N--X'X)

6nm 0969).
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Setting this equal to zero and solving for 0 yields
0 = (N + AN*)- '(Nb + AN*b*) (3.28)

where

X= g�_----�g�,. (3.29)
As h varies from zero to infinity, Equation (3.28) sweeps out a curve in

�c-space affectionately called by Dickey (1975) the curve ddcolletage. It is
�nchored by the least-squares point b at one end and by the "prior point"
�* at the other. Choice of a point along the curve depends on the functions
gu and g�, but spherical symmetry is sufficient to imply the curve.

Geometrically, the curve dtcolletage is the locus of tangencies between
the sample family of ellipsoids, (/�- b)'N(/�- b)= c, and the prior family
�/�- b*)'N*(0-b*)= c*. To find this locus of tangencies, set the deriva-
tives of (0-b)'N(0-b) +h(0-b*)'N*(0-b*) to zero: 2N(0-b)+
ZhN*(0-b*)=0, which is just Equation (3.28).

A curve dtcolletage is illustrated in Figure 3.1. Ellipses around the
[east-squares point b are isolikelihood ellipses. The data prefer the point b,
�nd the data are indifferent between any points on a given likelihood
:11ipse. The most preferred point from the standpoint of the prior is b*,
�nd an ellipse around the prior point is a prior isodensity ellipse. The curve
56colletage contains all points joinfly preferred by data and prior. Given
�ny point not on the curve, there is a better point on the curve, in the sense
that neither the likelihood value nor the prior density is less, and at least
�ne is greater. 7

The location of modes on the curve dtcolletage depends on �e func-
tions gu and g�. One possibility is the exponential family indexed by the
precision parameter h:

g(z%)--e
with

g, g- �= h2
Thus letting the data and prior densities have different precision parame-
ters, g,(zZ)=g(z21h ) and go(z)---g(z21h* ), we would have, from (3.29),
k= h*/h; the posterior mode, since h is independent of/�, is just (3.28),
asing this value of h.

7Economists are reminded of the analogous Edgeworth-Bowley diagram. This analogy is
tarsued in Chapter 5, and the curve dkx�iletage is there referred to as the information
�ontract curve.
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Fig. 3.1 Curve d�olletage.

Describing this more traditionally, we have just assumed that the data
and prior densities are normal u�N (0, h- I(B'B)-l), O�N (b*, h*- �N*- �),
with h/h* known. This same result has been described in Theorem 3.9.

A somewhat less restrictive class of functions for labeling the informa-
tion indifference curves is the Student family

with
gs (z2[ a, v) = (a + z 2)-'/2 a,v>0

gst g� l = P
2(a+z2) '

Letting g,(z2)---gs(z2[a,v) and g�(z2)---gs(z2[a*,v*) we have from (3.29)
v*/[a*+(O-b*)'N(�-b*)]�=

v/[a+ ESS+(O-b)'N(�-b)] '
�is fa�y of labelMg �s�butions h� the property that �e logafith-

�c derivative g'g- � decreases �th z 2. It is thus relatively ste� �ound �e
ofi� �d relatively flat elsewhere � M�cated M Fig�e 3.2. �s means

$tuffe�IV�rm�l

Fig. 3.2 Normal and Student labeling functions.
z �
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fiat an information source will be relatively resistant to moving the
�stimate of/3 away from its most preferred point in the neighborhood of
�hat point and relatively indifferent to adjustments that occur farther from
:hat point. Note also that the logarithmic derivative of the likelihood
'unction depends not only on a and v but on ESS and /3 as well. The
.ocation of modes on the curve dtcolletage is, therefore, data dependent.

These assumptions are described more traditionally in Theorem 3.10.
SWEEPING OUT THE MEANS

Drdinarily, there is a constant in a regression function about which we
�now very little relative to the prior information on the slopes. We show
here that the effect of this structure of information is merely to sweep out
the means of the observed variables.

Writing the constant explicitly, the regression process becomes
Y=X/3+ 1Ta+U

�ith definitions as before, but with 1T a vector of ones and a the scalar
"process level." Let u be normal with mean zero and covariance matrix
a2IT, and let a be normal with mean zero and variance v. We may then
write

Y--X/3+�
where e is normal with mean zero and covariance matrix o2I�+ lTvl�. The
precision matrix for e is

(o2ir+lrol�)-,=o_ 2 iT_i r l�lr + o: 1� .
In the limit as � increases the conditional distribution of Y given /3

becomes improper with singular precision matrix

o-:M=o-:0� -
The determinant of the variance matrix of Y, using (T18) in Appendix 1, is
(O2)T(1 + Tt:o-2), which for large � behaves like (o2)T-�o. Thns the limiting
likelihood function is

But M is the idempotent matrix that was shown in Section 3.1 to sweep out
the means of the variables. That is, given that the constant a is diffuse and
independent of the other random variables, inferences about the slope/3
may proceed by first subtracting out the means of the observables Y and X
and then proceeding as above.
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3.4 Multivariate Normal Sampling

In this section, Bayesian inference about the parameters of a multivariate
normal distribution is discussed. (Several results here are referred to
occasionally, but it is not necessary for the reader at this point to master
this material.) The (k x 1) vector z t is to be normally distributed with mean
vector p and variance matrix �. A sample of T independently distributed
vectors z t implies the likelihood function

L(p,�; z,,za.....
Letting � = Y, tzt/ T

S= Z (z,-�)(z,-�)',
t

the exponent in the likelihood function can be written as

t t

= Z tr[�-'(zt-�)(zt-�)']+ r(�-p)'�-'(�-p)
t

I

-- tr(�-'S) + r(�- p)�-'(�- p).
A normal-Wishart distribution for (la, �-�) is a convenient prior:

f�,w ( p,�- ,,�.,S., T,,v. ) oc,�E_,,�2 expl - 7'* _ �..) ].

Combining this prior with the likelihood function and using (T10) in
Appendix 1 the posterior distribution is seen to be in the normal-Wishart
family with parameters

�**--(T+ T*)-'(T�+ T*�*)
S** =S+ S* + (�-�*)'::-'(�-�*)TT*(T+ T*)-'
T** = T+ T*

v** = T+ v*.

The predictive distribution of the next sample vector, z f, is used in
Chapter 6. Conditional on p and �, zf is normal with mean vector p and
covariance matrix �. Conditional on � and the data (�, S, T), p is normal
with mean �** and covariance matrix �/T**. Thus integrating with
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respect to p, the vector z F is normal with mean �** and covariance matrix
�E(I+(T**)-�). Integrating with respect to �E-1 as in Appendix 2, the
distribution for z f is Student

f(zFlLS, T)=fs � (z�l�**, S**(1 + (T**)-')/p**,p**-/� + 1).
The results needed for Chapter 6 are the conditional moments of zdf

given z� where the partition of z f is z�----(�df, z�). Using the diffuse prior
assumption that S*--0, T*--0, �,*--0, the conditional moments are

e (z�lz�) --�.' + s.s;;' (zl- �J)
v (�lz�) = (s,, - s.s;;'s�,)0 + T-' )(T- k + � + k�)-'

where k� is the number of elements in z�.
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The first variety of specification search that we discuss
corresponds to the familiar hypothesis-testing problem.
We assume the existence of a set of M "models" or
hypotheses of the form

H,:Y=X,[�i+u ,, i-- 1 ..... M, (4.1)
where Y is a (Tx l) vector of observable variables, Xi
is a (T x ki) matrix of observable explanatory variables,
iBi is a (kix 1) vector of parameters, and u i is a (Tx 1)
vector of unobservable disturbances assumed to be
normally distributed with mean zero and variance-co-
variance matrix o�I r. The statistical problem is to de-
termine which of these M models did, in fact, generate
the data and at the same time to make inferences about
the coefficient vectors iBi.

The formal classical theory of hypothesis testing de-
scribes the decision problem of selecting an action from
among a set of feasible actions. An action is either right
or wrong, depending on the "true state of nature," and
the statistician is interested in being wrong as infre-
quently as possible. The problem being considered in
this chapter involves a set of M actions of the form
"act as if hypothesis H i were true" and a set of M
states of nature of the form "hypothesis H i is true." An
error occurs when action i is chosen but hypothesis j
(i�j) is true.
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If an action entailed the potential of some specific loss, hypothesis
testing should be considered to be solving a decision problem. When the
losses are not stated, it is difficult to interpret hypothesis testing as a
solution to a decision problem. In fact, most researchers use statements
such as "the hypothesis H i is rejected at the .05 level of significance" to
mean that the data cast doubt on H i. The statement is not meant to suggest
that because of the data evidence, it is undesirable to act as if H i were true,
regardless of the decision problem. Thus the language of hypothesis testing
is used to summarize the data evidence. This chapter, therefore, largely
ignores the decision-theory problem, but argues that classical hypothesis
testing has led to greatly distorted data summaries.

In Chapter 3 we briefly reviewed the classical approach to hypothesis
testing with a pair of nested hypotheses of the form

m0: Y--XjiB; +u
H�: Y-- XiiBi + XjiB; + u

=Xla+u
where X� is a T xp observable matrix, X� is a T x(k-p) observable
matrix, u is a T x 1 unobservable vector, distributed normally with mean
zero and covariance 02IT, and X=[X�,X�], IB'---[IB�,IB�]. With b--
(X'X)- IX'Y and s 2 -- 0 r - Xb)'O r - Xb)/( T- k), the statistic

b; (X}Xi - X}Xj(X;Xj)-iX)X/) b I
F = ,

ps 2
conditional on the null hypothesis that iBi = 0, has an F distribution with p
and T-k degrees of freedom. A large F is taken as evidence against the
null hypothesis.

The F statistic has been written in Equation (3.10) in terms of error sums
of squares as

(ESS o- ESS, ) /p
F-- (4.2)

Ess,/( T-
where ESS i is the error sum of squares associated with the ith hypothesis.
In terms of R 2, it can be written as

F= ( R�2-R�2 (4.3)
Formal testing of the hypothesis 10 t --0 involves, first, selecting a signifi-

cance level for the F test, say, a, then finding from a table the a point of
the F distribution, and finally recording that the hypothesis is or is not

Hypotheses-Testing Searches 89

rejected at the a level, depending on whether F exceeds or falls short of
this cutoff point. For example,�the .05 point of the F distribution with 10 or
more degrees of freedom (T-k > 10) varies from approximately five to
one, depending on the actual number of degrees of freedom as well as on
the number of restrictions p. Thus for moderate degrees of freedom, F
values in excess of 5 would be regarded as evidence against the null
hypothesis.

By referring to the foregoing formulas, we can see that although the R 2s
of two equations may differ only in the tenth decimal place, an F may
attain any arbitrarily large value if the degrees of freedom T-k is large
enough. In very large samples such as would be generated by surveys of
individuals or firms, it thus tums out that almost any hypothesis of this
form is rejected. To paraphrase a quotation of Berkson (1938), � since a
large sample is presumably more informative than a small one, and since it
is apparently the case that we will reject the null hypothesis in a
sufficiently large sample, we might as well begin by rejecting the hypothe-
sis and not sample at all.

This brings us to the first question of this chapter:

Problem 1. Is classical hypothesis testing at fixed level of significance a
"good" way to summame the evidence in favor of or against hypotheses of
the form described above?

Our answer is decidedly negative--meaningful hypothesis testing re-
quires the significance level to be a decreasing function of sample size.
Incidentally, the argument that leads to this conclusion is not the same as
Berkson's. He might have pointed out that it is practically certain that any
series of real observations does not actually come from a regression
process with iBt--0. If so, we do, indeed, want to reject the null hypothesis;
and it is neither surprising nor unwarranted that a large informative
sample leads to the rejection of the hypothesis. One, in those circum-
stances, should trouble himself not with the results of classical hypothesis
testing but rather with the question of why he bothered to test an obviously
false hypothesis in the first place. As it turns out, hypothesis testing does

l"l believe that an observant statistician who has had any considerable experience with
applying the chi-square test repeatedly will agree with my statement that, as a matter of
observation, when the numbers in the data are quite large, the P's tend to come out small.
Having observed this, and on reflection, I make the following do�t, matic statement, referring
for illustration to the normal curve: 'If the normal curve is fitted to a body of data
representing any real observations whatever of quantities in the physical world, then if the
number of observations is extremely !arge�for instance, on the order of 200,000,--the
chi-square P will be small beyond any usual limit of signficance'."
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have some validity, even when a restfiction is practically certain to be
false. Certainly false hypotheses are the subject of the next five chapters. In
this chapter we concern ourselves with hypotheses that are not so trivially
rejected; we are thus concerned with situations in which classical hypothe-
sis testing has an unambiguously legitimate function. This distinction can
be made quite clear from a Bayesian point of view: We are here consider-
ing hypotheses that are assigned positive probability; in later chapters we
consider hypothesis testing in contexts when some of the hypotheses
receive zero probability. The conclusion that the significance level should
be a decreasing function of sample size is due largely (but not exclusively)
to the fact that Bayesians who assign positive probabilities to hypotheses
of this form summarize the evidence in ways that implicitly make the
significance level a decreasing function of sample size.

This is a good place to indicate that I doubt that there are many
instances when a regression hypothesis that involves a restricted parameter
space would, in fact, be assigned positive probability. The things that we
call models usually originate in other ways, and I consequently doubt the
practical relevance of this chapter. This is, nonetheless, a useful topic to
begin with, because it corresponds closely to the situation in which
classical hypothesis testing is strictly relevant, and because many people
think of specification searches exclusively in those terms.

The hypotheses we have just considered have an exceedingly simple
form: the null hypothesis is a restricted version of the alternative. Practical
specifications rarely have such a simple structure, and dealing with com-
plicated sturctures of hypotheses is our second problem:

Problem 2. How should multiple hypotheses with a nonnested structure
be treated?

I personally find the classical answer to this question hopelessly confus-
ing and would prefer not to get too deeply involved in discussing it. A
simple example illustrates some of the problems. Let the hypotheses be

H0:Y=xfl+u Hi :Y--zT+u,
where x and z are vectors and fl and 7 are scalars. In this case it is possible
to generate a .05-level test of H 0 by testing in the ustlal way the null
hypothesis H 0 against the alternative H?: Y = xfl + z� + u. Although this is
a perfectly well-defined test, it completely ignores the fact that Hi � is not
the alternative hypothesis. It, furthermore, treats asymmetrically two
hypotheses, H 0 and Hi, that are apparently symmetric.

Suppose, instead, that the hypotheses are treated symmetrically; in
particular, suppose the equation with the higher R 2 is accepted. Then the
conditional probability of error is P, �<R�[Ho)=P(Y'x(x'x)-�x'Y<
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Y'z(z'z)-�z'YlHo) -- P((xfi+u)'(x(x'x)-ix'- z(z'z)-lz)(xfi + u) < OI #), which
depends in a complicated way on fi, x, and z. (It can be shown that this
probability varies from one-half to zero as fi 2 varies from zero to infinity.)
Traditionally, the test is set up so that this conditional probability of error
is a number, not a function, and it proves difficult to interpret this test in
terms of its error probabilities. This should not cause great consternation,
since the relationship between the error probabilities of a test and the
persuasiveness of the evidence in favor of the various hypotheses is indirect
and poorly understood. Of course, this barely scratches the surface of a
complex problem. The Bayesian approach yields such a straightforward
answer with clear intuitive appeal that it hardly seems worthwhile to
pursue further the classical approach. For more on the classical approach
see the summaries by Dhrymes et al. (1972) and by Gaver and Geisel
(1974).

Anyone who has read any papers in applied econometrics has read
statements of the form: "model A has performed the best; it has a high R 2,
and all of its coefficients are the fight sign and are statistically significant."
Whatever is the meaning of the reference to the coefficients? Books on
classical statistics do not suggest that the validity of an F test depends on
the signs and statistical significance of the coefficients. Perhaps the author
of this statement is thinking that there is no restriction that could be placed
on this model that would not be rejected, but why the reference to "right"
signs? This is a pretty obvious Bayesian problem, in that there is a priori
information at least about the signs of the coefficients. This intuitively
ought to have an impact on the hypothesis testing. Thus our third problem
is:

Problem 3. How does the existence of a priori information about parame-
ters influence the interpretation of evidence about models?

Parallel to the testing of hypotheses, we are interested in making
inferences about parameters. There is a presumption that the ambiguity
over the model should dilute the information about regression coefficients,
since part of the evidence is spent to specify the model:

Problem 4. What estimates of the parameters and what measures of
uncertainty should apply in a situation of uncertainty about the model7

Classical inference has little to say about this, although we review in the
next chapter the pretesting literature that deals with estimation while
testing. Again, the Bayesian solution is entirely straightforward. Among its
conclusions are the fact that the ambiguity over the model is irrelevant for
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inference about a coefficient if and only if the estimated coefficients and
standard errors are the same for all specifications.

The last problem is similar:

Problem $. What measure of overall confidence analogous to an
should apply to a research effort which reports many different equations
with different R 2s? We subsequently propose a special kind of average
Again, there is no classical counterpart.

In the first two sections of this chapter, the problem of identifying the
class of admissible tests is distinguished from the problem of selecting a
particular test. Classical hypothesis testing concerns itself almost exclu-
sively with the first problem, but it has nothing meaningful to say about
the second. The rule of thumb quite popular now, that is, setting the
significance level arbitrarily to .05, is shown to be deficient in the sense
that from every reasonable viewpoint the significance level should be a
decreasing function of sample size.

A few words may now be said in anticipation of the sections to follow,
which describe in detail the Bayesian approach to hypothesis testing. By
Bayes' rule, the relative posterior probabilities of two hypotheses can be
written as

P (//�[Y) P (YI Hi) P(Hj) ]'
The second factor in brackets is the prior odds ratio in favor of H i. The
data-dependent term in the first set of brackets is the "Bayes factor."

The data are said to favor H i relative to Hj ff the Bayes factor exceeds
one, that is, if the observed data Y is more likely under hypothesis H i than
it is under hypothesis Hi. The densities of Y implied by the hypotheses
(4.1) are conditional on the parameters, iB i and 0/2, but may be straightfor-
wardly "mixed" into a marginal density as

f(�1H,)-- ft,fo?f(�1H. Di, o/2)f(Di, o/2)do/2dDi (4.5)
where f( iB/, o/Z) is the prior density. The conditional p.d.f. f(Y] H i, �1i, �/2) for
a particular value of Y is a likelihood function of ( iB i, o/2), and (4.5) defines
f(YlHi) as a weighted or marginal likelihood.

The Bayes factor is to be contrasted with the likelihood ratio, which is
used classically to summarize the data evidence. The likelihood ratio is

max f(YI ibm, 4, Hi)

L(H�, H�) = max f(y] �.,�2, H�).
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The Bayes factor averages the likelihood function over all values of ( i$i, �/2).
The likelihood ratio evaluates the likelihood function at its maximum.

Any attempt to summarize the data evidence in favor of the hypotheses
(4.1) leads to an irreconcilable index number problem of the following
form. If i$i assumed one value, the data evidence could be said unambigu-
ously to favor the ith hypothesis, but if i$� assumed another value, the data
unambiguously cast doubt on H i. Since H i allows i$i to assume any value,
the data evidence is necessarily ambiguous.

The classical solution to this dilemma seems most appropriate for testing
a point null hypothesis against a composite alternative. The null hypothesis
is regarded as the favorite; it is the one that is being "tested." If there is
any way for the alternative to look as good as the null hypothesis, we
should be worried about retaining the null as the favorite. Consequently,
we identify the evidence against the null hypothesis in terms of the
evidence in favor of the alternative at the value of i$ that makes the
alternative appear best. The appropriate statement however is not that the
alternative is favored. All that is said is that the alternative is conceivably
favored.

There is a great tendency in practice to forget the all-important word
"conceivably" in this sentence, and as a consequence, classical tests distort
the data evidence. In the more common case when the null hypothesis is a
composite hypothesis, classical tests usually also evaluate the data evidence
at the parameter point that makes the null hypothesis appear best. The
resulting statement about the evidence is: "If each hypothesis is allowed to
'put its best foot forward,' hypothesis � is favored." In practice, the
qualifying phrase "if... forward," is often forgotten, and the data evidence
may consequently be significantly distorted.

A Bayesian approach, in contrast, presupposes a prior distribution that
can be used to weight the evidence at different values of the parameters.
Thus instead of letting an hypothesis "put its best foot forward," the
performance at all values of the parameters is considered. The apparent
problem that then arises is the construction of a nonarbitrary weight
function. Here and elsewhere, we take the position that a researcher is
obligated to report as fully as possible the mapping of priors into pos-
teriors. He should describe the data evidence as favoring hypothesis H l if
the prior takes one form, and favoring H e if it takes another. He thereby
avoids having to make a choice that rightly belongs to his readers: the
choice of prior distribution.

4.1. Hypothesis Testing: A Judicial Analogy

The subject of hypothesis testing may be usefully introduced by an
analogy. Based on the evidence presented, a judge and jury in a legal
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proceeding decide whether a defendant should be set free or sent to jail. If
they decide that the evidence favors the hypothesis of guilt, they accord-
ingly send the defendant to jail. Otherwise he is set free. The assumption of
innocence until proven guilty beyond a reasonable doubt explicitly favors
the hypothesis of innocence. We refer to this favored hypothesis as the null
hypothesis or H 0 and the hypothesis of guilt as the alternative hypothesis
or H�. The evaluation of the evidence and the decision either to free or jail
the defendant is called a "test" of the null hypothesis against the alterna-
tive, and the decision is described as acceptance versus rejection of the
hypothesis of innocence.

The more critical error--sending an innocent man to jail--is called an
error of the first kind or type I error. Acceptance of the null hypothesis
when it is in fact false--freeing a guilty man--is called an error of the
second kind or type H error. Schematically we have

Actions

Hypotheses (States)
H 0: Innocent
H�: Guilty

Set Free Send to Jail
(accept H0) (reject Ho)

TypeII errorITypeI error
If a man is innocent, we want to have a low probability of sending him

to jail. Let this probability be a
a = P (jail]innocent defendant).

Analogously, let
fl = P (set free]guilty defendant).

Both a and fl are defined before the judicial process commences. In effect,
they predict the quality of the evidence and the ability of the court to
process the evidence effectively. For example, a low value of a amounts to
the prediction that if the defendant is innocent, the evidence will be so
unambiguous and the process by which a verdict is rendered will be so
perfect that with near certainty he will be justly found innocent.

The theory of hypotheses testing deals with defining procedures such
that a and fl are small. A typical choice set for a and fl is depicted in
Figure 4.1. Flipping a coin to decide whether to free or jail the suspect
implies a---fl=.5. The line running from the point (a-- l,fl=O) to (a =O, fl
= 1) represents the set of all such randomized decisions. The value (a = O, fl
--0) represents perfect evidence and a perfect procedure which is excluded

1.0

Hypothesis Testing: A-Judicial Analogy

� ..-Attainable values

Random � I "M I \

judgments �" �
0 /?= P(free I guilty) 1.0

Fig. 4.1 Probabilities of error.

from the choice set in Figure 4.1. If (a--0, fi=0) is not available, the
perfect error point (a = 1,fi -- 1) is similarly not available, since ff we could
be sure of making an error, by doing the exact opposite we could be sure
of not making an error. The curved line labeled "enlightened judgments"
represents the best possible court procedures based on the available
evidence. The curve labeled "perverse judgments" is just the mirror image
of the "enlightened judgment" curve, involving the exact opposite action.

The choice of a courtroom procedure is usefully thought to involve two
steps. The first step is to identify the set of procedures that involve
enlightened use of the evidence, that is, those that make a and fi as small
as possible. The second step is to choose a particular procedure from
among this set of admissible procedures. The former is a logical mathe-
matical problem that admits a clear-cut uncontroversial solution; the latter
is not. Let us consider the latter problem.

The essential problem the court faces once the line of enlightened
judgments is computed is that stricter interpretation of the given body of
evidence and a greater tendency to send men to jail which cotfid reduce
the probability fi of freeing guilty men necessarily increases the probability
a of jailing innocent men. By assumption, it is desirable to have both a
and fi small. The choice dilemma is that reduction of one necessarily leads
to an increase in the other. Actual choice can be said to depend on a
preference function U(a,fi) indicating numerically the level of satisfaction
attained if the courtroom procedure yields probabilities a and fl. Several
"contour" lines of a typical preference function are indicated in Figure 4.2.
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Fig. 4.2 Indifference curves of a prefer-
ence function.

The line U(a,fl)= U� indicates all values of (a,fl) that yield a level of
satisfaction U�. Increasing preference (lower a and r) is in the direction
indicated, and maximum satisfaction on the enlightened judgment line
occurs at the point indicated.

One way to alleviate the choice dilemma is to gather more evidence,
thereby making both a and fl smaller. Without any information, the line of
enlightened judgments is just a straight line from comer to comer. As more
and more evidence is accumulated, this line shifts in toward the origin. As
this occurs, the point of maximum satisfaction also travels in toward the
origin tracing out an information expansion path depicted in Figure 4.3.
This represents the values of a and fl that the court would actually choose
depending on the amount of evidence that is amassed.

Three possible ways of selecting a and fl have been suggested, and their
preference functions and information expansion paths are indicated in
Figure 4.4.
(1) Set a-'-.05. The most commonly practiced procedure is to set a =.05
and minimize fl. The type I error is considered more important, and by
setting a =.05 it necessarily assumes a small value. Note the peculiar
information expansion path that allows fl to be infinitesimally small with a
still at .05.

(2) Minimize the maximum of l�a and left, where l� is the loss associated
with a type I error and l 2 is the loss associated with a type II error. Note
that the expansion path moves continuously toward the origin and that an
increase in the evidence is used to reduce both a and fl. The relative
probabilities are a/r= 12/l�, and if type I loss l� is relatively great, the
type I probability a is correspondingly relatively small.

Information -
expansion
path

Preference
Function

o �
Set e =.05

I

U--max

I
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(3) Minimize the expected loss. Let p be the probability that the &fen-
dant is innocent and (1-p) the probability of guilt. The expected loss is
l�ap+12fi(1-p). The slope of a typical contour or indifference curve
depicted in Figure 4.4 is -/2(1 -p)/l�p. If either l� orp is relatively large,
these lines are relatively flat, and a is set to a relatively small value. Thus
type I error is avoided in the sense of setting a to some small number, if
either the defendant is quite likely to be innocent or if the cost of sending
an innocent man to jarl is high.

It should now be clear that the choice of a and fl is less than obvious. A
simple argument attributed to Savage does imply that the indifference
curves should be straight lines. Identify two points (a0, fio) and (a�,fi�)
between which you are indifferent. If restricted to select one of these two
points, you must mean that you are willing to allow someone else to make
the selection. Well, I will make the selection for you in the following way.
Making use of a random device, I select (a0, fi0) with probability �r and
(avfi 0 with probability (1-�r). As a result, your type I and type II error
probabilities are, in fact, (a0�r+a�(1-�r),fl0�r+fl�(l-�r), and you have
revealed your indifference between this point and the two original points.
By varying �r, all probability couples on the line joining (a0, fi0 ) to (a�,fi�)
can be shown to be on the same indifference curve. Needless to say,
Bayesian indifference curves are straight lines.

The hypothesis-testing problem can be described more formally as
follows. A sample outcome z (the testimony) is assumed to come from a
sample space Z of all possible samples. The sample space is partitioned
into a region of acceptance A and a region of rejection R, where R is the
set of all z � Z that would lead to rejection of the null hypothesis (jailing
the defendan0; and A is the complement of R. The corresponding error
probabilities are

-R =P(z/tIH0)

flR----P(z�AIH,).

In discussing the theory of hypothesis testing, we may first consider the
purely mathematical problem of defining the set of admissible tests; we
must be sure that the partition of the sample space into A and R leads to
error probabilities on the line of enlightened judgments. Secorid, we must
choose a particular test from among the set of admissible tests. A failure of
the theory of classical inference is that it offers no meaningful comment on
this second problem. And the rule "set a =.05" regardless of sample size
seems undesirable under close examination.
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4.2 Testing a Point-Null Hypothesis Against a Point Alternative

This section deals briefly with testing a point-null hypothesis against a
point alternative. The purpose of this material is to explain how the
discussion in the previous section applies to a formal problem. The test
depends on a sample of size T, ( Y�, Y2 ..... YT) from a normal distribution
with mean/� and variance one. The null hypothesis is Ho:l.t= O, and the
alternative is H� :/�--1. In terms of the distribution of the mean 7=
Y' Yt/T, the hypotheses are

H0: F�N(O,T-')
H,:�N(1, T-�).

These two distributi_ons are graphed in Figure 4.5 for T-- 1.
Large values of Y favor the alternative hypothesis, and a typical decision

function is

if � > c, reject H 0
if 7< c, accept H 0

where c is some preassigned cutoff point.
The probabilities of error depend on the cutoff point c:

.(c)-- P( � > c]/�=0)
fl(c)-- P( F< Cll. t=l).

Using a table of normal distribution, we may compute a(.5)=fi(.5)=.31,
as depicted in Figure 4.5. If a smaller value of a is desired, c may be
increased, say, to 1, which lowers a to .16, but this change in c also

Distribution of � given �= 0 Distribution of � given �= I

0 .5 y
Fig. 4.5 Distributions given null and alternative hypotheses.
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increases ]� to .5. As c is varied from - oo to + o�, a(c) and ]�(c) thus trace
out a line of "enlightened judgments" as in Figure 4.1.

It is also easy to see that the line of enlightened judgments shifts in
toward the origin as more evidence is accumulated, that is, as T grows. If T
is four instead of one, the standard errors of the distributions become
one-half. For c = .5, it is easy to calculate that a = ]� =. 16, compared to .31
before. Similar calculations apply to all values of c.

Traditionally, the cutoff point c is chosen so that a(c)--.05. This implies
a value of c equal to 1.65/X/�, which shifts toward zero as T increases.
This contrasts with a Bayesian cutoff point, which shifts toward .5 as T
increases. A Bayesian test selects H 0 if the expected loss from acting as if
H 0 were true is less than the expected_loss from other action. The
probability that H 0 is true given the data Y is by Bayes' rule

f( �[mo)P(mo)
P(H01)--

f( �leo )e ( eo ) + f ( �[e, )e ( e, )
where f(�-{H0)-- (T/2,r)'/Sexp[ - T�7-2/2] and
(T/2*r) �/2 exp[- T( Y_- 1)2/2]. The expected loss from proceeding as if H 0
were true is I�P(H�] Y), where l t is the loss if H� is true and action H 0 is
taken; similarly, for H�. Thus H 0 is to be rejected if

l,P(ell�)>loP(eol�),
that is, if

l,f( �IH, )e (e,) > lof ( �[H 0 )e(Ho),
or if T[� 2-(�- l)2]>21og[loe(Ho)/l,e(H,)] or if 2�- 1
2 T-� 1og[10P (Ho)/I�P(Ht) ]. The term on the right-hand si_de converges to
zero as T increases, and the region of rejection becomes Y >.5.

4.3 Testing a-Point-Null Hypothesis Against a Composite
Alternative

The more difficult problem of testing a point-null hypothesis against a
composite alternative is discussed in this section. A composite hypothesis is
a set of values of the parameter vector, each of which determines a
different data distribution. In testing a point-null hypothesis against a
composite alternative, we ask the question "was the data more likely to
have come from the null distribution or from one distribution selected
from the set of distributions which comprise the alternative hYPothesis?"
Except in certain trivial cases, this question cannot admit an unambiguous
answer.
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An examination of a likelihood function illustrates the difficulty of
testing composite hypotheses. Based on a sample from a normal distribu-
tion with unknown mean p and known variance 02, we would like to test
the null hYPothesis Ho:p--O against the alternative H� :p�0. Letting 1 r
be a vector of ones and Y the vector of T independently drawn observa-
tions, the sampling distribution can be written as

f�v(Yl l l,�,o2I) = (2�ros)- r/Sexp[ - 2--�-�(Y- l rl,O' (Y- l rl�) ].
If /� were equal to zero, the density function of the data would be

f�vOf[O, oq). The likelihood function

L(/�;Y)--
f�(YI1/�,o2I)
f �v(YlO, o2I )

formally summarizes the evidence in favor of some other value of /� in
comparison with the hypothesized value /�=0 by indicating how much
more likely it is that the data were drawn from a distribution located at/�
than from a distribution located at zero. By a simple manipulation we may
write it as

L(/�; Y)-- exp [ - �--oT�(/�- �)2 ] exp [ �---oT2�2]
where � is the sample mean Y'I/T.

This is a function that is symmetric around its maximum point/�= �
where it assumes the value exp[ YST/2os]. An example is graphed in
Figure 4.6.

We need now to indicate whether the data favor or cast doubt on the
null hypothesis/�=0. In the ideal situation the likelihood function L(/�; Y)
is either zero at/� = 0 or zero everywhere else, and we could unambiguously
conclude in the former case against the value/�--0, and in the latter case in
favor of it. Less precise information that nonetheless incontrovertibly
favors one hypothesis or the other is implied by a likelihood function that
attains either its minimum or its maximum at /�--0. Unhappily, the
probability of these unambiguous outcomes is zero, and we are forced to
deal almost always with the sort of ambiguous situation depicted in Figure
4.6, in which the null hypothesis looks better than the alternative at some
values of/� but worse at others.

We argue subsequently that there is, in fact, no solution to this dilemma.
Corresponding to three different statistical schools are three different
approaches, each of which is discussed, each of which has apparent
shortcomings.
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0

Fi� 4.6 Likelihood function f/v(Ylllt, o:l)/fl�(Y}O,o:l ).

THE LIKELIHOOD SCHOOL

The likelihood approach is apparently straightforward. It is hypothesized
that/� = 0. Suppose there were another value of � for which the data were
100 times more probable than for �--0. Would not this shake your faith in
/�=07 This suggests that the right number to report against the null
hypothesis is the likelihood ratio at the value of/� that makes the alterna-
tive appear best, namely, at/� = 7:

L, = m�axL(/�;Y)=expl �2T]202 '

which by a series expansion truncated after the first term can be written
approximately as

L�I+ --
202

z 2
---1+--

2

where z 2= F2T/o 2. ThUS for z2=2 we can say that the data cast doubt on
H 0 in the sense that there is a value of/� that is approximately twice as
likely to have generated the given data.

SAMPLING THEORY SCHOOL

Sampling theory is concerned not with the likelihood function of/� given
the data Y but rather with the sampling distribution of Y given the null
hypothesis 3t=0. Statements such as the following are usually made. If the
observed value of Y is in the tail of the distribution f(YI/�=0, o 2) the data
cast doubt on H 0 in the sense that something unlikely would have had to
occur if H 0 were true.

Testing a Point-Null Hypothesis Against a Composite Alternative 103
Most commonly, tests are based on the sufficient statistic 7 which is

distributed normally with mean /� and variance 02/T. An indication of
whether Y came from the tail of its distribution given/� = 0 is

rn_ax f �( �lt�--O,o�/T)
S--'

f�(�J I-t=O, o2/ T)

=exp I �2-�] =expl-�]
which is seen to be identical to L� before. Thus for z 2= 72T/o 2 large we
may say that the data cast doubt on/�--0 both in the sense that there are
other values of/� that are more likely to have generated the data and also
in the sense that if � were zero, an unlikely event occurred.

A more traditional description of the tail of the distribution is expressed
in terms of the probability _mass rather than in terms of the relative density.
That is, before observing Y, it is decided that a value of 7 2 in excess of
some arbitrary number, say, c 2, will cast doubt on H 0. The probability
'mass in the tail of the distribution beyond c 2 is called the significance level
of the test,

and if Y falls in the described region, the null hypothesis is said to be
rejected at level a. It is customary to select c such that a(c)=.05, and the
familiar "region of rejection" is

l TI > 1.96�o

or in terms of z 2, z2> 1.962. The corresponding probability statement is
P (z 2 > 1.9621 �=0, o 2) = .05.

�us z 2 in excess of 1.96 c�ts doubt on H 0 in the sense �at �ven such a z
we would be led to reject H 0 at the .05 level.

�ere is yet another "metric" for measuring the e�dence against H 0.
�e P-value of a test is the level at which the data is "just si�ficant"; at
any si�ificance level less that P the null hypothesis would not be rejected,
whereas at any larger si�ficance level it would be. Both the P value and
S are �aphed in Figure 4.7. Both indicate whether the obsemed value of �
is in the tail of its distribution or not, and both are (increasing) functions
of z 2 only.
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Fig. 4.7

--�ompling distribufion of �

B '

0 � observed
Sampling distribution: P-value and S = .4 lB.

THE BAYESIAN SCHOOL

Bayesians, of course, apply their single commandment, Bayes' rule, and
conclude that the null hypothesis is favored by the data if its posterior
probability exceeds its prior probability (ignoring the loss function, for
now). If the prior for F is continuous, both the prior and the posterior
probability of the point null hypothesis are zero, and the problem is
uninteresting. One prior distribution that allocates probability �r to the null
hypothesis is

�r p=0P(F)= (1--�r)fN(FlO, h*-')dF F�O,
where fN(F]0, h *-�) indicates a normal distribution located at the origin
with variance h *-�. In words, there is a spike of mass �r at/x--O, and the
rest is allocated normally over the line. By a straightforward application of
Bayes' rule we have the posterior distribution of p given the data mean �

P(F]�) zc P( �1 p)e (p),
and the odds ratio in favor of the alternative hypothesis is

P(H,[�) P(F)
P(ol) fN(7lt--O, o2/T)

=('-�r)rr-'(l+o�h,)-t/2exp[z2(l+h--�)-�]
where z 2-- 72/(02/T) and where we have made use of some results to
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follow (alternatively, it requires some straightforward numerical integra-
tion). That is, the posterior odds ratio is the prior odds ratio times what is
called the "Bayes factor"

1/2 r / -/2]B(h*)=(l+o--�h,)-exPlz2tl+h-�) . (4.6)
This, like the previous data summaries, is an increasing function of
2 2= �2T/o2; the larger z 2 is the more the data cast doubt on H 0. However,
and most importantly, B is a function of sample size also. Let z 2 take on
some arbitrarily large value so that, classically, we would say the data cast
doubt on H 0. For sufficiently large T/o2,B(h *) can take on any arbi-
trarily small value, and rather than concluding that the data cast doubt on
H 0, we would claim that they quite strongly favor H 0.

This is a version of the Lindley (1957) paradox. It represents a sharp
disagreement between classicists and Bayesians over the interpretation of
evidence. Classicists claim for this problem that the evidence against H 0
can be fully summarized in terms of z 2 alone. Bayesians would be in
general agreement that the sample size matters, as well, in the sense that
the larger is the sample size the greater must be z 2 to constitute convincing
evidence against H 0. Is there a resolution to this controversy? I think there
is, and I think it is quite dear that the Bayesians are right.

Consider first the significance level approach. Corresponding to a .05-
level test is a power curve q�( F)--- P( z2 > c2(-05)] P) indicating the probabil-
ity of rejecting the null hypothesis for particular values of p. An example is
graphed in Figure 4.8. The reader may convince himself that �b is a
symmetric function around/x = 0, converging to one as/x increases.

.05

Fig. 4.8 Power curve.
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As sample size increases, this power function gets steeper and steeper
around/� =0, and [1 -tt,(/�)] which is the probability of making an "error of
the second kind"--accepting a false null hypothesis---converges to zero at
any value of/�-�0. In contrast, the significance level--the probability of
making an error of the first kind--stays forever at .05. The result is perfect
error control against an error of the second kind but "mediocre" (.05) error
control against an error of the first kind. The null hypothesis, however, is
meant to be the favored hypothesis in the sense that incorrectly rejecting it
is a more serious error than incorrectly accepting it. Fixed-level hypothesis
testing, in contrast, clearly favors the alternative hypothesis--more and
more so as sample size grows. The cure for this problem is obvious--the
significance level must be made a decreasing function of sample size. Thus
the conclusion we reached previously from the Bayesian viewpoint (that
the interpretation of z 2 as evidence against H 0 depends on sample size) can
also be reached within the confines of classical hypothesis testing. This still
leaves arbitrary the particular function of sample size that the significance
level should be set to. Although the Bayes factor B(h*) is a precise
function of sample size, it depends on a somewhat arbitrary prior distribu-
tion. What is clear from both viewpoints is the fact that the interpretation
of z 2 should depend on sample size.

As should be expected, a similar argument can be made from the
likelihood standpoint. Suppose that the likelihood function of Figure 4.6
were discontinuous at/� as_in Figure 4.9. If we let the evidence against H 0
be summarized by L(/�; Y) we would conclude against H0, even though
for every other value of/� the null hypothesis is favored. It seems doubtful
that we would really conclude against H 0 in this instance--some reference
would be made to the a priori probability of/�, particularly to the fact that
the function approximates its modal value on a "zero volume" set. But,
essentially, the same thing happens to the likelihood function as sample
size increases--it gets steeper and steeper around its mode and approxi-
mates the modal value in an ever-decreasing region. This suggests that
instead of using the modal value as an indicator of the evidence against H 0
we might use the average value within a small fixed-size region around the
mode, say, 7+ e

f.�+�L2= (2e)-'L(/�; Y)d/�
�=�-e

1 x2 ]dx.= (2�)- �exp(-�) f� _�exp[ 2o2. T
The integral in this expression is the area under a normal curve. Making
use of the fact that as o2/T gets small, essentially all of the probability is
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0
Fig. 4.9 Likelihood ratio: a peculiar example.
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within an e of its mean, we may write L2 approximately as
I

z2 ], (4.7)L2cc � ( 2----�)� exp[ �-
a decreasing function of sample size T. Incidentally, as sample size
increases, the Bayes factor B(h*) converges to

1

not unlike L2.
Before proceeding, it may be useful to point out that the testing of a

composite hypothesis is an index number problem. An index is a single-
valued function of a set of numbers (x� ..... xn) that in some sense captures
the essential aspects of the entire set. Weighted averages are commonly
used as indexes, say, I(Xi,...,Xn)---�,�.=iWiXi, �,iwi=l,wi>O. Theories of
index numbers usually imply weight values w/ that are known only ap-
proximately, but this has not inhibited the practical construction of in-
dexes. For example, consumer price indexes have weights that depend
theoretically on unobservable marginal utilities.

An alternative index--the maximum of the class I*(x�,...,x,,)=
maxixi--has to my knowledge never been proposed in the context of the
theory of index numbers. It dearly misrepresents the class of numbers
except in the special case when most other members of the class attain or
nearly attain the maximum.
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The problem of characterizing the evidence in favor of the foregoing
hypotheses is precisely an index number problem. Instead of having a
single number for each hypothesis, we have a continuous set of numbers.
Interestingly enough, a classical analysis implicitly solves this index num-
ber problem by taking the maximum of the class, since a test of H 0 versus
H� is based on the likelihood ratio L t =max�L( It; Y). This solution to the
index number problem seems inappropriate in general, but it is increas-
ingly inappropriate as sample size increases, since as sample size increases
the likelihood function becomes steeper and steeper and approximates its
maximum in an ever decreasing region. In contrast, for a small sample size
the likelihood function is relatively flat and the maximum is representative
of wide regions.

A natural alternative is a weighted-average index, fL(it;Y)w(it)dit,
w(it) > 0, fw(it)= 1. A prior distribution suggests itself as a weight func-
tion w(p). It assigns low weight to relatively implausible values, thereby
indicating that the performance of the "model" with a priori unlikely
parameters is less important than the performance of the model with a
priori likely parameters.

To put this another way, the hypotheses become hypotheses cure dis-
tributions; Ht:it�w (it). Each composite hypothesis is thereby mixed into
a simple hypothesis, in the sense that each specifies one data distribution;
H�:Y�ff/v(Y]lit, o2I)w(it)dp. Data are interpreted to favor one hypothe-
sis relative to another if the data were more likely to have come from one
of these distributions than from another.

This way of putting it highlights the fact that the Bayesian approach,
rather than solving the composite hypothesis-testing problem, in fact
transforms it into the simple hypothesis-testing problem of discriminating
among completely specified distributions. It can be a useful approach only
if we can identify personally and publicly acceptable weight functions
and/or if these weight functions do not matter "too much." The difficulty
of selecting weights has not inhibited the use of weighted-average indices
in other problems, nor shall it necessarily inhibit their use for this problem.

4.4 Weighted Likelihoods: Conjugate Priors

Bayes factors for testing regression models are now discussed..The Bayes
!actor in favor of the ith hypothesis relative to the jth hypothesis is
P(YIHi) / P(YIH/). It is convenient here to compute the marginal data
Jensity P(YIHi) for some hypothesis, and the subscript i may be
rappressed. The model is taken to be

Y=XiB+u, u�N(Or, h-tIr), (4.8)
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where Y is a (TX 1) observable vector, X is a (TX k) observable matrix, iB
is a (k x I) unobservable parameter vector, and u is a (T X 1) unobservable
error vector distributed normally with mean vector zero and variance-co-
variance matrix h- tI r with h a scalar precision parameter.

As discussed in the previous section, a Bayesian approach requires this
hypothesis to be complemented with a prior distribution for the parameters
(iB, h). This distribution is used to marglnalize out the parameters, and the
hypothesis is treated as if it specified a unique distribution

f(Y) = f f f(Y[ iB,h) f( iB, h) dlB dh. (4.9)
The posterior probability of this hypothesis is, by Bayes' rule, proportional
to the prior probability times the density (4.9) evaluated at the observed
value of Y. For obvious reasons, this is called a marginal likelihood.

Be�nning with the simplest case, suppose the process variance h-t is
known, and let the prior for iB be normal with mean b* and variance H* - t
By inspection of Equation (4.8), Y is a linear combination of normals
which is itself normal with mean E(Y)=Xb* and variance V(Y)=
XH*- tX' + h - tiT:

f(Y) :(2�r)- r/2l V (Y)l- ' /2 exp[ - � hQ ] (4.10)
where

hQ = (Y- Xb*)' V-t (y)(y_ Xb*).

This expression can be rewritten by defining N* -- h - �H* and by observing
that

V -t (Y) -- (XH*- tX ' + h-tiT)- t -- h(l r - X(X'X + N*)- tX ')
I v (y)[ -t --hTIN*llN*+X'XI -t.

Letting N--X"X and b=(X'X)-�X'Y, and after some manipulation, the
quadratic form Q can be written as either

Q--(Y-Xb)'(Y-Xb)+(b-b*)(N*-t +N-t)-'(b-b*) (4.11)
or,

Q -- (Y - Xb*)'(Y - Xb*) - (b - b*)'N(N* + N) - iN(b- b*). (4.12)
By inspection of (4.10), the data favor the hypothesis in question if Q is
small. Q is written in (4.11) as the minimum error sum of squares plus a
factor that depends on the difference between the least-squares estimate b
and the prior location b*. It is apparent that a model is to be judged in
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terms of not only its R 2 but also by the "plausibility" of its estimates. In
fact, (4.12) describes Q as an error sum of squares using the prior location
as the estimate minus a factor also depending on the difference between
b and b*. Thus Q is a number between (Y-Xb)'(Y-Xb) and (Y-Xb*)'
(Y-Xb*), which suggests that a model's performance should be judged
not in terms of the acceptability of b per se, but rather in terms of the R 2
when a more acceptable coefficient vector is employed.

Of course, the case of known process variance, h-t, is of little practical
interest. If we use a conjugate prior with uncertain h, these results gener-
alize straightforwardly. Let (lB, h) have the distribution f�v(lBIb*,
h - IN*- t) f� (hls2, v,) where f�, is a multivariate normal distribution with
mean b* and variance matrix h-tN *-t and f� is a gamma distribution
with location and scale parameters s�2 and vt. The predictive density then
becomes a multivariate Student function

/(Y) = f f/(vl lB, h)(lB, h)alBah

=k(v,,r) t/'(p t _el
M = I T- X(N* + X'X) -

IMI--IN*I[N* +X'Xl -t

where

(4.13)

Note that Equations (4.13) and (4.10) are somewhat similar monotonic
functions of Q.

Learner (1970) provides an approximation to the marginal likelihood
when the normal prior for iB is independent of h; Dickey (1971), for the
more general case of a Student prior for lB, writes the marginal likelihood
as a one-dimensional integral.

4.5 Weighted Likelihoods: Diffuse Priors

The critical defect of a Bayesian analysis of data is that prior d�stributions
�re both personally difficult to specify and also subject to variation among
interested people. As a consequence, a Bayesian analysis based on any
particular prior is of little interest. Instead, a researcher is obligated to
report as well as possible the mapping from priors to posteriors, thereby
servicing a wide readership and also highlighting those features of the prior
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that are critical in this sense. Posterior probabilities based on a particular
prior are of interest if the particular prior is characteristic of a class of
interesting priors and if the posterior implied by this prior is "essentially
the same as" the posterior for all priors in the class.

For example, in the usual analysis of the linear-regression model the
posterior distribution corresponding to the diffuse prior (lB uniform) is of
interest because there is a wide, easily identifiable class of priors that are
dominated by the data and that, therefore, lead to posteriors essentially the
same as the posterior corresponding to the diffuse prior. Unfortunately,
this is not also true for posterior probabilities of composite hypotheses,
since various priors that are all relatively diffuse and "noninformative"
lead to radically different posterior probabilities.

Making use of Equation (4.13), for example, the Bayes factor in favor of
H i relative to H i is
f(YIHi) k(vu, T ) IN?[ t/: [N*i+XjXil -t/2 s5 T (vt,+Q,/s�i) -('"+T)/2
f(YlHi) k(%,T) INfl '/2 INf+XjXi[ -t/: s?j T (%+Qffs�2i)-(�,,+T)/2

(4.14)
This formula involves the ratio [N�]t/2/lNf{t/2. As we let the matrices N*
become small to reflect decreasing information about the coefficients, this
ratio converges to the indeterminate ratio of two zeroes, which can take on
any number between zero and infinity, depending on the assumed speeds
of convergence.

We may also set v t to zero, to let the prior for h be diffuse. Three
obvious ways of making our prior for lB diffuse (N*-,0) are to define
N*--Oln or N*--{Y� I� or N*=({Y�)X'X and let the scalar � go to zero.
As the reader may verify, these lead to three different limiting expressions:

f(YIH� ) /f(YIHj ) =

0 if ki> k�

/

f(YIH�) [ [XSXjlI'/:[ ESSjf(yIH�) � {x,x,I ] ESS,

/(yIH) [ ESS )T/:
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where ESSi--Y'(I-X�(XjXi)-�X�)Y. Each of these expressions is repre-
sentative of the posteriors corresponding to a mathematically well-defined
class of diffuse priors, but no class has an unambiguous claim to represent-
ing "vague" prior information. Thus the class of posteriors corresponding
to diffuse priors is not well defined, and the posterior corresponding to a
particular kind of diffuseness is of reduced interest. This contrasts with a
posterior for the coefficient vector iB, which is the same under all (limiting)
definitions of diffuseness.

We can see from another viewpoint the problem with the diffuse priors
by examining the distribution of Y. The variance of Y is

V(Y)--XV(iB)X'+ V(u).
Those linear combination q/Y that are orthogonal to the columns of X,
�'X--0, have variance independent of V(

V (�'Y) -- �'X V( iB )X'�+ �' V(u)�

Thus as V(i� ) explodes, the predictive density on the T-k dimensional
subspace of Y defined by �'X--0 maintains a finite variance. An interpre-
tation of this might be that predictions about joint events in �he full
T-dimensional space are called off, but predictions on certain subspaces
ire still on. The subspace over which predictions are proper clearly
�epends on X. Since we can compare the predictive performance of two
models in a nonarbitrary way only if the two models are predicting the
mme' events, it will prove impossible to choose models without informative
>riors. This statement holds, incidentally, even when the number of ex-
>lanatory variables is the same in all models, since although the dimen-
donalities of the predictions are the same, the prediction spaces are
tifferent unless X is the same for all hypotheses.

This dilemma does have a potential escape. Instead of seeking diffuse
>riors, let us find dominated priors, that is, let us explore the behavior of
.he marginal likelihoods as sample evidence accumulates. As T, Q, and
�['X grow, Equation (4.14) is well approximated by

S(YIH) ---c { ! [ Es-, ] (4.15)
�'here c is a constant that does not change with sample size. Like the prior
}dds ratio, this constant will come to be dominated by the other terms. By
he same argument, if the explanatory variables come from a stationary
}rocess, X'X/T will converge to a constant, and a useful approximation is

S(YI Hi) ESS.
--- cT(- -- TM / (4.16)(YIm) [ ESS, ! '
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Equation (4.15) has one obvious defect. It is not invariant to scale
transformations of the explanatory variables. By a suitable change in the
units of measurement, Ixxjl?lX;Xl can be made to favor any hypothesis
(if each has at least one explanatory variable not found in any of the
others). On the other hand, an argument can be made that some adjust-
ment should be made for the variability of the explanatory variable set, as
is done by this term. If there is a constant term in the regression, then [X'X[
is proportional to the determinant of the matrix of moments about the
means of the nonconstant variables or the generalized variance of the
explanatory variable set. Thus, by Equation (4.15), a model that enjoys a
richly variable set of explanatory variables is expected to yield a smaller
error sum of squares than a model with a poorer set of explanatory
variables.

A formula that is both invariant to scale transformations and adjusts for
the variability of the explanatory variable set is

f(YlH�) { }Rj[ �/2 I ESS. \ r/2
[ Ess, !

where R� is the matrix of correlation coefficients of the explanatory
variables. Note that }X'X]-- TnIRllI�= �0�2 where 0�2 is the sample estimate of
the variance of the/th explanatory variable. Equation (4.17) thus involves
the assumption that IN*l/II� 2 is constant across models.

Which of these many formulas are we then to choose? The following
properties do seem desirable:

a. There must be no arbitrary constants.
b. The posterior probability of a model should be invariant to linear

transformations of the data.

c. There should be a degrees-of-freedom adjustment; of two models that
both yield the same ESS, the one with the fewer explanatory variables
should have the higher posterior probability.

d. A model with a richly variable explanatory variable set should be
expected to yield a smaller ESS than one with highly collinear data.

Of these properties only (d) seems to be open to serious question,
because by a linear transformation any set of explanatory variables can be
made to be orthogonal. As a consequence, (d) is in conflict with (b). The
formula that satisfies (a), (b), and (c) is Equation (4.16), currently this
author's favorite. If there is an obvious parameterization such that
IN*t/1I�O� 2 is constant across models, than Equation (4.17), which does
adjust for the variability of the explanatory variable set, is preferred.

It should be emphasized that the dominance notion is not really a
solution to the problem, even though it leads unambiguously to formulas
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such as Equation (4.16), since in order to apply these formulas we need to
know whether the sample does, in fact, dominate the prior. For any proper
prior, no matter how diffuse, there are observations that make Equation
(4.16) a very poor approximation to (4.14). The only way to know if the
particular sample does, in fact, dominate the prior is to specify fully the
prior, but having done that Equation (4.14) applies.

For other discussions of improper priors for this problem see Jeffreys
(1961), �nornber (1966), Geisel (1969), Lempers (1971), Zellner (1971), and
Dagenais (1972).

To conclude this section, we have seen that various reasonable defini-
tions of diffuseness lead to rather different posterior probabilities of
composite hypotheses. This makes posterior probabilities computed from
any particular formula less interesting. This author has the personal
opinion that the problem is of academic interest only, since a prior that
allocates positive probability to subspaces of the parameter space but is
otherwise diffuse represents a peculiar and unlikely blend of knowledge
and ignorance. Parenthetically, what often appears to be choice among
potentially true models is, in fact, the choice of a simple model that works
well for some decisions. In other cases, hypothesis testing is used to
introduce into the analysis uncertain prior information about parameters.
These as well as other specification searches are discussed in detail in
subsequent chapters.

4.6 Conclusion

To conclude, let us reconsider the five problems mentioned in the in-
troduction, this time providing answers:

Answer 1. Classical hypothesis testing at a fixed level of significance
increasingly distorts the interpretation of the data against a null hypothesis
as the sample size grows. The significance level should consequently be a
decreasing function of sample size.

Under one definition of diffuseness we saw that the posterior odds ratio
in favor of the alternative hypothesis is the prior odds times the factor

{ ESSo I r/2

We say that the evidence favors the alternative hypothesis if B > 1, which
can be written in terms of the F value defined in (4.2) as

F> T-k (T�/r-1)
P
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where p--k�-k o is the number of restrictions. Table 4.1 provides these
critical values as a function of sample size T, the degrees of freedom T- k
and the number of restrictionsp. For comparison, the critical value of the
F test at the .05 level are also included, and we observe the general resultthat a Bayesian with this kind of prior requires much larger F values assample size increases.

Answer 2. There is nothing special about complex, nonnested structures
of hypotheses. The posterior probability of an hypothesis H i is P(Hi[ y)=P(YIHi)P(H,)/Y'JP(Y}Hj)P(ttfi regardless of the structure of thehypotheses.

Answer 3. The existence of prior information about the parameters in-
fluences hypothesis testing in the sense that a hypothesis is to be judged ata priori likely values of the parameters as well as at those values favored bythe data.

However, there does not seem to me to be a proper prior distributionthat would lead to the common procedure of discounting an R 2 in fourincreasing steps, depending on whether a parameter is significantly differ,ent from zero and the right sign, insignificant and the right sign, insignifi-cant and the wrong sign, and (worst of all) significant and the wrong sign.Although the normal priors discussed previously inadequately captureinformation about signs, they lead one to hope that his estimates areinsignificantly different from his prior mean. Take the case when ill isknown to be b* and the prior for h is diffuse, f(h)crh -�. The marginallikelihood is then proportional to

f(Y[H)cr fh T/2-'exp[-
-- [ ESS +

-- ESS - T/: ( , + F Tk_--�) - T/:
where F is the F statistic for testing ill--b*. The larger is this F value, theless isf(Y[H) and the less likely is the data to have been generated by thismodel. Thus you are hoping for insignificance, not significance.
The "bigger is better" philosophy embedded in the usual procedurewould seem to require an improper prior that says "bigger is more likely."For example, given the sample mean � which is distributed normally withmean bt and variance a:/T and a prior for bt that is uniform between zeroand M,' the Bayes factor in favor of the hypothesis _bt--0 versus the
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Table 4.1

Bayesian and Classical Critical Values of the F test
T-k = 1 2 3 4 5 10 50 100 1000

k--1 0.41 0.88 1.24 1.52 1.74 2.44 4.01 4.68 6.93
2 0.44 0.83 1.14 1.39 1.60 2.30 3.95 4.64 6.92
3 0.41 0.76 1.04 1.28 1.48 2.18 3.89 4.60 6.91

p--1 4 0.38 0.70 0.96 1.19 1.38 2.07 3.83 4.57 6.91
5 0.35 0.64 0.89 1.11 1.29 1.98 3.78 4.53 6.90

10 0.24 0.46 0.65 0.83 0.99 1.62 3.53 4.37 6.87
20 0.16 0.30 0.44 0.57 0.69 1.20 3.13 4.07 6.81

5%point � 161 18.5 10.1 7.8 6.6 4.96 4.03 3.94 3.85

k= 1 0.50 1.08 1.50 1.81 2.04 2.73 4.17 4.78 6.95
2 0.54 1.00 1.36 1.63 1.86 2.57 4.10 4.75 6.94
3 0.50 0.90 1.23 1.49 1.70 2.42 4.04 4.71 6.94

p=2 4 0.45 0.82 1.12 1.36 1.57 2.29 3.98 4.67 6.93
5 0.41 0.74 1.02 1.26 1.46 2.17 3.92 4.63 6.93

10 0.27 0.51 0.73 0.92 1.09 1.75 3.66 4.46 6.90
20 0.17 0.32 0.47 0.61 0.73 1.27 3.23 4.15 6.84

5% poinff 200 19.0 9.55 6.94 5.79 4.10 3.18 3.09 3.00

k--1 0.61 1.33 1.83 2.17 2.42 3.08 4.34 4.90 6.97
2 0.67 1.22 1.63 1.93 2.17 2.87 4.27 4.86 6.97
3 0.61 1.08 1.45 1.74 1.97 2.69 4.20 4.82 6.96

p--3 4 0.54 0.97 1.30 1.57 1.80 2.53 4.13 4.78 6.96
5 0.48 0.87 1.18 1.44 1.66 2.40 4.07 4.74 6.95

10 0.31 0.57 0.81 1.01 1.20 1.,(; 3.79 4.56 �6.92
20 0.18 0.35 0.51 0.65 0.79 1.35 3.33 4.24 6.86

5%point � 216 19.2 9.28 6.59 5.41 3.71 2.79 2.70 2.61

k--1 0.75 1.66 2.25 2.62 2.88 3.48 4.52 5.01 7.00
2 0.83 1.50 1.97 2.30 2.55 3.22 4.44 4.97 6.99
3 0.75 1.31 1.73 2.04 2.29 3.00 4.37 4.93 6.99

p=4 4 0.66 1.15 1.53 1.83 2.07 2.81 4.30 4.89 6.98
5 0.58 1.02 1.37 1.66 1.89 2.65 4.23 4.85 6.97

10 0.35 0.64 0.90 1.13 1.32 2.05 3.92 4.66 6.94
20 0.20 0.38 0.54 0.70 0.84 1.43 3.43 4.33 6.88

5%point � 225 19.25 9.12 6.39 5.19 3.48 2.56 2.46 2.38

k--1 0.93 2.10 2.79 3.20 3.45 3.95 4.70 5.13 7.02
2 1.05 1.86 2.40 2.76 3.01 3.63 4.62 5.09 7.02
3 0.93 1.60 2.07 2.41 2.67 3.36 4.54 5.05 7.01

p--5 4 0.80 1.38 1.81 2.13 2.39 3.13 4.47 5.00 7.00
5 0.69 1.21 1.60 1.91 2.16 2.93 4.40 4.96 7.00

10 0.39 0.73 1.01 1.25 1.47 2.23 4.07 4.76 6.97
20 0.21 0.41 0.59 0.75 0.90 1.53 3.55 4.42 6.91

5% point � 230 19.30 9.01 6.26 5.05 3.33 2.40 2.30 2.22
"T--number of observations, k = number of parameters, p = number of
restrictions being tested.
bClassical critical value at the .05 level of significance.

hypothesis # > 0 is
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(2o2/V)'/2exp[-

f0 4 -( )%ov

M-�P*(O� pt�M)

where z 2 is the square of the normal statistic for testing pt=O, z 2--
72/(o2/T), and P*(O < pt < M) is the posterior probability that 0 < pt < M
given an improper prior for pt that is uniform on the whole line. The
numerator of this Bayes factor is unambiguously a decreasing function of
z 2. The denominator, ho_wever, may either increas_e or decrease with z 2
depending on whether Y is in the interval 0� Y� M or not. It may,
nonetheless,_be approximately true that the Bayes factor in favor of pt > 0 is
great_est if Y is positive and z � large, relatively great for � positive, small
for Y negative, and especially small if Y is significantly negative.

Answer 4. Measures of location and dispersion of a parameter vector
follow necessarily from the probability function

/(g, lv) = Z/(/ilV,
J

The interpretation of this simple formula is not entirely trivial. We have
yet to identify the slightly confusing p.d.f. f(/]ilY,//�) for i�j. It
summarizes opinions about a parameter in the ith model given that thejth
model generated the data. Conditional on the jth model the data come
from the distribution f(YI �,//�) and therefore contain information only
about �. It may, nonetheless, be the case that /3� and � are a priori
correlated, and we would then obtain information about/3�, or in terms of
probability functions f(

For example, consider the hypotheses H�: Y-- x� + za + � and H 2: Y--'
x�+wiS+p, with parameter vectors 18�--(�,a), 182---(�,15 ), and with the
first parameters thus perfectly correlated. In this case the probability
function for �=fl� =fl� is the mixture f(�[H�,Y)f(H�IY)+
f(�lH2, Y)f(H2IY) where .f(�lH, Y) is the usual posterior distribution for
given model H�. Letting �r�=P(H�IY ), m�=E(�IY, H) and V�= V(�IY, H )
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the mean and variance of � are

E(�IY ) = � %rni

E (21v)- ( Z im,) 2

= � �r�Vi + [ Y. �srn�- ( � �r/n,) 2]
-- +

where the last term in the brackets is the variance of a discrete probability
function that allocates probability % at location m i. The point we wish to
draw attention to is that although the mean is a mixture of the means from
each of the regression equations, the variance exceeds a weighted average
of the variances by an amount that depends on the variability of the
estimates across equations. Thus although the several regressions may
individually yield highly accurate estimates, if those estimates are very
different and if given the data there remains considerable ambiguity about
the model, the result may be considerable uncertainty about the parameter.

Next consider hypotheses that have no common parameters, and assume
furthermore that the parameters are completely independent across
hypotheses. Thus if the data are generated by the first model, no informa-
tion can be gathered about coefficients in other models; in the foregoing
notation we must have f( 18�[Y, tt�)--f( [3il Hi). In order to apply the formula
we must, of course, also determine f(18i[//�). The reader may verify that
without saying so in the previous example we have set f(�3i[//�)--f(�3i) for
all j. In words, our prior information about the coefficient 18� is indepen-
dent bf the hypothesis that applies. It is more natural in this second
situation to assume that f(18i[//�) is a degenerate probability function that
assigns all probability to a point. For example, consider the pair of
hypotheses H�:Y=x�+u, H2:Y=ziS+u. We may either say that the
distribution of 15 given H� assigns all probability to the value zero, or we
can define a new parameter fl called the effect of z on Y �which is zero
given the first hypothesis. In either case, the distribution of the parameter
is a mixture of the origin with weight 1-P(Hi]Y ) and the conditional
posterior f([�i]Hi, Y) with weight P(Hi[Y ). If we prefer to have f( fii[//�) --
f(18i) we will obtain a posterior distribution for 18 i that is a mixture of the
prior f(18i) with weight 1-P(Hi[Y ) and the conditional posterior
f( 18i]H i, Y) with weight P (Hi[Y). The resultant increased uncertainty about
the parameter, due to uncertainty about the model, is obvious.
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Answer 5. A researcher who uses more than one model can report the
overall effectiveness of his research in terms of the average marginal
likelihood

f(Y)-- �,, f(YIHi)P(H,).
i

Assuming equal prior probabilities of M different models and the diffuse
prior result (4.16), this becomes

M

f(Y)o:M -� �] T -&/2 (ESSi)-r/2.
i=l

We can transform f(YlHi) into an R 2 by the formula

f(YIH,)oc T -�,/2 (1- R,.2) -r/2
which solves to

f(�lHi)

The same transformation may be applied to f(Y) to obtain a "grand" R 2

(l_R,2)=[ T-��/2] 2/Tf(V)

where k* is a (fictitious) average k and R '2 is the grand R 2. Assuming
equal k i or ignoring the T k*- g terms we have the "overall" R 2 as

M

i�l

M

-2/T

This formula is intended to penalize specification searches, since estimated
models with low R 2s tend to lower the grand R 2. The penalty is not as
great as you might imagine, however. Grand R 2s are reported in Table 4.2
which makes use of the assumptions that the best model yields an R 2 equal
to .9, and that all the others yield identical R 2s. The lowest grand R 2 in the
table is .43, which requires 99 models with zero R2s and a very small
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Table 4.2

Grand R 2's

M=2 4 10 100

T=5 .87 .64 .50 .43
R�=O 10 .89 .87 .84 .75

100 .9 .9 .9 .89

T=5 .89 .85 .83 .8
R�=.8 10 .89 .87 .85 .81

100 .9 .9 .9 .89
M-- number of models, T-- number of observations
R 2 =.9; = .....

sample size, T= 5. For reasonably large sample sizes compared with the
number of models, the grand R 2 is almost equal to the maximum R 2. This
result derives from the fact that for reasonably large T, tlle marginal
likelihoods are extremely sensitive to R 2. Imperceptible differences in R 2s
translate into large differences in posterior probabilities, and. all but the
best model wi[11 be assigned nearly zero posterior probability.
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In this chapter we discuss searches designed to inte�
pret :multi-dimensional evidence. A completely spec�
fled model usually contains a large number of collinea
explanatory variables, and the least-squares estimate
that result are rarely "acceptable." Various constrain!
on the parameters may be imposed to "improve" th
estimate, and one among many constrained leasl
squares estimates is usually selected to convey the dat
evidence.

A pair of fictitious examples illustrate the phenom{
non.

Example 1. The demand for oranges D is thought t�
depend negatively on the price of oranges P, positive12
on the price of grapefruit �r, and positively on mone2
income Y. The following regression is estimated (wit]
standard errors in parentheses)

logD=7.0+ .1 1ogP+ .2 logit+ .6 log Y.
(.3) (.4) (.2)

Unhappily, the direct price elasticity--the coefficient c
log P---has the wrong sign. Neither price coefficient i
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significantly different from zero. In an effort to "improve" these results,
the following constrained regression is estimated:

(.1) (.2)

The constraint that implies this equation is suggested by economic theory;
it is not rejected at the 5% level, and it yields estimates that are both the
right sign and[ also statistically significant. The second regression is, there-
fore, selected to convey the content of the data.

Example 2. Consumption expenditures Ct in quarter t are thought to
depend especially on income receipts in that quarter Yt, but also somewhat
on receipts �t previous quarters Yt-�, Yt-2 ..... To estimate this relation-
ship, the explanatory variables Yt, Yt-�,... are sequentially included in the
equation until one of the variables becomes statistically insignificant. This
procedure yields the estimated relationship

=4.0+ .3 Yt + .4 Yt-� + .1 Yt-2.
(.2) 61) 61) (.1)

These two examples illustrate, first, a contracting search, in w]�ich a series
of constraints is imposed on a general model and, second, an expanding
search, in which the assumptions implicit in an initial model are relaxed
and a variety of more general models are estimated. In both cases the mogt
general model leads to, or would lead to "unacceptable" results. In the
case of the expanding search it is assumed at the outset that the data could
not "support" the most general model. A severe set of constraints is
initially imposed and then gradually loosened. The contracting search, on
the other hand, occurs when the researcher discovers that, in f,,ct, the data
would not support the most general model, and he imposes a series of
constraints designed to "improve" the results.

The most imaportant feature of these examples is the fact that the
constraints are thought to be, a priori, likely. If the constraints were
certain, they would have been imposed without testing. The researcher is,
in fact, less confident than this. He feels that the constraimt may be
"approximately true," but he checks with the data to "make sure." If the
constraint "works," he will impose it; otherwise he will not. To put this
another way, 'the researcher has a priori knowledge about some parameter
or some linear combination. If the sample evidence is sufficiently strong,
he will disregard that information. Given weak evidence, he may prefer to
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use his a priori estimate. By definition, then, the intent of an interpreti�
search is to integrate into the data analysis uncertain a priori informatio�
In the absence of such information, no interpretive search should I:
performed.

The Bayesian solution to this problem is quite straightforward. The da!
evidence is summarized in terms of the unconstrained equation and i
sufficient statistics. The evidence is interpreted by bouncing the data off
prior distribution where the word "interpret" refers to the process �
updating one's opinions from prior to posterior distribution in response !
the data evidence. A Bayesian evaluation of interpretive searches thi
amounts to the question: does an interpretive search lead to a descriptic
of the uncertainty similar to a posterior distribution corresponding to son
prior? A secondary issue is whether anyone actually holds that pri�
opinion.

The failure of ad hoc interpretive searches is twofold. First, it may [
difficult to find a prior distribution that makes a search seem reasonabl
But much more important is the fact that the output of an interpreti�
search is an interpretation of the data evidence built on some implicit pri�
information. This interpretation is relevant to the reader only to the exte�
that he accepts the implicit prior information as his own, and only then
he understands that it iis already built into the result. Publication of tl
output of an interpretive search is thus equivalent to publication of
posterior distribution without either the sample result or the prior. Public
tion of the search process is useful only in simple cases when the procedu
simply and unambiguously reveals the prior. Most interpretive searches a
terribly complex and would be almost impossible to comprehend even
they were fully reported. An interpretive search is thus an inefficient w:
to use ill-defined, uncommunicable prior information.

That uncertain prior i[nformation is used in the evaluation of nonexpe�
mental evidence is incontrovertible. Nonexperimental models worthy
degrees of belief almost always have large numbers of collinear explan
tory variables. The amount we can learn from the data about individu
parameters in these models would be almost nil if there were no pri.
information that effectively constrained the ranges of at least some of tl
parameters. The mining of data that is common among nonexperimen!
scientists constitutes pri:ma facie evidence of the existence of prior inform
tion. Arguments concerning the use of prior information should th
address the question of how rather than whether prior information shou
be used.

There are at least tl�ree alternative approaches that may be taken wi
respect to the use of prior information in a regression model.
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1. Complete and understandable description of the sample likelihood func-
tion. We may decide that a researcher should report only the likelihood
function. Prior information is difficult to specify personally and may
vary considerably among intended readers. We may prefer, therefore,
to report 'the evidence and not to interpret it.

2. Bayesian analysis. In one or two dimensions, a likelihood function may
be straightforwardly described. In higher dimensions, *L likelihood
function defies intelligible reporting. Described least pretentiously, a
Bayesian analysis is merely a tool for exploring likelihood functions.
Difficulties in specifying a personally or a publicly acceptable prior
distribution should be dealt with by performing a sensitivity analysis
designed 'to characterize as generally as possible the mapping from
prior to posterior distribution. In fact, unless he has a strong reason to
believe that his priors are somehow superior to his readers', a re-
searcher's only obligation is to report this mapping as informatively as
possible.

3. Interpretive search. The unintelligibility of the complete likelihood
function has led most researchers to use interpretive searches that
involve fitting and refitting the equation with various a priori likely
constraints. One of the perhaps hundreds of equations is selected and
reported, often as if the others had never been estimated. The resulting
estimate involves an unknown and perhaps an undesirable mixture of
prior and .sample information. It, furthermore, constitutes an interpre-
tation of the evidence built, surprisingly, without a theory of interpre-
tation.

The choice between a complete description of the likelihood function
and the Bayesian approach involves only a disagreement over how to
report results. A Bayesian merely explores and reports the region of the
parameter space that is favored by the data by computing how the
likelihood function affects various prior distributions. In higher dimen-
sional problems, the Bayesian approach seems viable, but the likelihood
approach does not, which is another way of saying that I think it is
possible to identify and to choose the critical features of multidimensional
priors. The choice between the Bayesian approach and the interpretive
search approach is, however, a choice between theory and "aq hockery."
Interpretative :searches lead to ill-defined use of ill-defined prior informa-
tion. They are an abuse that has led many to discount completely all
statistical analyses with nonexperimental data. It is highly misleading,
however, to regard them to be complete evils. Rather, they are a common-
sense solution designed by intelligent men to complete an unworkable
incomplete theory of inference. As we see in this chapter and again in later
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chapters, intuition and c, ommon sense often lead in a desirable directio�
What we are proposing is only a formal structure to police our intuitiv
instincts and to help avoid judgmental errors. Never do we desire
cessation of common sense.

The rules that are used to direct an interpretive search are rarel
sufficiently well defined to be written mathematically. An incomplete li',
of hypothetical rules will give some flavor of the great menu of searc
strategies. For contracting sequential searches, estimate the complete uncot
strained model and do one of the following:

a. Drop all variables that have t values less than some cutoff point.
b. Drop the variable with the lowest t value, refit the equation, an

continue until all coefficients have significant t's.
c. Specify an a priori sequence of variables. If the first is insignifican

drop it and refit. Proceed similarly with the second, and terminate t�
process when a variable is reached that has a significant t.

d. Apply a linear transformation to the explanatory variables that mak�
them orthogonal, and drop any of the new variables with insignifica�
coefficients.

e. Proceed as in either (b)-(d) but terminate the search when t[
coefficient on a particular variable is (1) positive or (2) significant
positive or (3) not siignificantly negative.

For expanding sequential searches, estimate a constrained model and �
one of the following:

a. Add sequentially the omitted variables in a predetermined order ar
terminate when a variable has an insignificant coefficient.

b. Add only one other variable selected to maximize the R 2.
c. Proceed as in either (a) or (b), but seek to find an equation that yieh

a significantly positiive coefficient on a particular variable.

For nonsequential searches, select the regression equation that yields:

a. The highest R2.
b. The biggest percentage of statistically significant coefficients.
c. Estimated residuals that are not autocorrelated.
d. The most number of coefficients with the "right" signs.
e. Some complex combination of (a)-(d).

Only the simplest of these rules yields to a theoretical classical analys
In this chapter we explore a few of them from that point of view and ma:
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others from the Bayesian view. As far as a Bayesian is concerned the
effectiveness of a rule depends on how well it implements prior informa-
tion and how relevant that prior information may be. We argue that this is,
in fact, the ,only question that should be asked. Since classitcal inference
includes no 'theory of learning and no prior information, classical analysis
instead evaluates rules in terms of their sampling properties. This material
is discussed in Sections 5.2 and 5.3, the first dealing with the analysis of
several simple ad hoc rules, the second dealing with the Stein-James
estimators and "ridge" estimators.

This classJical approach supposes that the researcher has a formal point
estimation problem with a conveniently chosen quadratic loss function.
Interpretive search rules are then evaluated in terms of the expected loss
they imply. The formal shortcoming of this approach is that, at best, it can
determine only whether a search estimator is admissible or not--an estima-
tor being inadmissible if there exists another estimator that yields smaller
expected loss regardless of the true parameter value. But since the class of
admissible estimators is enormous, ruling out inadmissible estimators is
only modestly useful. A classical approach often concludes (rather shee-
pishly?) that choice among the set of admissible estimators depends in
some vague way on prior information.

It makes sense to me to begin the analysis with prior infor-
mation--Bayes estimators derived from proper prior distributions are
always admissible, anyway. More importantly, I think thte estimation
framework ,floes not capture the essential motivation for interpretive
searches, that is the pooling of prior information with the data informa-
tion. It thereby encourages the arbitrary distortion of the data evidence,
since it sugg;ests that a "better" estimator results by adjusting the least-
squares estimator toward a location not necessarily related to prior infor-
marion. Further discussion of these points is reported in Section 5.5.

In the first section the problem of this chapter is described as the choice
of constrained least-squares estimates, and it is shown that all constrained
least-squares estimates lie on an ellipsoid. One shortcoming ,of a classical
analysis is that it considers the very restricted problem of selecting one of
only two (arbitrarily chosen) points on this ellipsoid.

As mentioned before, classical analysis of search rules is reported in
Sections 5.2 and 5.3. A Bayesian analysis of the same estimation problem
is discussed in Section 5.4, and comments are given in Section 5.5. In
Section 5.6 we develop a correspondence between search strategies and
prior distributions. It is shown that certain classes of priors are implied by
certain search strategies in the sense that a Bayesian with such a prior can
(loosely) approximate his posterior distribution with a set of constrained
least-squares points.

MnltienllirmaHtv ie dlem,ee�d in �o�i,�n � "7

The Family of Constrained Estimates 12'

between the weak evidence problem and the interpretation problem. Multi
collinearity implies weak evidence in the sense that coefficient standar,
errors are large, but nothing can be done about that except getting mot
data. A more confusing consequence of collinearity is that the apparer
sample evidence about ,one parameter depends on the prior informatio
about other parameters. Collinearity, therefore, creates an incentive to us
carefully formulated prior information.

I do not believe that anyone could meaningfully specify a comple!
multivariate prior distribution. Furthermore, readers are certain to vary i
their judgments. For both reasons, it is necessary to perform a sensitivi!
analysis that determines the sensitivity of features of the posterior distribt
tion to changes in the prior distribution. Local sensitivity analysis
discussed in Section 5.7 and giobal sensitivity analysis in Section 5.8.

A game of definitions is reported in Section 5.9. The words identifiabl�
estimable, publicly informative, and the phrase "leads to a consensus" a�
shown to be equivalent. It is also pointed out that although a parameter
may not be identified, the experiment may nonetheless yield informatic
about 0 (because of prior dependence between 0 and some other param,
ters). Lastly, an example is reported in Section 5.10.

Before proceeding, one shortcoming of this chapter must be acknow
edged. Almost exclusively, our attention focuses on the choice of poi�
estimates, and tends to ignore the choice of interval around the estimat,
or other measures of dispersion. This reflects the state of theoretic
developments, not the hnportance of measures of dispersion.

5.1 Tim Family of Constrained Estimates

The problem under study in this chapter is the choice of one or mo
constrained regression estimates that jointly imply an "adequate" interpr
tation of the data evidence. As a preliminary it is useful identify the set
all constrained estimates. It is trivial to show that if all constraints of tl

form Rig =r are allowed, then any value of ig is a constrained regressk
for some value of R and r. If, however, we consider only constraints of tl
form Rig--0, the family of constrained estimates is an ellipsoid descfib�
in Theorem 5.1 and pictured in Figure 5.1. No interpretation of the choi
r=0 seems possible classically, but from the Bayesian point of view tt
amounts to assuming a prior distribution that is located at the origin.

THEOREM 5.1 (FEASIBLE ELLIPSOID). ,'1 constrained least-squares es
mate computed subject to a set of constraints Rig--0 lies on the ellipse

b
4
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ellipse

�Constroined least
squares points

Fig. 5.1 The ellipse of constrained least-squares points.

where b is the unconxtrained least-squares vector. Furthermore, any point
on this ellipsoid is a con�trained estimate for some R.

Proof.' Equation (3.14) in Chapter 3 is the formula for computing a
constrained estimate. Simply insert that value into (5.1). Conversely, any
point on the ellipsoid (5.1), say, i/�, is a least-squares estimate subject to the
constraint (b-IB)'X'XIB--0. (Verification left to reader.)

The set of constrained estimates described in Equation (5.1) is merely a
translated likelihood ellipsoid. It is located at half the least-squares vector
and travels through the origin and b. We argue below that if a researcher
can select the location but is unable or unwilling to describe more fully his
prior, then he should be interested in all points in this ellipsoid, but no
other points. Incidentally, any origin b* may be selected or, equivalently,
constraints of the form R(lB-b*)--0 may be considered. It is easy to show
that (5.1) continues to apply but with iB-b* and b-b* replacing lB and b.

An interpretive search is a procedure for selecting points from among
the set of feasible points (5.1). An interpretive-search estimator can thus be

Classical Evaluation o! Ad Hoc Rules 1�

generally defined as a weighted average of points on the feasible e!lipsoi,

where /�(R) is a constrained estimate and co(R) is a weight functior
Usually, only a finite subset of the feasible points is considered. Sometime
a set of at most k linearly independent constraints is identified, fo
example, fii =0, i = 1 .... ,k, and only estimates that involve subsets of thi
set of constraints arc computed. In two dimensions the constraints fi� =,
and fi2=0 imply the four different estimates illustrated in Figure 5.1: t
b{2}, bH}, and the origin, where b{i } is the estimate subject to the itl
constraint. Given k constraints, there arc 2 k ways of imposing them, and 2
different constrained estimates. � Let I bca subset of the first k integers; k
bz be a constrained estimate, then a (discrete) interpretative search estima
tar is

J�' -- E w, (V, X)b,, (5.2
1

where wc have written the weight function % to indicate its possibt
dependence on the data, Y and X.

The interpretive search estimator (5.2) can thus be built in three steps
(1) An origin is selected. 'This restricts the set of constrained estimates to li.
on the ellipsoid (5.1). (2) A set of k linearly independent constraints (,
coordinate system) is chosen. This further restricts the set of intcrestin.
constrained least squares points from the ellipsoidal continuum to a set c
2 k points. (3) Last, a weighting function %(Y,X) is identified.

Measured in terms of its effect on reducing the set of intcrestin.
constrained least-squares points, the choice of origin is the most critica
decision. After that, the choice of coordinate system is important. /
shortcoming of the classical analysis of interpretative searches now to b
discussed is its failure to comment meaningfully on either the choice c
origin or the choice of coordinate system.

5.2 Classical Evaluation of Ad Hoc Rules for Interpretive Searches
In this section we report a classical analysis of interpretive searches. Bot
an origin and a coordinate system for imposing constraints are assumed t.
be known before the analysis begins. Furthermore, only very speci�
weight functions may be considered.

�Computation of the 2 n regressions is discussed by Schatzoff et al. (1968), Gatside (1965), ar
Funrival (1971).
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Consider, first, the two variable linear regression
Y=xfl+z�+u, E(u)---0,,V(u)--o2I,

where Y,x,z and u are T x 1 vectors and fl and � are scalar parameters.
The least-squares estimator is

Z'X Z'Z ] [ x'Yz'Y ]
which is unbiased with variancc-covariancc matrix

v(V,g)= o2[ x'x x'z ]-' (5.3)[ Z'X Z'Z '
An alternative estimator with � set to zero (i.e., with z omittvd) is

�7 0

The expected value of/� is
E ( B ) = (x'x) - 'x'E (Y)

= (x'x)-'x'(xt� +zv) =/� + (x'x)-'x'zv.
The bias of (/�, �) is, therefore,

E[ '� - '�
a linear function of �, taking on the value of zero only at 7--0. The
�ariancc is straightforwardly calculated as

0 0

The classical theory of estimation suggests choosing between these two
:stimators on the basis of their sampling properties. This used[ to mcan
tiscarding (/�,�) because of its bias given in (5.4). That counsel has bccn
tisrcgardcd in practice; researchers often report (/�,�) cvcn when, with
�sscntial certainty, � is not equal to zero. Although the least-squares
�stimator has nfinimum variance among linear unbiased cstimators, few
�escarchcrs arc willing to accept "peculiar" estimates, and the standard
)pcrating procedure is to search for constraints that yield "acceptable"
;stimatcs. The fact that the resulting estimator is neither unbiased, linear,
�or "best" is no large deterrent to a person whose research project would
�c dubbed "fruitless" if it wcrc summarized in a nonsensical estimate.

The overwhelming body of nonexperimental data analysis that rests on
hc obviously shaky foundation of interpretative searches has understand-
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ably generated interest among theoretical statisticians. It is currently
popular now to discount unbiasedness as an irrelevant criterion conjured
up to make the problem soluble. Instead of an unbiased estimator, current
wisdom suggests an estimator that yields an estimate close to the true
parameter on the average. A tractable distance function for measuring
closeness is the squared deviation from the true value of the parameter,
and the resulting criterion is the mean squared error. For a one-dimen-
sional parameter 0 with estimator �, the mean squared error is defined by

us(0, o)--- E[(o- 0)210]
which is informatively rewritten as

USE (O,O )= E[ (O- EO+ EO-O )210 ]
: r(O )+(o- E[ 010]) 2

the sampling variance plus the square of the bias. An estimator according
to this criterion is judged desirable if it has small mean squared error. It is
readily seen that an estimator may be deemed desirable even though it is
biased, that is ff the variance: is reduced enough to offset the (square of the)
bias.

The multivariate generalization of this criterion is the mean squared
error matrix

:USE(O,O) = E[(0- 0 )(0 - 0 )'10]
= r(0 )+(o-E[ 01o])(o-E[

where 0 and {J are vectors. The reader may verify that the mean-square
error of any linear combination 2t'tJ of the estimators is

�SE (X'0, X'0) = X'�SE (0, 0)X
and it is desirable to have a mean squared error matrix be small in a
matrix sense.

Returning to our problem the mean squared error matrix of the least-
squares estimator is

mSE(b,g)=o2[X'X x'z ]-�z'x z'z ] (5.6)
whereas the mean-square en�or matrix of constrained least squares is

0 - (x'x)- ' (x'z) 1 '
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[f interest centers on fi, wc say the estimator/� is preferred to b according
:o the mcan sqrmrcd error criterion ff

o2 (x'x) -' + (x'x) -2(x'z)2 < o2(x'x-x'z(z'z)
?cidstein (1973) and Wallace (1964) write this inequality informatively in
erms of the ratio of the mcan-square errors

�4SE ( t� ) 2 2

'MSE (b) = 1.+ r;,z(z: r - 1) (5.8)
�here rxz is the correlation between x and z 2

d, =
tnd % is the "true t" for testing �--0

e[(x,x)(z,z)-(x,z)q
o'(x'x)

it is readily seen from (5.8) that the MSE of/� is less than the MSE of b if
md only if

�7 < I. (5.9)
Fhis identifies the region in the two-dimensional parameter space within
vhich MSE (l�) < MSE (b). Since the mean squared errors do m)t depend
�n fi, we may draw a one-dimensional graph of the mean squared error
'unction, Figure,, 5.2.

The reader should take note of the following features of this figure:
t. Neither/� nor b dominates the other in the sense of yielding 'uniformly

smaller mean squared error.
>. /� does best around the origin �--0 but since MSE(I�) is a quadratic

function of � whereas MSE(b) is just a constant, the relative inferior-
ity of/� is 'unbounded as � grows. The difference at the origin is a
function of r�.

:. The origin of this figure is completely arbitrary. That is, there is a
whole class of esfimators/�g. estimated by setting � to some arbitrary
value and calculating

= (x'x)-'x'(Y- zg*).
This estimator will have a relatively low MSE in the neighborhood of
� = g* but a relatively high MSE elsewhere. Figure 5.2 applies with g*

2If desired, the reader may consider the variables to have had their means removed.

Classical Evaluation of Ad Hoc Rules

(I - r 2) MSE (b) �
0

Fig. 5.2 Mean squared error functions.

y

as the origin and

replacing %2.

,2 .�_rFt, g*
gq[(x'x)(z'z)-(x'z) 2]

We have yet to discuss an interpretive search strategy, since nei�
nor/�. requires a search over estimates. The simplest �terpretive se
that has been analyzed involves calculating both b and fig. (for some
of g*) and picking the "better" estimate. No doubt, every concei�
criterion of choice has been used in practice. Theoretically, one parti�
criterion has been subject to much analysis: pick b ff the least-sqt
estimate of � is significantly different from g*; otherwise pick/�.. �E
statistic for testing the restriction �=g* is t�2.=(g-g*)J�/s2[a
z'x(x'x)-�x'z]-� and 'the "pretest" estimator more formally is

i�v(g*,ot)= b ff 2 2
. otherwise

where t� is the a/2 percentage point of the Student's distribution for s
arbitrarily chosen value of a.

It is readily seen that both b and ]�. are in the class of pretest estim�
with a -- 1 and a =0, respectively. The mean square error of other mere
of the class/� (g*,a) tend to be like the mean squared error of/�.
those values of � that are highly likely to yield insignificant values o
that is, for small values of (�_g.)2. Conversely, MSE(I� �) approxin
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MSE
MSE LEO*)

MSE (/�P(g*, a))

M$� (b)

Y

Fig. 5.3 Mean squared error functions.

MSE(b) when. b is most likely to be selected, that is, for large values of
(�_ g.)2. A t3qpical mean squared error function is depicted in Figure 5.3.

One desirable feature of MSE(� p) is that it is bounded. It exceeds
MSE(�g.) at 7--g* but attains its minimum there. There is a fimite region
in which it is the worst of the three estimators. [For other properties of this
function, see Wallace and Ashar (1972) and Feldstein (1973).]

We have now identified a two-dimensional infinity of estimates of
fl,�P(g*,a), - oo <g* < oo, and 0< a < 1. Choice of g* locates the region
in which we w�g do relatively well, and choice of a determines the amount
by which and the region within which this estimator "does better" than
ordinary least squares. Which are you to choose? There is simply no
answer to this question within the confines of classical inference. That
body of statistical theory determines the class of admissible esth�ators, but
does not provide a method of choice from this class. Clearly, however, the
choice must depend on where you want to do better than least squares.
This surely means the values of � that you think are most likely and that
means prior information about �. To quote Wallace and Ashar (1972, p.
177):

(1) If one has a strong prior that ,�2 is either greater or less than one half, then no
pre-testing is called for. One simply treates �--0 in the latter and �-�0 in the
former ff the mean squared error loss function is taken as a guide.
(2) Any intermediate prior about ,�2 can be reflected through chok� of a. The
stronger the belief that �=p0, the smaller should be the choice of a and conversely,
a should be larger the stronger the prior doubts about the inclusion of z. Of course,
if one could cast priors into a precise distributional form, there are both classical
and Bayesian procedures to by-pass the pre-testing altogether.

Classical Evaluation of Ad Hoc Rules

This last sentence brings up the question to be discussed subseque
"what is the best way of picking a prior: directly or indirectly by pick
search strategy? "3

Note that this pretest estimator is a discontinuous function of the,
since a small change in the data Y that is large enough to shift the esti
of g from "insi�gnfficance" to significance induces a discrete change h
estimate from fl to b. This discontinuity has been shown by Cohen (l
to imply that this pretest estimator is inadmissible; there is, necess�
another estimator that has smaller MSE for all values of (fl, �). We ca
our procedure of this discontinuity by having a continuous mixing sch
such as the following.

Let a weighted-ave. rage estimator be

where J� is a continuous function of the data. Feldstein (1970) deri,
value of J� independent of (Y, x, z) that minimizes the mean squared
of fl�:

=xuse + (l - ( )+
Setting the derivative of this with respect to X equal to zero yields

0-- 2XiUS� (�) -. 2(1 - X)�USe ( t�. )+ 2(1 - 2X)� (�- �)( t�g. - �.
which simplifies to

.�,g.
1 +*�2,g*

a function of �. This suggests using a weight proportional to the squa

3There are a couple other developments relating to this model that are worth R�portin!
Note that the usual a-level test of the hypothesis Ho: 7�g* againnt the.�ternative Ht:
is not an a-level test of the hypothesis that ils* is a better estimator than b. If we wa�
test those hypotheses we would test

(�-g*)�
z-z6: r,=,�. < 1

Toro-Vizcarrondo and W�dlace (1968) argue that H o and H� are irrelevant i� this conte
propose instead a-level tests of H 6 versus H�.
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�he t statistic used to test � = g*

x(�, x,z) = --

�here

�_-

1 + t2.

(g_g,)2

s2(z,z- x,z(z,z)-,z,x)-'
Fhese weights were first suggested by Huntsberger (1955) and have been
,'xplored in a Monte Carlo study by Feldstein (1973).

5,3 "Stein" Estimators and Ridge Regression

t is possible to dismiss the "pretest" estimators discussed in the', previous
ection, since they do not, in fact, dominate the least-squares estimator.
towever, a most provocative result of modern statistical theory is that the
east-squares estimator is, in fact, inadmissible when there are more than
wo coefficients and when the loss function takes a special form. 4 Consider
he k-means moclel

Y,---� + u, i--1,2 ..... k (5.11)
dth the �s ha,hng independent normal distributions with mean 0 and
arianee 02. The: least-squares estimator and also the maximum likelihood
stimator are �.o = Yi, i-- 1,2 ..... k, or, in vector notation, �0=Y. �Mssurning
he quadratic loss function L(�,�)--(�-�)'(�-�) Stein (1956) and James
nd Stein (1961) have shown that

The least-squares estimator �0 = Y is admissible for k < 2. That is, there
is no estimator that provides uniformly smaller risk (expected loss)
than �o-
For k > 3, an alternative estimator

has uniforrrfl[y smaller risk than �o. Thus �o is inadmissible.

kn excellent sunrotary of this literature is given in Zellner and Vandaele (1975). Our
scnssion is very abbreviatex[ and the reader should consult Zellner and Vandaele for a
flier treatment. We discuss here the analysis when 0 2 is known. There are similar develop-
ents for 0 2 unknown.

"Stein" Estimators and Ridge Regression
The general lhaear model Y=Xfi +u with u distributed normafly

mean 0 and variance matrix o21 can be transformed neatly into
k-means problem as in Sclove (1968). Let us find a matrix P such
P'X'XP = TI, where T is the number of observations. The linear model
be written

Y=XPP-�fi +u.
=W0+u

where W =XP and 0--P-�fi. Premultiplying now by W', we obtain
W'Y = W'W0 + W'u

= T0+ Te

with Te�.-.N(O, o2W'W)=N(O, o2TI). Dividing by T, we obtain
W'Y

--0+e
T

which is precisely the same form as the k-means problem with vari.
02/T. Thus the estimator

O�---(1
dominates least squares

when the loss function is (0- tJ)'(O- tJ). The corresponding estimators
loss function in terms of the natural parameters fi are s

/�o= VOo= PW'YT --- (X'X)- �X'Y = b

�J,=PO,=(1 (k-2)�2 =(1_ (k-2)02 /Y'Y ) PW'Yr y,y 1�o
L( fi,/� )-- (fi- I� )'P-"P-'(fi- � )= r-' (fi-�)'X'X(fi- � ).

�'he dependence of the loss function on X'X is apparently peculiar. It does make sens,
the following predicti�on problem. Let Yf be a fu�ture outcome of the dependent vat
.Y/7_.x�I�, .a�d let Y.� be a �nditional forecast Y/=x�. Then the squared prediction,ts {r�- �/j�=l,x)(�-�)+�9)'. Taking the expected valu� of this squared error and t
Ex�x)=X'X/T we obtain

)]= r-' (0- ti
The equation Ex:rx}=X'X/T makes sense if the explanatory variable vectors are ch
independently from a fixed multivariate distribution.
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The Stein-James estimator � is just least squares times a shrinkage
factor; to put it somewhat differently, it is a "weighted average" ,of the zero
vector and the', least-squares vector with weights depending on the X 2
statistics for testing the restriction 18--0, x2=Y'y/o2. 6 The possibility of
negative weights has led Baranchik (1964) to propose a "positive part
estimator." Except for the possibility of negative weights, the Stein-James
estimator is an :interpretative search estimator (5.2).

There is another class of estimators mysteriously known as ridge regres-
sion estimators that are shown in Section 5.5 to be interpretive search
estimators (5.21). Hoerl and Kennard (1970a, b) note that when X'X is
nearly singular,. calculation of the least-squares estimate b--(X'X)-�X'Y is
subject to % number of 'errors'." They propose the "ridge estimator"

�r (C) �--- (X'X --[- cl)- I X'y = (X'X --[- cl)- I (XtXb --[- c10),
where 0 is a zero vector and c is some mysteriously chosen scalar. It is
readily seen that this is a conditional Bayesian posterior mean with a
spherical prior centered at zero and thus has a Bayesian justification.

Hoerl and Kennard's (1970) non-Bayesian arguments in favo:r of "ridge
regression" are difficult for this author to understand. They prove that for
any 18 there is a constant c greater than zero such that the mean squared
error of [�r(c) is smaller than the mean squared error of least squares,
l�r(0). Even if we accept the mean-squared-error logic, this result has
limited applicability. The constant c is a function of 18, but if 18 is known,
there is an even better estimator than the ridge estimator. Hoerl and
Kennard also offer informal arguments in favor of ridge regression. They
(1970, p. 56) point out that when X'X has one or more small eigenvalues
"the distance from b to 18 will tend to be large. Estimated coefficients that
are large in absolute value have been observed by all who have tackled live
nonorthogonal data problems." It would seem that the average distance
between b and 18 is fully reflected in the sampling variance of b, o2(X'X) - t,
which does indeed have large elements when X'X has small eigenvalues. It
is hard to imagine that we could cure this disease by shrinking to some
arbitrary point. The outcome of such a procedure is, of course, to improve
the mean squared error at the arbitrary point, but the cost would usually
be worsened mean squared error. elsewhere. Whether we want to do this
must depend on prior information. This suggests that the last sentence of
the quotation in this paragraph might better read: estimated 'coefficients
that are far from a priori likely coefficients have been observed by all who
have tackled live nonorthogonal data problems.

�Fhe weights need not sum to one. In fact, � and �0 may be on opposite sides of the origin.

Bayes' Decisions and the Admissibility of Bayes' Rules

Note also that the origin and the "metric" are arbitrary. 7 "Shrinki
A18 to Ab* with observations generated by Y-Xb*--(XA-�)(A18- Ab*)
yields A/� - Ab* = (A'- �X'XA- � + cI)- �A'- �X'(Y - Xb*) = A(X'3
cA'A)-�X'(Y-Xb*). In terms of � this is

/� -- b* + (X'X + ca'a)- �(X'Y - X'Xb*)
= (X'X + cA'A)- �(X'Xb* + cA'Ab* + X'Y- X'Xb*)
= (X'X + cA'A)- �(X'Xb + cA'nb*)

where A'A is an arbitrary symmetric positive definite matrix. Thus
class of ridge estima�vrs is as wide as the class of conditional poste
means (3.28), but the mean-square error logic has nothing to say al:
either the choice of origin b* or the choice of "metric" A'A.

5.4 Bayes' U�ecisions and the Admissibility of Bayes' Rules
Although I do not think practical pretesting is intended to solve
estimation problems just discussed, it is important to understand ho,
Bayesian would solve lthem, if he had to. It is simple to show that he wc
estimate the parameters with his posterior mean. An important resul
that the posterior mean is nec.essarily an admissible estimator provi�
that the prior is proper. That an improper prior may lead to an inadm�
ble estimator should already be clear from the discussion of Stein's (15
result on the inadmissibility of least-squares, the posterior mean implied
an improper diffuse prior.

A general quadratic loss function can be written l(
-/�), where 18 is the k x 1 vector of regressio�n parameters, Q is a syrn�
tic positive definite (kxk) matrix, and 18 is a k x 1 decision vo
representing the estimate of 18.� Making use of the data Y, a Baye,,
would select an estimate � that minimizes expected posterior loss

mien E[(18--� )'Q( 18-� )]Y].
It is easy to show that regardless of the choice of positioe definite Q,
71n Chapter 3 it was shown that a posterior mean is different from the least-squares esth
because it attempts to satisfy the prior that asserts that (�-b*)N*(�-b*) is small The
"origin" refers to the prior mean b*, and the word "metric" refers to the prior preci
matrix N* that determines the distance function (�-b*)'N*(�-b).
SFor convenience, Q is not allowed to be positive semi-definite. If Q were semi-defini
Bayes estimator is nonunklue, and the results reported below would not formally at
However, even if Q is semi.definite, the posterior mean can be shown to be admissible.
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expression is minimized at the mean of 18

B (V) = � ( 18 IV),
where /� is written as a function of Y to emphasize the fact that the
posterior mean of 18 is a function of the data Y.

With a reasonable assumption about the prior for 18 it earn be shown that
the posterior mean is an admissible estimator, where the word admissible is
now to be defined precisely. The risk function given the decision nile a(Y)
is the expected loss conditional on 18,

R (18, a)-- �[ (18 -a)'Q(18-a)[ 0].
An estimator a�(Y) is said to be inadmissible if there is another estimator
a2(Y) such that R ( 18, az) < R (18, a�) for all 18 with strict inequality R ( 18, a2)
<R(18, at) for at least one value Of 18. Otherwise, a�O�) is said to be
admissible.

The risk function integrated with respect to the prior on 18 is known as
the Bayes risk:

B (a) = E[ R (0, a)].
The Bayes estimator E(18]Y) minimizes Bayes risk. To verify this, write the
Bayes risk as

B (a) = E[ E (18 - a)'Q( 18 - a)lY ]
and observe that the expression in the inner brackets is mhlimized for each
value of Y by setting a--

The following lemma on the uniqueness of the posterior mean is neces-
sary to prove the admissibility of the Bayes decision.

LEMMA. If an estimator a(Y) has the same Bayes risk as the estimator
E (181�), then a(Y) is identically equal to E(18[Y).

Proof' Write a(Y) as a(Y)=E(18 [Y)+d(Y). The Bayes risk of a can be
written

B (a) = E([ E(18[Y)+d(Y)-18]'Q[ E (18 ]Y) + d(Y) - 18])

-- E([ E ( 18 IY) - 18 ]'Q[ E ( 181Y)- 18 ]) + E ([ d(�) ]'Q[ d(�) ])
-- e (E ( 18 ]Y)) + E ([ d(Y) ]'Q[ d(Y)).

Thus B(a) exceeds B(E(18[Y)) unless the last term vanJishes, which can
occur only if d(Y)= 0 ff Q is positive definite.
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THEOREM 5.2 (ADMISSIBILI�TY OF THE POSTERIOR MEAN 1
quadratic loss function l (18,18)-- (18-/�)'Q(18 - l�) with Q p,
hire, a proper prior distribution for 18, and the normal lineal
model, the posterior mean � (Y) = E (18 [Y) is an admissible est,

Proof' Assurrte that i�0D is not admissible. Then there is �,
estimator a such that

R(18, a)<R(18, B) for all 18
R(18, a)<R(18,�) for some 18.

Integrating these risk functions with respect to the prior yields t
ity

but by assumption/} minimizes Bayes risk, and this last inequal
an equality. But by the previous lemma, if the Bayes risks are e

For a discussion of the admissibility of Bayes decision rules,
may consult Ferguson (1967, Section 2.3).

5.5 Comments on Interpretive Searches

There are two other approaches toward the problem of interpl
mensional evidence--the likelihood approach and the Bayesiar
Comments on interpretive searches from both these viewpoin
given.

LIKELIHOOD COMMENTS

An examination of the likelihood function reveals that there i
point that is unambiguously most favored by the data� This i
squares point, the maximum likelihood point. Reporting any,
constitutes a distortion of the evidence, an interpretation dep
plicitly or explicitly on prior information. A likelihood advo�
not to interpret evidence; he prefers only to summarize it. He
general to the estimation framework which implicitly or explici�
a well-specified decision problem that requires us to summarize
tainty about the parameters in a single point or estimate. Ort
such decision problem is even envisaged. Selecting a tractable lc
in such circumstances is as arbitrary as selecting a tractable pfi,
tion. In the absence of any loss structure (even a vague one) the
framework seems irrelevant. Of course, we tend to use the 1�
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estimation but what we call "estimates" are usually data :summaries, not
decisions. That is to say, interest centers on the least-squares estimators not
because they are best for some decision but rather because the estimates
together with confidence ellipsoids provide a useful data summary.

For the simple, two-variable linear-regression problem Y--x� fl� +x 2 t2
+ u the most straightforward way of summarizing the data evidence is to
draw twoq]imensional likelihood contours as in Figure 5.4. There are two
useful results on the geometrical relationship between a confidence
ellipsoid and various confidence intervals. The first is that the projection of
a suitably chosen ellipsoid is a confidence interval. In ]Figure 5.4, the
interval [b�-,b�-] is a 95% interval for/5v The second result is that the
length of a conditional confidence interval given some linear restriction
can be found by intersecting a confidence ellipsoid with a suitably chosen
linear manifold. In Figure 5.4, the length of a confidence interval for fl�
given a value of t2 is w*, found by drawing a line through tile center of the
ellipsoid perpendicular to the/52 axis. These two results are stated first, and
then further discussed.

THEOREM 5.3 (SUPPORTING HYPERPLANES). The region between any pair
of parah'el supporting hyperplanes of the ellipsoid ( � - b)'X'X(iB - b) ---
o2X�(1) is a 1-a percent confidence region for fl.

Fig. 5.4 Confidence ellipse.
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Proof' A pair of supporting hyperplanes, q/18--c� and
found by determining the extreme values of the function 4/18 ca
to the ellipsoid. Solving this simple constrained optimization prob
to the supporting hyperplanes

[
which is a 1 - a% interval for

THEOREM 5.4 (CONSTRAINED CONFIDENCE INTERVAL). The fun
evaluated on the intersection of the ellipsoid (� - b)'X'X(]8 - b)
and the linear manifold R(]8 - b) -- 0 attains an interval of value,
length to the conditional 1 -a% confidence interval for q/� give

Proof' This is also a constrained optimization problem left to tl
Incidentally, Theorem 5.3 is a direct consequence of Theorem 5..

These two results illustrate the value of exact prior knowledge
combinations of parameters. In Figure 5.4 the outer ellipse
confidence ellipse for the parameter vector (/5p/52). It, furthern
tains 95% of the volume under the likelihood surface and is a 95%
region if the prior distribution is diffuse. The interior ellipse is �
that its projection onto the/5� axis, [b�-,b�-] is a 95% interval f
Theorem 5.3, any pair of parallel lines tangent to this ellipsoid
95% region. 9

The two lines; �1/51 and �1/52 are the locus of tangencies bel
family of likelihood ellipses and horizontal and vertical lines, res
These are the estimates given exact knowledge of one of the pa
The width of the interval for /51 given /52 is, by Theorem 5.4
Letting the correlation between x� and x 2 be r2=(x'ix2)2/(x�xO(
ratio of the two widths is w*/w=(1- r2) 1/2. This is illustrated
5.5 and the multidimensional analogue of (1 - r2) 1/2 is suggested i
5.7 as a measure of the collinearity problem.

Having made these statements, we may now return to the pI
interpreting. the data summarized in Figure 5.4. Assume tha
centers on characterizing the sample evidence about/5�. For simp
desirable to have a one-dimensional description of that evidence
ably, the sample evidence does not allow an unambiguous one-di!

9A region with minfinal area is generated by lines parallel to the major axis of the
is a geometrical interpretation of Silvey's (1969) result that a linear combination
estimated relatively precisely, if � can be expressed as a linear combination of tl
tors of X'X with the largest eigenvalues.
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Fig. 5.5

r--O r --.9
W = W* W: 2.� W*

Constrained and unconstrained confidence intervals.

data summary, since the evidence about/5� depends on the prior informa-
tion about/52 . For example, if prior information is relatively vague about
both fli and /52, the interval b�_ w is a useful summary of the evidence
about/51. If we know something about/52, the effective sample information
about/5� may change drastically. In particular, if we know/52 = 0, a useful
summary of the evidence about/5� is (/�l/52=0) + w*/2. This interval is
both shorter and recentered. The discrepancy between the two intervals
will increase with the correlation r (see Figure 5.5). Thus when r is large,
the sample evidence cannot be meaningfully interpreted without referring
to prior information; to put this somewhat differently, the box implied by
the point estimates and their standard errors gives a most inaccurate
picture of the region favored by the data, the confidence ellipse. A
two-dimensional likelihood function cannot unambiguously be collapsed
into two one-dimensional functions.

BAYESIAN COMMENTS

A Bayesian analysis (somewhat magically) implies a one-dimensional sum-
mary of the data evidence about/5�, since the marginal posterior distri-
bution of/5� can be written using Bayes' rule as

f(/5�JY)cr [ f#2f(y I/51,/52)f(/52[/51 )d/52] f(/51 )=f(YI/5� )f(/5� ).
The last part of this expression appears to be a one-dimensional applica-
tion of Bayes' rule with the integrated or marginal (one-dimensional)
likelihood function f(YI/50 summarizing in the usual way the sample
evidence about /5�. The first line indicates, however, that this marginal
likelihood depends on the conditional prior f(/521 fl0, which is a formal
Bayesian way of saying what is already clear: the sample evidence about
/5� depends on the prior information about /52'

Although a complete Bayesian analysis of this problem requires a fully
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specified prior distribution, some progress can be made with a crudeb
specified distribution. Pretesting on/52 is meaningdul when/5� is relative12
uncertain and when/52 is thought to be near zero. In this case the prio
contours effectively parallel the /5� axis with the most likely value beinl
/52--0. A posterior distribution mixes this information with the sampl,
information according to Bayes' rule f(/5.&lY)crf(Y I/sv/52)f(/52). Th,
modes of the posterior must be on the locus of tangencies between th,
likelihood contours and the prior contours (see Figure 5.6). This locus o
points is just a line fil/52. Independent of any further distributional assump
tions, the most likely value of the couple (/5�,/52) after we have seen th,
data is on the line fil/52 between the least-squares estimate b and th,
constrained estimate given/52--0.

The position of the mode on this line, as well as the complete join
posterior distribution, depends on a completely specified prior distributio�
for /52. The reader may convince himself that there are four posterio
distributions that imply the marginal posteriors (and in this case th.
marginal likelihoods) in Figure 5.7. Cases (a) and (b) occur when there i
overwhelming sample or overwhelming prior information. In case (c) th
two sources of information are roughly comparable in content and w
react by mixing them into a unimodal distribution. This would occur wit]
the conjugate normal prior that is widely discussed. If prior informatio]
about/52 is steeper around zero, we may get the antimixture case (d). Thi
is not an atypical situation with (my?) meaningful prior distributions. Not
incidentally that cases (a) and (b) are, in fact, special cases of (c) and (ff

In light of the preceding, a Bayesian might make the following corn
ments:

a. The theory of pretesting is misleading. It suggests that one
implement his prior information without carefully specifying it. l
usually leads to pretesting at an arbitrary level of significance, say, .05
This may or may not capture the essential features of your prior.

b. Pretesting works only in the extreme cases when b� or/;t[/52 =0 ar.
appropriate summaries. The mixture and antimixture cases in Figur
5.7 are excluded. (Incidentally, the exclusion of these cases means tha
small adjustments in the data evidence may imply jumping from the l
summary to the � summary. This discontinuity ordinarily implies tha
the estimators are inadmissible. This situation can, of course, b
improved by continuous mixing, but the analysis gets quite complex.

c. Pretesting does not clearly distinguish sample from nonsample infor
marion. Ordinarily, our belief in the output of a study should depen4
on the judgmental inputs. When these inputs are disguised, we have
way of evaluating an empirical study.
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Fig. 5.6 Locus of posterior modes.
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Fig. 5.7 Posterior distributions.
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The pretesting theory just discussed is inappropriate when there is
prior information about the other parameters. It is very difficult to
make pretesting meaningful in higher dimensional problems, since
perusal of multidimensional risk functions (expected losses) is terribly
difficult. More generally, the ambiguities inherent in implementing
prior opinion are more easily discussed in terms of alternative prior
distributions than in terms of alternative risk functions (or sampling
distributions).

In summary, the formal estimation framework does not focus on theore-
tical questions posed by practical pretesting. Practical pretesting is not
designed or should not be designed to improve estimators independently of
prior information, as suggested by this literature. In the first place, the
estimation framework misstates the problem unless there is a real point
decision to be made (a most rare event). Usually, an interpretive search is
designed to characterize the information contained in the data set, and the
estimation framework suggests the erroneous conclusion that the sample
evidence somehow depends on what decisions are to be made. Second,
even if you did have such a decision problem, in the context of quadratic
loss, a Bayes estimate of one coefficient is just its posterior mean, which
does not depend on the weight given another coefficient in the loss
function. Third, the resultant estimators rarely dominate least squares and,
furthermore, have generally un�own properties (though sampling proper-
ties are rarely relevant for interpreting the data). In the fourth place, in the
context of the more usual problem of inference, the least-squares point,
James and Stein notwithstanding, is the unique point most favored by the
data. In the absence of prior information, it is the only point that has an
unambiguous claim to be reported.

To put this slightly differently, data analysis can usefully be regarded to
include three distinct phases. First, the data evidence is summarized.
Second, it is interpreted. Finally, decisions may be made. The first phase
requires a theory of sufficient statistics. The second phase requires a theory
of learning. And the third phase requires a theory of decision making
under uncertainty. The essential differences between Bayesian and classi-
cal inference arise in the second or interpretative phase. The Bayesian
model of learning is described by Bayes' rule: let data evidence incremen-
tally affect your opinions. The classical theory of learning, however, is
either incomplete or is trivially described by: completely believe the data
evidence.

The least-squares point and the variance-covariance matrix are the ap-
prophate summary of the data evidence. Practical pretesting occurs at the
interpretive stage and constitutes a de facto rejection of the t�ivial theory
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of learning implicit in classical inference and/or an ad hoc completion of
that incomplete theory. A loss function occurs only in the third (decision-
making) phase, and inadmissibility results are relevant to the learning
phase only to the extent that we would prefer not to have a model of
learning that, when coupled with a particular model of decision making
under uncertainty leads to decisions that could be improved on, on the
average. Inadmissibility results do not, however, have implications for the
summarization phase and, for example, the Stein-James result has nothing
to do with the adequacy of the least-squares point as a summary of the
data evidence. The result should be disconcerting to those Bayesians who
are fond of improper prior distributions, however, since it suggests that
there is a serious inadequacy in their learning model.

5.6 Regression Selection Strategics and Revealed Priors

By definition, an interpretive search is an ad hoc covert method of
introducing uncertain prior information. It is hardly remarkable that overt
formal Bayesian methods could cast light on these murky goings-on. This
section develops a bridge between searchers and Bayesians by answering
the question: what kind of prior information does an interpretive search
seem to be based on? This discussion is not intended merely to apologize
for interpretive searches. It is possible to find priors that justify many
procedures. In so doing we hope also to encourage a more careful review
of the available prior information, a more overt use of that which is
available, and finally, a clearer communication of the prior on which the
data analysis rests.

As discussed in' Section 5.1, an interpretive search strategy involves three
decisions: (a) the choice of an origin, which determines the ellipsoid of
constrained estimates, (b) the choice of a coordinate system, which selects
2 k or fewer points on the feasible ellipsoid, and (c) the choice of a
weighting function that mixes the 2 k points into a single estimate. The
features of the prior distribution that implicitly determine the first two of
these choices are the surfaces upon which the prior density is constant. The
third choice--the weighting function--is implied by the function that
assigns to each prior isodensity surface a particular density value.

In this section, we first explore the relationship between prior isodensi-
ties and choice of constraints, and then, for one special case, analyze the
relationship between the weighting function and the density labeling func-
tion. A correspondence is developed between priors that are uniform on
ellipsoids and regression selection strategies that either (a) compute 2 �
regressions or (b) compute principal component regressions. Similarly,
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priors that are uniform on hyperbolas are associated with strategies that
omit insignificant variables. Lexicographic priors and priors that are uni-
form on cones are also discussed, the latter intended to capture the notion
that parameters are equal.

5.6.1 Choice of Constraints

The language and method of thinking about this problem is borrowed
from the Edgeworth-Bowley analysis of trade between a pair of con-
sumers. In that problem, a fixed quantity of a set of k commodities is to be
distributed between two consumers. Let q be a k-dimensional vecto�
indicating the available quantities of the k commodities; let 18 be a
k-dimensional vector indicating the allocation of commodities to the first
consumer, who thereby attains utility level U�(18). The remainder, q- 18, is
allocated to the second consumer, who thereby attains utility level U2( q-
18). An allocation 18a is said to dominate another allocation 18b, if U�(18a) �
U�(18b) and U2(q--18a)�> U2(q-18o) with at least one strict inequality. In
words, one person is better off at �a and no one is worse off. The
undominated set of allocations is called the Pareto efficient set. Under
differentiability and convexity assumptions, the Pareto efficient set is a
curve formed by maximizing one of the consumer's utility levels subject to
a given utility level of the other. This curve is called a contract curve, since
given an initial allocation 18 off the contract curve it is likely that the
consumers would trade to a suitable point on it, thereby making at least
one better off and neither worse off. It is enough that utility be ordinal to
define the contract curve. Picking an optimal point on it requires cardinal
utility functions and a social welfare function W(U�, U2) to be maximized.

Consider now the analogous problem of Bayesian inference with a k
dimensional parameter 18. The data communicates its information through
a likelihood function, say, U�(18), and the researcher communicates his
information through a prior density, say, U2(18). Posterior modes are
found by maximizing the "social information function", W(U�, U2)--
U� U2. If the prior density is ordinal, that is, if it is defined only up to the
surfaces on which it is constant, all that can be said is that the posterior
mode is confined to a curve, which is called the information contract curve.
In developing the correspondence between regression selection strategies
and priors, we hypothesize that a researcher is attempting to approximate
the information contract curve with a set of constrained regression esti-
mates, where the word approximates means to find a set of points that
contains the curve.
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DEFINITIONS: ISODENSITY SURFACES AND LABELING FUNCTIONS

Let h(x) -- z be a convenient representation of a family of surfaces indexed
by z, and let a family of density functions be written

f(x) =g(h(x)),
where h is given and g is any monotonically decreasing differentiable
function with the restriction that fg(h(x))dx= 1. The surface h(x)=z is
called an isodensity surface, and the function g that assigns a density value
to' each of these surfaces is called a labeling function.

Example. A multivariate normal distribution

1 (x- �)'H(x- �) }f (x) = (2�r)- k/2lH I'/2 exp { -
is uniform on the ellipsoids

h (x) = (x - �)'H(x-
with labeling function

g(z)cr exp- (�).
A multivariate Student distribution has the same elliptical isodensity
surfaces but has the labeling function

g(zN)cr(� + z)-(k +�/
Johnson and Kotz [1972, p. 296] refer to densities that are uniform on
ellipsoids as elliptically symmetric distributions. We call them elliptically
uniform distributions to emphasize the fact that the ellipsoids are isoden-
sity surfaces.

Prior-to-posterior analysis of a k-dimensional parameter fi depends on
the data Y through Bayes' rule

f2 (t; I�) (�1
where the subscripts 1, 2, and y indicate prior, posterior, and sample,
respectively. This may be rewritten in terms of isodensity and labeling
functions as

f2 (13[�)cr gy(hy(13 )) g,(h,(13 )).
Modes of the posterior distribution require the derivatives of this function
to be set to zero

, Oh,
0 = gyg, -� +
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or

0=xa + (5.12)
where

gi/g,
x(t;)= - (5.13)

and where 2, is assumed to be positive, since g� < 0, gl < 0.
Notice now that as a function of h, Equation (5.12) defines a k-dimen-

sional space curve that depends on the isodensity functions h� and hy only.
In particular, the labeling distributions are irrelevant. To the extent that
joint modes of the posterior are of interest, it is, therefore, possible to
perform a Bayesian analysis in two steps: (1) select isodensity functions h�
and hy and compute the information contract curve given by Equation
(5.12); (2) specify the labeling functions g� and gy that can be used to
compute the modes of the posterior. (All modes necessarily lie on the
information contract curve.)

Interest in this two-step approach derives from the following assertion. It
is impossible to measure degrees of belief about continuous random
variables with enough accuracy that we would be content with a Bayesian
analysis based on a single distribution (prior or data). Instead, ambiguities
in the choice of distribution are properly dealt with by performing the
analysis with many different distributions. A class of distributions that is
of interest is the class with fixed isodensity surfaces and with varying
labeling functions. This class is an appropriate focus of attention when the
choice of isodensity curves is relatively unambiguous, but the choice of
labeling functions is relatively ambiguous. In the case of complete ambigu-
ity over choice of labeling function, the Bayesian analysis can at best
specify the information contract curve. The value of such a limited
statement is not to be underassessed, however. The restriction of modes to
a k-dimensional curve is a very significant restriction.

Incidentally, the case of complete ambiguity over choice of labeling
distribution represents the continuous analogue of Keynes' (1921) sugges-
tion that probabilities are sometimes only ordinally ordered. In that case
values of the random variable may be said to be more likely, less likely, or
equally likely to other values, but it is impossible to say how much more
likely. More formally, choice of isodensity function with a monotonicity
assumption on the labeling function implies an ordinal ranking of points in
the outcome space of the random variable. The cardinality of this ordering
is determined by the labeling function.
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THE DATA INDIFFERENCE SURFACES

The isolikelihood surfaces implied by the normal linear regression model
are a family of concentric ellipsoids

z -- ( O - b)'X'X( O - b),
where b is the least-squares estimate and X'X is the design matrix. The
data set is indifferent among all values of � lying on such an ellipsoid in
the sense that each is assigned the same likelihood value. If the residual
variance a 2 were known, the data would assign to each ellipsoidal surface a
particular likelihood value. If a 2 is unknown, relative likelihoods (but not
absolute likelihoods) can be computed. For the purposes of this section,
only the indifference surfaces are needed, and what is discussed applies to
any sampling process that determines elliptical isolikelihood surfaces.

ELLIPTICALLY UNIFORM PRIORS AND PRINCIPAL COMPONENT REGRESSION

The information of the researcher can be packaged in a prior density
function. A prior density that is uniform on concentric ellipsoids can be
written as ��

( O )=cg,[ (O-b*)'$*(O-b*) ],
thereby indicating indifference among all points on an ellipsoid (�-
b*)'N*(O- b*).

The information contract curve formed by minimizing the likelihood
quadratic form subject t � the constraint that the prior quadratic form is a
constant is

o = b*) +X'X(0- b)
where ;k is a Lagrange multiplier. Solving this for 18, we obtain

18 (;k) -- (;kN* + X'X)- ' (;kN*b* + X'Xb), (5.14)
which should remind you of the curve d�colletage defined in Section 3.3.
This equation defines the locus of tangencies between the prior ellipsoidal
surfaces and the likelihood ellipsoidal surfaces. In two dimensions the
curve is a hyperbola (see Figure 5.8)?

Points off the information contract curve are inefficient in the sense that

��It is interesting to observe that if N*=I, and if the coefficients are independent, then fl is
necessarily a multivariate normal distribution.
lithe relevant part of the curve consists of the segment between b and b*, since any other
points on the curve are dominated by points on this segment. It can also be shown that the
points on the hyperbola but not on the line segment between b and b* involve negative values
of the Lagrange multiplier �. These are ruled out by the monotordcity assumption on the
labeling functions.
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/�2 contract curve

Ll'P=O

Set of constrained
least squares points

Fig. 5.8 The information contract curve with a spherical prior; c�=
principal component regression.

both the researcher and the data may be made "happier" by moving to
point on the contract curve. A researcher who imposes constraints on tl
estimates is trying to make himself happier, but at least if he tests tt
constraints, he is also keeping in mind the data preferences. He is th�
apparently trying to describe the information contract curve, and tl
question to be addressed now is how accurately a set of constrain�
estimates approximates the information contract curve.

The first result to be discussed is that the contract curve (5.14) can !
written as a weighted average of 2 k constrained least-squares points. Tl
contract curve is also shown to be a weighted average of k + 1 princip
component points. Without loss of generality, the prior precision matrix
assumed to be diagonal N*=diag(d�,d2,...,d�, ), and the prior location
taken as the origin b* =0.

THEOREM 5.5 (DIAGONAL PRIOR PRECISION)..4 matrix-weight�
average can be written as a weighted average of 2 � constrained leas
squares points:

b** --(H+D*)-'Hb= E w,b,, (5.1:
i
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where D* is a diagonal matrix, D* = diag{d,,d2 ..... dk}, H--o-2X'X, I is
a subset of the first k integers, bt minimizes the quadratic form (18-
b)'H(ig-b) subject to the constraints fii=0 for i�I. The weights are

�0w�-- iH+D ]
�%=1,

where H� is the square matrix forme d by deleting all rows i and
columns i of H for all i E I. By definition, if I is the complete set of k
integers, ]H�[---- 1, and ff I is the null set, IIm�d/= 1.

Proof.' See Appendix to Chapter 5.

The implication of this theorem is that a researcher who has elliptically
uniform priors with major axes in the directions of the coordinate axes can
find the points on his information contract curve by computing the 2 k
regressions formed by omitting variables in all different combinations. A
stronger result is that the contract curve can be written as a weighted
average of k + 1 principal component points. Before that result is pre-
sented, principal component regression is explained.

The intuitive foundation of principal component regression is the asser-
tion that if the explanatory variables were orthogonal, that is, if X'X were a
diagonal matrix, then a "natural" interpretive search smitegy would be to
omit the variables with the smallest variance first. Some people have
objected that, in fact, it is more "natural" to test the variables to see if they
belong in the equation, that is, to omit the variables with the smallest
t-values. The point that is being made in this section is that the prior
distribution determines what is "natural," and arguments over features of
search strategies can only be resolved by explicit reference to features of
prior distributions. As it rufus out, spherical priors make it "natural" to
omit orthogonal variables in the order of their variance. There does not
seem to be a prior that would lead one to test the restrictions implicit in
principal component regression.

There is, of course, a transformation--in fact many--that make the
explanatory variables orthogonal. Write the regression process as

Y=XiB+u=XLL-'iB+u--Z0+u (5.16)
where Z = XL, 0 = L- �18, and where L is a (k x k) matrix that diagonalizes
X'X: Z'Z = L'X'XL = A-- diag{X�, X2 ..... X� }. The transformed model Y =
Z0+u thus has orthogonal explanatory variables, and principal compo-
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nent regression would omit these variables (impose the constraints 0 i-- 0
as ordered by the variances �.

Among the many matrices that take X'X into a diagonal matrix, it i:
necessary to select one. By Theorem 35 in Appendix 1, there is a (unique
matrix L such that L'X'XL is a diagonal matrix and L'N*L is an identit,
matrix, where N* is an arbitrary (k x k) symmetric positive definite matrix
Thus choice of N* with the restriction on L, L'N*L=I�, determines I
uniquely. Although it is cormnon to choose N*�I�, perhaps with th,
original explanatory variables standardized to have equal variance, tiff:
decision is a critical step in the interpretive search strategy and should no
be taken lightly. As is shown, it amounts to choosing a prior with elliptica
isodensity surfaces fiN*lB = z.

When N* =I�, the matrix L is a matrix of eigenvectors of X'X. Th,
vector of parameters O is L- �18 = L'/I, and the constraint 0i = 0 is equivalen
to the constraint L�18=0, where L i is the ith eigenvector of X'X. Th�
diagonal elements of L'X'XL are the eigenvalues of X'X. Thus principa
component regression sequentially imposes the constraints that the vecto
18 is orthogonal to the eigenvectors of X'X, with the constraints ordere{
from smallest to largest eigenvalue?

In Appendix 1, it is shown that the eigenvectors of X'X are the principa
axes of the ellipsoid 18'X'Xi8= r 2, and the eigenvalues are ordered th,
reverse of the ordering of the lengths of the axes. The first restriction i..
that 18 is orthogonal to the largest axis of the ellipse. For a two-dimensiona
problem, this restriction is illustrated in Figure 5.8. Notice that c,-b am
c� are orthogonal by construction.

The following theorem asserts that the convex hull of the three points b
c�, and 0 contains the contract curve.

THEOREM 5.6 (SPHERICAL PmOR). The contract curve (5.14) with N*--I
and b*=0 can be written as

� (;k) = (hi + X'X)- 'X'Xb
k

= E w,.(x,x)cj
j=O

where cj is the jth principal component point formed by "dropping" from
the equation the j principal components of X'X with the smallest roots.

�2Another way to describe this is that the linear combination of variables XL� is selected t(
have smallest variance L�X'XLi, giver the normali�,�tion L�L� - 1. The next linear combina.
tion, XL2, is restricted to be orthogonal to XL�, 0,=I4X'XLi, but is otherwise selected t�
minimi�,e its variance.
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Mathematically, the vectors ej are defined using the eigenvector coordi-
nates

L'X'XL -- A-- diag(Jk�, Jk 2 ..... Jkt, )

LL' = I

g=L'b

with by' = (0,0 ..... 0,&+,,&+: ..... gk)
�j=Lhj.

The weights applying to the principal component points are

w0= (X, +X)

+x)

0<j<k

The proof follows directly by writing �1(�) in principal component coordi-
nates, 18 (�) = (hi + LL'X'XLL')- �X�XLL'b = L(hi + A)- �Ag.

We can then write (hi+A)-�Ag----Y.J=o�hj where �5 is the solution to
.... Y.�=oWi =the triangular system Wo=X�/(h�+X),Wo+%=X�/(X�+X), �-�

x/(xk = 1.

These last two results determine a subset of constrained estimates that a
Bayesian with an elliptical prior would be interested in. The principal
component result is perhaps more useful, since it involves only k+ 1
regressions instead of 2 n and since by a linear transformation any ellipsoid
can be taken into a sphere. The principal component result may be used to
resolve several questions that trouble users of principal component regres-
sion. The first concerns the arbitrary order in which the principal compo-
nent restrictions are imposed, and the second is the arbitrary normalization
rule !'!= 1. Some writers have suggested that one ought to "test" the
restrictions, that is, to order the restrictions by their t values. Theorem 5.6
does not apply if the restrictions are so ordered. They must be ordered by
their respective eigenvalues (variances). The arbitrariness in normalization
is also resolved, since the researcher is required to use a coordinate system
in which his prior is spherical. Equivalently, if his prior is uniform on the
ellipsoids iS'N'iS, he should use the normalization UN*L--1. The reverse
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result is also true: if a Bayesian computes principal component points with
respect to some normalization, he reveals that he has the prior implicit in
that normalization in the sense that otherwise points on the contract curve
might not be weighted averages of the points he computes (Learner, 1977).

Another element of arbitrariness that is not widely recognized arises
when the principal component analysis is applied to only a subset of the
variables. In that case it is not clear at the outset whether one shoul�
attempt to minimize the marginal variance of the components, or the
variance conditional on unaffected variables. By the logic in this section, il
should be the conditional variance (Learner, 1977).
HYPERBOLICALLY UNIFORM PRIORS

Although the principal component method of estimation is used occasion.
ally, it is much more common to express restrictions in a predeterminec
coordinate system, that is, to drop particular variables. In Figure 5.8 th�
third point that would most often be reported is not c� but 6[/�=0 o�
61/� = 0. This is clearly undesirable with elliptically uniform priors, sinca
the information contract curve may be very poorly represented by such �
sequence of points. For example, in Figure 5.8 if the variable with th�
lower t value is dropped first, the convex hull of the three estimate:
Co,[61/�e=0],0) does not contain the contract curve. (The t value of th�
first coefficient exceeds the t value of the second because 61/�2 = 0 is dosel
in the data metric to b than is [}[/�--0. In other words, the data ar{
"happier" with [}]/�e=0 than 6[ fi, =0.)

The common procedure Of dropping variables with low t values may
therefore, be highly undesirable with elliptically uniform priors. On th�
other hand, there may be perfectly reasonable priors that do lead to thi:
kind of processing of the data. A completely trivial case in point illustrate�
in Figure 5.9 occurs when the prior isodensity surfaces are z--
min(l#,l,[21). The solid line linking b to 61fl2=0 contains all globa
modes, although local modes may lie on the dotted line linking b tt
6] fl� = 0. Thus a data analysis that reported b and 61 r2 = 0 would conve3
part of the essential features of the data, since global modes are necessaril 3
convex combinations of these two points. Local modes on the segmen
connecting b to 61 fl� = 0 are also natural candidates to be reported.

These right-angled prior indifference curves represent a peculiar kind o:
ordering that seems difficult to approximate with any continuous probabil.
ity functions. They, furthermore, reflect a peculiar willingness to ignore al
but one of the constraints at any but special points in the parameter space
What seems to be a more reasonable family of curves are the hyperbola.,

i
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Fig. 5.9 The contract curve with rcctangularly uniform priors.

As an example of such a density, products of independent Student func-
tions

f ( II ( + ) -("+
i

are hyperbolically uniform in the degenerate case v = 0

i

The information contract curve Equation (5.14) with hyperbolically
uniform priors becomes

�{ fii-' } +X'X([I-b) =0, (5.17)
where { fii-�} indicates a vector with clements fii-�. Solving out the
Lagrange multiplier ;� yields the system of quadratics

n�( �-b) fi� -ni( II-b) fi i, i> 1
where n; is the ith row of X'X. See Figure 5.10.

This system of equations can also be written as

� = (�l) -J- X'X)- IX'Xb (5.18)
where D= diag{ fi�-2, fi2-2 ..... fi�-2). This equation appears to be a matrix-
weighted average with the prior ellipsoids �'D� located at the origin, with
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Fig. 5.10 The information contract curve with hyperbolically uni-
form priors.

principal axes equal to the coordinate axes. The relative lengths of these
axes are, however, functions of 18. It is thus useful to think of hyperboli-
cally uniform priors as if they were elliptically uniform priors located al
the origin with principal axes equal to the coordinate axes but with the
lengths of the principal axes "uncertain." In fact, the Student priors
mentioned previously can be written as (elliptically uniform) normals witl:
uncertain variance hyperparameters.

For any arbitrary D in Equation (5.18), Theorem 5.5 implies that 18 is
contained in the hull of the 2 k constrained least-squares points formed b3
dropping variables. Since D is not free, it may be possible to further reduce
the set of points. Paralleling the previous section, we would like to find a
sequence of k+ 1 constrained estimates that contain the relevant curve
segment. Although the prior determines the coordinate system, the
sequence for imposing constraints is very ambiguous. Many differen!
orderings seem possible. For example, (1) we might delete variables a�
ordered by the t coefficients in the original equation, or (2) we migh!
recompute t values as constraints are imposed. (3) Proceeding in the othex
direction, variables may be added to the equation as ordered by theis
simple correlations with the dependent variable, or (4) as ordered by theis
partial correlations holding fixed the variables that are already included.
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(5) Yet another alternative is to find the set of j variables that maximizes
the multiple correlation coefficient, for j--1,2 .... ,k.

It is obvious that the hyperbolic prior cannot induce a change in sign of
any coefficient. The sequence of dropping variables as ordered by the
sequentially computed t statistics necessarily preserves the orthant of the
estimate (Leamer, 1975):

THEOREM 5.7 (ORTH�NT PRESERVATION). The least-squares estimate of
� subject to a single linear constraint must lie in the interval (b�-
g/21tl,b:+ V/21tl), where bj is the unconstrained least-squares estimate
of fi�, �J/2 is the jth diagonal element of V--s2(X'X) -�, and t is the t
statistic for testing the restriction.

Proof.' The least-squares estimate subject to the constraint Rl$=r
(where R is a row vector) is �=b-VR'(RVR')-�(Rb-r), with V=
s2(X'X) -�. The t statistic for testing Rl[l=r is t=Olb-r)/Ol�VR')�2.
Thus we may write the constrained least-squares estimate of �j as �. = bj -
[VjR'(RVR')-�2Vj�'/2]Vj)/�t, where V i is thejth column of V. The term in
square brackets is just the correlation between bj and Rb, which must be
between -1 and + 1. These two extreme values imply the bound in the
statement of the theorem.

A consequence of this theorem is that there can be no change in sign of
any coefficient that is more significant than the coefficient of an omitted
variable. In particular, if the least significant variable is omitted, all the
other coefficients will retain their signs. Thus the sequence of omitting
variables in the order of their sequentially computed t statistics necessarily
preserves the orthant of the estimate.

This theorem increases my probability of the truthfulness of the conjec-
ture that this sequence of estimates contains the contract curve (5.17), but I
have been unable to construct a proof of the proposition. The proposition
is true in two dimensions, but in two dimensions all five sequences
described in the foregoing paragraph imply estimates that contain the
curve. I do have a tedious proof that the curve is contained in the hull of
the unconstrained point and the k constrained points formed by omitting a
single variable.

LEXICOGRAPHIC ORDERING

Spherically uniform priors have been seen to imply constraints in the
coordinate system of the sample. The sequence of imposing these con-
straints depends on the eigenvalues of X'X but not at all on the data Y or
as a result on any test statistics. Hyperbolically uniform priors on the other
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hand, imply a predetermined coordinate system but with a sequence c
imposing constraints that is data dependent. Occasionally, both the coordJ
nate system and the sequence of imposing constraints are predetermine�
By this I mean that a researcher decides before looking at either Y or ]
first to omit variable one, then variable two, and so on. As an example, i
distributed lag analysis a general model involving many lagged explan,
tory variables is often simplified by omitting sequentially the variable wit
the longest lag.

In consumer theory, a consumer who first satisfies his desires for goo�
�4, then for good B, and so on, is said to have a lexicographic utilit2
ordering. Similarly, a researcher who proceeds this way has a lexicographi,
information ordering. A probabilistic structure that can effect such m
ordering allocates positive probability to a nested sequence of subspace
with a one-dimensional informative prior in each subspace.
CONICALLY UNIFORM PRIORS

A fairly common form of prior information about sets of parameters i
expressed in the pair of sentences "I think these coefficients are the sam
size and sign. I have very little information about their particular magnJ
tudes." This could be translated into one of several families of isodensit
surfaces. The traditional degenerate normal distributions would lead t,
cylindrical surfaces around the vector of ones. Such a density has bee�
used by Lindley and Smith (1972) to produce a modified Stein estimate
and by Shiller (1973) to produce a distributed lag estimator. For reasons t,
be explained below, a better family of isodensity surfaces consists of cone
from the origin also around the vector of ones.

Normal priors that reflect this information may be constructed a
follows. Begin with a multivariate normal distribution for ig located at th
origin with covariance matrix o21. The joint distribution of ig and the mea
of the coefficients fi (a scalar) then has covariance matrix

Var � �-�02 k-ll ' k -I
where 1 is a vector of ones, and 1'1 = k. Conditional on fi the moments {
l[I, therefore, would be

Retain these conditionals bjat let fi have variance v-7�o2/k. Marginally,
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then has mean vector zero and covariance matrix

Isodensity contours take the form
z=tr v-'

= 18,(I- 1(1'1 + s-2)-'1') 18
where 0 2

S2 �---t� T '

Last, let o get large to become diffuse on/�, and the isodensity contours
become

= la'0- lk-'r)
These are cylinders around the vector 1, since by analogy to the error sumof squares in the least-squares algebra, z is the length of the differencebetween 18 and the projection of 18 onto 1.In other words, a normal probability function for 18 with conditionaldistribution f(l$1 �) as if ill were spherical and with � diffuse impliescylindrical isodensity surfaces�In two dimensions, these are lines parallelto the vector (1,1) in Figure 5�11. To this author, this is an exceedinglypoor characterization of the statement "I think/� and/�2 have the samesign and magnitude," since it indicates indifference between, for example,the vector (1,- 1) and the vector (100,98). The former fails the test ofequality of coefficients miserably, and the latter passes it admirably.A better family of isodensity surfaces to express this kind of priorinformation is the conically uniform family. This family indicates indif-ference between all vectors that make the same angle with the vector ofones. That is, isodensity surfaces depend on the cosine of the angle

between ill and 1

2 _ 1 - cos2(0,1)

The information contract curve (5.12) can then be written as

I (0'1) 1- (0'1)2 I +X'X(0-b) (5.19)0=[ 0'la (18,18)___--50x
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Fig. 5.11 Conically uniform and cylindrica!ly uniform priors.

where

a*(0)=
(itT1) cos2( 18,1)

A.(i[I'I) 2
(0'0) 2

Equation (5.20) appears to be the familiar matrix-weighted average of t2
least-squares estimate b and the vector a*(l[I)l. Thus we can loosely thh
of the conically uniform prior as inducing a spherically uniform pri
located at a*(0)l. Note that the location of this vector involves :
expansion of 1/� by the amount cos-2(0,1). Thus'when 18 and 1 'a
orthogonal the effective location of the prior is +1oo, and' the estima
may be substantially pulled from its location.

A more accurate understanding of the behavior of this informati�
contract curve can be obtained by premultiplying (5.19) by 0':

0=( (0'1)2 (0'1)2)(ill'ill)
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which can be rewritten as

4

This is the same ellipsoid as the set of all constrained least-squares points
(5.1). Since the contract curve is thus a continuous set of points lying on
the feasible ellipsoid, it is obvious that the hull of no finite set of
constrained least-squares points can contain the curve. In that sense it is
undesirable to try to characterize the curve by a set of constrained
least-squares points.

An example illustrating the difference between conically and cylindri-
cally uniform priors is depicted in Figure 5.11. The information contract
curve with cylindrically uniform priors is a straight line from the least-
squares point to the origin, always in the fourth quadrant in this example.
In contrast, the information contract curve with conically uniform priors is
an ellipse connecting b to bo) (the variable with the lower t value is
dropped) to the origin. In other words, although imposing the constraint
/5� = r2 leads to the estimate (0,0), this point and the least-squares point
alone greatly distort the pooled information. It would be better to report
also the estimate computed when the variable with the lower t value is
dropped. Even this constitutes a distortion of the pooled information, since
the contract curve travels very distinctly through the third quadrant. (The
arm of the contract curve that travels into the first quadrant is dominated
by the arm that travels into the third quadrant.)

To summarize this section, the vague notion that coefficients are equal
in magnitude and sign is not well captured by elliptically uniform priors or
their degenerate counterparts--cylindrically uniform priors. A better
choice of isodensity surfaces is a family of cones. A family of cones leads
to a very different kind of information contract curve than does a family of
ellipsoids. Of the contract curves discussed in this section it is the one that
is most poorly approximated by a sequence of constrained least-squares
estimates.

SUMMARY

The literature on biased estimation of the regression parameter vector can
be thought to involve three choices: (a) the choice of a (prior) location, (b)
the choice of a distance function for measuring closeness to that location,
and (c) the choice of a particular value of the distance function, or in the
other language, the shrinkage factor. The "Stein" estimators and both
Bayesian and non-Bayesian variants of Hoerl and Kennard's ridge regres-
sion presume the existence of (1) the (prior) location and (2) the metric,
and they argue over (3) the shrinkage factor. But once the location and
metric have been selected, the set of potential estimates has been reduced
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to a curve, or possibly mixtures of points along a curve. In this section the
choice of metric is emphasized, and the choice of shrinkage factor i:
deemphasized. It is more important to know which curve is appropriate
than to pick a particular point on the curve. Furthermore, the choice of �
point on the curve depends significantly on features of the prior that art
likely to be difficult to select; in that event a useful data analysis tool is:
graphical or mathematical representation of the whole curve.

The choice of metric is important from the purist Bayesian viewpoinl
since it shrinks the set of potential posterior modes from the feasibl
ellipsoid to an information contract curve. The choice of metric is equiv
alently important when only constrained regressions are computable, sinc
it determines the coordinate system, and also the order in which con
straints are imposed. All that is left undetermined is the weighting func
tion, which determines a single estimate as a weighted average of the set c
constrained estimates.

The usual elliptical metrics are closely associated with principal compo
nent regression. The more common regression-selection strategies canno
be justified with elliptical metrics, and we have been forced to conside
hyperbolic, lexicographic, and conical metrics. These have been associated
respectively, with strategies that omit insignificant variables, that omi
predetermined variables, and that impose equality constraints. Conica
metrics might be more appropriate than cylindrical metrics whe�
coefficients are thought to be similar in size, but no regression selectio�
strategy is appropriate with conical metrics. A more careful description o
the information contract curve is required.

5.6.2 Choice of Weight Functions

An interpretive search strategy involves, first, a choice of origin, second, �
choice of coordinate system for imposing constraints, and third, a weight
ing function that selects among the set of constrained estimates. Prio
isodensities imply a contract curve that can be approximated by �
sequence of constrained estimates. In that sense the choice of origin ant
coordinate system corresponds to the choice of prior isodensities. Selectio�
of one of the constrained estimates or more generally the specification of�
weighting function over constrained estimates requires a fully specifiet
prior. In this section we select labeling functions for the ellipticall:
uniform priors and explore the resultant weight functions.

In discussing the weights it is notationally convenient to write th�
omitted variables as a matrix Z. That is, the regression process may b,
written

Y=W�+ZT+u. (5.21
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where W and Z are (T x/q,) and (T x kz) observable matrices, and/i and �
are (/q, x 1) and (kz x 1) unobservable vectors. Letting the prior be normal
with mean vector 0 and variance D* =diag(dpd2 ..... dk) the weight to be
applied to the estimate [(W'W)-�W'Y, 0] is from Theorem 5.5

where the nonempty set I contains the k: indices subscripting the left-out
variables. These are conditional weights applicable marginally when both
the process variance o 2 is known and when the prior for the coefficients is
in the normal family with known variance. Note especially that these
weights are independent of the sample result Y and thus do not depend on
any test statistics. This straightforwardly parallels the result that under
these assumptions a posterior mean is a fixed (independent of Y) matrix
weighted average of the sample mean and the prior mean.

Another result discussed in Chapter 3 is that a conjugate normal-gamma
prior with 02 uncertain also leads to a posterior mean that is a fixed,
weighted average of the sample point and prior mean. Similarly, the
weights in (5.22) would be independent of the sample. That is, with
d i = o-2n i we have

since o �+k' is a constant.
The fixed weighted mixing of sample and prior implied by conjugate

distributions has justifiably encountered the criticism of Dickey (1975) and
others. A fairly tractable analysis that implies variable weighting results
when the coefficient vector comes from a multivariate Student distribution.
That is, let us write cli--o�-2ni, N*=diag(nvn2,...,nO, k�---rank(N*),
o;-2�f�( II,�,D where f�( II,�,0 indicates a gamma distribution with
location and scale parameters I and v�. Furthermore, let us employ a
gamma prior for 0 -2, o-2�f�(Is�,v�). The resulting posterior is propor-
tional to the product of two multivariate Student distributions and is
relatively intractable. The marginal mode, as described in Chapter 3,
requires the iterative solution of

b**(X) = (X'X + XN*)-'X'Y
[ + (Y - xb)'(Y- xb) + - - ]/[ T+ ]

X=
where X estimates the variance ratio O2/O12. The weights analogous to (5.22)
are

w'wlx-< (5.23)
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These weights depend on the sample Y only through the variance rat
�. The sample-dependent factor �-� is a constant for all regressio�
involving the same number of restrictions. Thus the sample influences on
the choice of number of restrictions. The critical value of J� is one. When J�
less than one, equations with few restrictions are favored, conversely for
greater than one. The following result makes this point explicit by e
pressing the posterior mean as a weighted average of k+ 1 rotati{
invariant average regressions, each of which is a fixed weighted average
constrained least squares estimates involving exactly j restrictions (j
0, 1 .... ,k).

THEOREM 5.8

posterior mean corresponding to a spherical prior can be written as
k

b**(�.)=(N+M)-'Nb= � wj(X, J�)aj
j=0

where

(ROTATION I�rvARIA�rr AVERAGE REGRESSIONS)

aj-- IN,db,pj-'

Pj= IS, I
k

j=0

with Cj the set of all s�sets of the first k integers taken j at a time a�
with N� a �trix formed by deleting rows i a� columm i of N = X'X
all

Proof.' See Appendix 3.

Any prior that is uniform on ellipsoids can, by a linear transformatk
be made uniform on spheres. By Theorem 5.8, posterior modes implied
such distributions are weighted averages of k + 1 rotation invariant avera
regressions, a2. Each such point is a weighted average of constrain
least-squares points involving exactly j restrictions with weights tI
cannot depend on the data Y. Given an elliptical prior, the choice
labeling function can thus influence only the number of restrictions tl
are imposed.

The rotation invariant average regressions derive their name from t
surprising property that they are invariant to rotations of the parame
space. This property is illustrated in the two-dimensional case in Figt
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5.12. In the original coordinate system connect with a straight line the two
constrained least-squares points given 131 --0 or /32=0. Find the con-
strained least-squares points in any other (orthogonal) coordinate system
and connect them with a straight line. The point of intersection is a l,
because al is a weighted average of constrained least-squares points in any
coordinate system.

The weights (5.23) are, in general, very complicated but in the special
case when the contract curve is a straight line they do imply familiar test
procedures:

ONE RESTRICTION

When prior information is diffuse in all directions but one, the posterior
mean is a simple weighted average of the estimates resulting from dropping
and not dropping the relevant variable. The weight to be applied to the
restricted estimate is given in (5.23)

w� cr n� (Z'Z- Z'W(W'W)-'W'Z)-'X-'. (5.25)
The weight given the unrestricted estimator is

wxcc 1.

ikelihood
ellipse

;ontract
curve

Fig. 5.12 Rotation invariant average regressions.
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Note now that for v? and v I small, the first iteration of the equation f
computing X has

where '� and & are the maximum likelihood estimates. Thus the weig
becomes approximately

w�crt� -2
where t� is the t value for testing the restriction T=0. Perhaps
informatively, we may write

,
w�= l+t� w�, = -�--�.' 1 + t�

The estimate of o 2 in these results is uncorrected for degrees of freedo
this is just the first iteration toward the mode, and the mode is only o
aspect of the posterior distribution. Note especially that further iteratic
to the mode move the estimate closer to the restricted least-squares poi:
Nonetheless, a somewhat distorted Bayesian analysis with information
one dimension only results in an estimate that is a weighted average
dropping and not dropping the variable with a weight on the unrestrict
estimate proportional to the F statistic conunonly used to test the restr
tion.

MULTIPLE RESTRICTIONS: THE STEIN SOLUTION

When information is available in several directions, the weights implied
(5.23) are more complicated. One special case is interesting, howev
Suppose X'X is proportional to N*.

N* = cX'X.

The posterior modal equation can then be written as a weighted average
the origin and the unrestricted estimator

O=(l + Xc)-'[ b+ XcO]
and the variance ratio X becomes

(�l S l2 + (Y - Xb)'(Y - Xb) + ( 0 - b)'X'X( 0 - b))/( T + �l )
A=

+ c0'X'X0 + k)
The first iteration of these two equations for v� and v I small yields

X = (Y -Xb)'(Y-Xb)/rcb'X'Xb/k ---(cF)- l
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where F is the value of the F statistic for testing the restriction/3 = 0. Using
this in the formula for the mode of/3 and indicating the weight assigned to
the zero vector by w o and the weight assigned to the unrestricted estimator
by w, we obtain approximately

I F
w�= I+F' w= 1+'-�'

In words, a somewhat distorted Bayesian analysis with prior information
structurally equivalent to sample information (X'XccN*) results in a post-
erior mode that is approximately a weighted average of the zero vector and
the least-squares vector with the weight on the least-squares vector propor-
tional to the F statistic commonly used to test the restriction. The struc-
tural equivalence assumption thus appears to be implicit in "Stein estima-
tors." This is a vindication to a Bayesian of such estimators only in the
unlikely case that his prior is, in fact, structurally equivalent to the
sample?

5.7 Multicollinearity and Local Sensitivity Allalysis 14
An interpretive search that involved omitting variables would be worthless
if the data were orthogonal, since the estimates and their standard errors �5
would not change and therefore would not "improve." Thus collinear data
is a handmaiden of interpretative searches, and this is a useful point to
discuss the "collinearity problem."

The principal claim of this section is that the most important aspects of
the collinearity problem derive from the existence of potentially useful,
uncertain, prior information, which causes major problems in interpreting
the data evidence. It is claimed here that if our a priori knowledge of
parameter values were either completely certain or "completely uncertain,"
the aspects of the collinearity problem that most of us worry about would
disappear. As an empirical test of this proposition, consider the situations
when collinearity is identified as a cnlprit. Usually, signs are wrong or
point estimates are otherwise peculiar. Occasionally, confidence intervals
overlap unlikely regions of the parameter space. Yet to say these things is
to say there exists uncertain prior information.

13A more general result is that a simple weighted average of imposing and not imposing
the restriction is valid (in the sense discussed) if and only if the curve d&:olletage or contract
curve b**�)=(�N* +X'X)-IQ�N*b*+X'Y) is a straight line. [See Chamberlain and Learner
0976) for a discussion of the necessary and sufficient conditions.] In this case, the weights are
approximated by F/(!+F) and 1/(l+F) where F is the usual F statistic for testing the
restriction. Weights of this form were originally suggested by Huntsberger (1955). They are
also discussed in Alam and Thompson (1964) and Baranchik (1970). Feldstein 0973) uses t 2
weights in a Monte Carlo study.

I'�fhis section is taken from Learner (1973).

Multicollinearity and Local Sensitivity Analysis
Classical inference, with the possible exception of the pretesting liter

ture, necessarily excludes undominated uncertain prior information) 6 As
result, most discussions of the collinearity problem miss a critical poi�
The textbook discussions, including Theil (1971, p. 149), Malinvaud (19�
p. 218), and Goldberger (1964, p. 192), observe that when the desi:
matrix X'X becomes singular, the least-squares estimator is nonunique, a�
the sampling distribution has finite variance only for certain "estimabl
functions. Thus extreme collinearity is implicitly defined as total lack
sample information about some parameters.

The case of less extreme collinearity is not dealt with so trivially, sin
there is nothing in the least-squares theorems that is obviously depen&
on the "near noninvertibility". of the design matrix. This fact has
Kmenta (1971, p. 391) to conclude "that a high degree of multicollinear
is simply a feature of the sample that contributes to the unreliability of
estimated coefficients, but has no relevance for the conclusions drawn a
result of this unreliability."

To put this another way, the problem of defining collinearity may
solved by identifying a distance function for measuring the closeness of
design matrix to some noninvertible matrix in which the collinear
problem is unambiguously extreme. Since the extreme case is associa'
with infinite marginal variances on the parameters, authors such as T[
(1971, p. 152), Malinvaud (1970, p. 218), and Goldberger (1964, p. 193)
a distance function informally related to the sampling variance of
coefficients. Collinearity is defined as large variances. The failure of t
definition is that instead of defining a new problem, it identifies a n
cause of an already well-understood problem--weak evidence. Altho�
collinearity as a cause of the weak-evidence problem can be distinguisl
from other causes, such as small samples or large residual error varian�
collinearity as a problem is by this definition indistinguishable from
weak-data problem in general. Thus Kmenta's conclusion that there
really nothing special about the collinearity problem is appropriate. Stil
gnawing confusion remains. Goldberger (1964, p. 201) concludes
discussion with accurate ambiguity, "... when orthogonality is absent
concept of the contribution of an individual regressor remains inherer
ambiguous."

The point of this section is that there is a special problem caused
collinearity. This is the problem of interpreting multidimensional evider
Briefly, collinear data provide relatively good information about lin
combinations of coefficients. The interpretation problem is the problen
deciding how to allocate that information to individual coefficients.
depends on prior information. A solution to the interpretation prob
thus involves formalizing and utilizing effectively all prior informat5
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The weak-evidence problem, however, remains, even when the interpreta-
tion problem is solved. The solution to the weak-evidence problem is more
and better data. Within the confines of the given data set there is nothing
that can be done about weak evidence.

A Bayesian with a well-defined prior distribution can, of course, have no
problem interpreting the sample evidence, since he merely computes his
posterior distribution. A Bayesian with poorly defined priors or a wide
readership may have extreme difficulties in reporting and interpreting
evidence. This suggests the following definition:

Definition. The collinearity problem is said to affect a parameter fli if the
apparent sample evidence about fii depends on ambiguous uncertain prior
information about other parameters, where ambiguous means that readers
differ in their judgments or that they are not too sure how to select features
of their prior. This is made more precise subsequently.

Since classical inference provides no assistance in using uncertain prior
information, this definition does not apply directly to everyday "classical"
inferences. An easy, ad hoc procedure used when analyzing data is to
neglect the off-diagonal terms of (X'X)-� and to proceed as if the sample
evidence were generated by an orthogonal experiment. This may lead to
significant misinterpretations of the data and suggests an alternative defini-
tion:

Definition. The collinearity problem is said to affect /9i if the sample
evidence about/9i is distorted by an analysis that proceeds as if the data
were orthogonal. This is also made more dear shortly.

MULTICOLLINEARITY: THE WEAK-DATA PROBLEM

The unique problem associated with collinear data is the problem of
interpreting multidimensional evidence. Collinear data is also a cause of
the weak-data problem. In this section we show how collinearity causes
weak evidence, where weak evidence is defined as the necessary coinci-
dence of the prior and posterior distribution for some parameter g(�).

In particular, suppose there is an extreme collinearity problem with the
columns of X being perfectly collinear. Then there exists a vector q/such
that Xq/=0. We wish to show that there is a function g(�) that necessarily
has the same prior and posterior distribution regardless of the sample
outcome Y. This is true, in particular, for g(�)= q/N*�, Malinvaud (1970,
pp. 246-249). The prior moments of �'N*� are

E (q/N*�) = q/N'b*
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where the prior variance matrix has been set to (h�N*) -�. The posteric
moments are

E (q/N* IY) --
---- q/(N + N*)b** (because q/N-- 0)
= q/(Nb + N'b*) = q/N'b*

VOVN*� [Y) -- �k'N* V( � ]Y)N*�k
= h�-kk'(hN + h,N*) V( � ]Y)N*�k
= h/- �'N* �

where h=o -2. These moments are seen to be the same as the pri,
moments, and, conditional on h and hp there can be no learning abo
�'N*18. The evidence is thus necessarily weak about this linear combin
tion of parameters. (Note, by the way, that this linear combination d
pends on the prior through N*. See Section 5.9 also.)

Weaker forms of collinearity imply that this result is almost true. The
are functions of the parameters about which we can learn very little. The
is, of course, no cure for weak data, except more and better data.
collinearity were only a cause of the weak-data problem it would me
very little mention. The more interesting and more difficult aspect
collinearity is the interpretation problem.

INTERPRETING COLLINEAR DATA: A BAYESIAN ANALYSIS OF AN AD HOC
PROCEDURE

Although it is possible to make enlightened use of prior informati
through interpretive searches, perhaps as suggested by the pretesting litel
ture, we assume that a researcher has before him only the suffick
statistics and no computer, as would be the case of a reader of a techni,
report. Off-diagonal terms of (X'X)-� may not be reported and, even
they are, classical inference provides no very clear way of interpreti
them. Instead, many of us in this situation would proceed as if (X'X 1
were diagonal. Furthermore, when prior information on the coefficient.,
available, we may choose to ignore the a priori covariance terms.

An example can usefully illustrate what I have in mind. A logarithr
regression of a volume index of purchases of meat C,, on money income
price of meat P,,, and a general consumer price index Pr yields
regression that is underreported as

log C,, -- a +/9] log Y +/92 log P,, +/93 log Pr
=5.0+ .9 1ogY- .2 logP,,- logP r(.2) (.2)

where standard errors are indicated in parentheses. The researcher th



174 INTERPRETIVE SEARCHES

against his marginal prior for each coefficient. He finds the money-income
elasticity H� to be a "bit high," the direct-price elasticity H2 to be "about
right," and the cross-price elasticity Ha "to have the wrong sign but not
significantly so." The error that is being made here is, first, to ignore the
data tradeoffs implied by the off-diagonal terms of the (X'X)- � matrix and,
second, to ignore the prior tradeoffs implied by a nondiagonal N* matrix.
For example, the researcher may have independent information about a
homogeneity parameter H! + H2+ Ha, a real income elasticity H!- Ha, and
the price elasticity H2, and he is unlikely to regard H�, H2, and H3 to be a
priori independent.

Proceeding as he did, the researcher has made an error in pooling the
prior information and the sample information. He has treated a k-dimen-
sional problem as if it were k one-dimensional problems; he will be
making misinterpretafions of the data evidence unless his prior and data fit
together in a special way. Thus the collinearity problem creates a situation
in which it is necessary to process prior information carefully.

More formally, inferences about the coefficient vector often proceed as
if the posterior mean were on the diagonalized contract curve

d(�) -- (D + XD*)-�(Db + hD*b*) (5.26)
where D- � and D* - � are diagonal matrices formed by setting the off-diag-
onal elements of N-� and N*-� to zero. If N and N* are diagonal, Bayes
rule may be applied coefficient by coefficient, and the resultant condi-
tional posterior mean is given by (5.26). For N or N* nondiagonal, the true
contract curve

b** (X) = (N+ XN*) -'(Nb + XN*b*) (5.27)
may deviate substantially from d(X) and the ad hoc use of prior informa-
tion may cause major data misinterpretations and ultimately unnecessary
expected losses (see Figure 5.13). Collinearity thus creates an incentive to
use prior information more carefully:

/ Curve

d�colletoge

con fours con fours

curve d�colletoge
Fig. 5.13 Diagonalized contract curve.
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Definition. A coefficient Hi is said to suffer from the collinearity probler
if the ith component of the true contract curve b�**(X) differs substantiall
from the ith component of the diagonalized contract curve di(X ).

The difference between d(A) and b**(A) may be assessed in several way:
One suggestion of Leamer (1973) is the following:

Rectangle Test. One aspect of a univariate problem is that the posteric
mean is necessarily between the prior mean and the sample mean. Thu:
the location change induced by the sample evidence has an unambiguot
sign and is limited in distance by the. sample point. The diagonalize
contract curve also has this property, coefficient by coefficient; that is,
lies in the rectangular solid with diagonal [b*,b]. The true contract cur�
need not have this property, and the sign of the elements of b**(X)-Ia
and b**(X)-b may be ambiguous. Thus, it may not be possible to sa
whether the data suggest positive or negative revisions to opinions abot
some coefficient or to limit the distance of the revision, until a full pri(
distribution is specified. This suggests the following definition.

Definition. The collinearity problem in the rectangle sense is said to affe�
a coefficient fij if the contract curve b**(X) travels outside the sla
bj < b�*(X) < b�.*. The collinearity problem in the rectangle sense affects n
parameters if the contract curve lies everywhere in the rectangular soil
with diagonal lb, b*].

The contract curve may, in general, lie anywhere, Theorem (5.10). Ev�
with orthogonal data, that is, with X'X diagonal, it need not be restrict�
to the appropriate rectangular solid. Thus orthogonal data is not sufficient
prevent the collinearity problem. We must also restrict the class of priors.
N and N* are both diagonal, there is no collinearity problem in this seas
If N is proportional to N*, the contract curve is a straight line, and there
again, no collinearity problem?

INTERPRETING COLLINEAR DATA: THE BAYESIAN PROBLEMS

Given a prior distribution, the posterior distribution is fully defined, an
there is no ambiguity about measures of location and thus no collineari'
problem in the sense of the previous section. A Bayesian, therefor
apparently has no special difficulty working with collinear data. Thi
however, ignores difficulties in selecting an acceptable prior distribution.

17Note that even if N and N* are both diagonal, collinearity may be said to affect certa
linear combinations of parameters. Collincarity affects no linear combinations only if N
proportional to N*.
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When collinearity is present, the posterior distribution may be highly
sensitive to changes in the prior, and apparently innocuous differences in
the prior may be amplified into significant differences in the posterior
distribution. Thus the collinearity problem is transformed from a problem
of characterizing and interpreting a multidimensional likelihood function
into a problem of characterizing and interpreting a multidimensional prior
distribution.

In the clearly collinearity-free case with N and N* diagonal, the post-
erior distribution of any coefficient is conditionally independent of the
prior distributions of the other coefficients. This suggests the following
slightly ambiguous definition of the collinearity problem:

Definition. The collinearity problem is said to affect parameter fli if the
interpretation of the sample evidence about fli depends meaningfully on
uncertain prior information about the other parameters. The interpretation
of the sample evidence about fl� is a mapping of marginal prior distributions
for fl� into marginal posterior distributions. The phrase "depends meaning-
fully" can be interpreted in terms of both the location change and the scale
change induced by the sample evidence. As in the previous section, we
restrict ourselves to the location change.

In general, the interpretation of the sample evidence about one
coefficient is sensitive to the prior about others, because of prior correla-
tions. To make sense out of this definition, we thus have to define
meaningful classes of priors within which to perform the sensitivity analy-
sis.

The sensitivity of the posterior mean to variations in the prior mean
holding other things constant is indicated by the matrix of derivatives

0 b**(�,)
0b* =;k(N+XN*)-�N*'

The off-diagonal elements of this matrix indicate the extent to which the
conditional posterior mean of one coefficient depends on the prior mean of
the others. These are zero for N and N* diagonal, for N proportional to
N*, and for N* or ;� equal to zero.

We may also be interested in the sensitivity of the posterior mean to
changes in the prior variances. Let us write

(N*)-' =DRD
where D is a diagonal matrix with V� on the diagonal and R is the
matrix of co'rrelation coefficients. A change in the prior variances induces
a change in the prior precision matrix according to the formula

tiN* = - (N'D- I dD+ D- �dDN*),
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and a change in N* induces a change in b** according to the formula

ab** (;k) = (N + ;kN*)- ' (;kdN*)(N + }�N*) - iN(b* - b).
In the diagonal case, the ith element of db**(;k) depends only on the itl
differential (riD),. Otherwise, changes in the prior variance of one coet
ficient induce changes in the posterior means of other coefficients.

Sensitivity analysis can also be performed with respect to the varianc
ratio ;k. In the orthogonal case, the posterior mean (the curve decolletag�
lies everywhere in the rectangular solid with diagonal [b,b*]. In that cas
the sign and maximum distance of the mapping from prior to posteric
mean are unambiguous, and we could say that the sample evidence doe
not depend meaningfully on prior information about ;k. When the curv
decolletage travels outside this region, the sample evidence does becom
ambiguous, and collinearity is the culprit. Note, by the way, that this i
mathematically the same as the cotlinearity problem in the rectangle sens
discussed in the previous section, although the interpretations are quit
different. In that section the curve decolletage was assumed to lie in th
relevant rectangular solid, and when it did not, a major data misinterpret�
tion occurred. Here, we know where the curve d�colletage lies, but we ai
uncertain whether particular points on the curve outside the rectangul�
solid are relevant, since our prior information about the variance ratio
ambiguous.

The derivatives just reported imply a local sensitivity analysis in whic
the consequences of small perturbations in the prior are analyzed. Glob;
sensitivity analyses are discussed in the next section, but one result give
there yields an especially interesting measure of collinearity. It is show
that if only the prior location is known (taken hcrc to be the origin), the
any posterior mean must lie within the feasible ellipsoid (5.1), and an
point in the ellipsoid is a posterior mean for some prior. Projection of th
ellipsoid on the ith axis yields the set of feasible estimates of fi�. I
contrast, ff fiz were the only parameter, then the posterior mean woul
necessarily lie between zero and bi, the least-squares estimate. The ratio �
the lengths of these two intervals is shown in the next theorem to be

[ X2 � '/2

where X 2 is the chi-square statistic for testing the multivariate restrictic
�3=0 and Zi is the normal statistic for testing fi�=0? (See Figure 5.14
When c�i is one, inferences about fiz are unaffected by the fact that the�

�8Notice that c�i is proportional to the inverse of the square of the t statistic for testi�
fil =0. Thus the ranking of coefficients by t statistics is equivalent to a ranking by tt
collinearity measure.
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�2 /�Likelihood
i� confours

Fig. 5.14 A measure of collinearity c� = 1,/12= V�f� 2 .

are other parameters, since the posterior location is constrained to lie in
the interval (0, bi). When c,i is greater than ore, the existence of other
parameters does cause difficulties for interpreting the evidence about fli in
the sense that the set of feasible estimates is enlarged.

THEOREM 5.9 (PROJECTION OF THE FEASIBLE ELLIPSOID). Given Ig
constrained to the ellipsoid

(/3 - f)'X'X(/3 - f) = c
where f = (b + b*)/2 and c = (b- b*)'X'X(b- b*)/4, the extreme values of
the linear combination �'ig occur at the points

c I �/2Ig*= f + (x'x)- ',p(,y(x'x) - ',p / '
The linear function �'ig at these points takes on the values

'ig* =

Proof' Setting the derivatives of the Lagrangian to zero yields the vector
of equations 0 = 4� + X'X( Ig - l')X, which implies ( Ig - f) = - (X'X)- �4�2� - �.
Thus c = ( Ig - f)'X'X( Ig - f) = X - 2�'(X'X)- '�, and X 2 = �'(X'X)- '�/c.
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This interval for �'ig has length equal to 2(c45'(X'X)-'�k)'/2- -
(X2Var(�'b)) �/2 where X 2 is the chi-square statistic for testing Ig=b*, X 2--
o2(b-b*)'X'X(b-b*), and Var(�'b) is the sampling variance of 4/b,
o2�,(x,x)-

These measures of collinearity have described how the posterior location
of one parameter fil depends on the prior information about the other
parameters. One measure mentioned in Section 5.5 describes the relation-
ship between the (posterior) variance of fii and the prior variance of the
other parameters. If the prior for the vector Ig is diffuse, the posterior
variance of fii is proportional to [(X'X)-']ii, whereas if all the parameters
except fli were known exactly, then the variance of fl� would be propor-
tional to ([X'X]i)- �. The square root of the ratio of these two numbers thus
measures the incentive to formulate prior information

[(XtX)ii]__lC2(]�/) = [ (XtX) -- ' ] i,,
A value of c2(fii) equal to one occurs when the ith row of X'X has zeroes
except in its ith element. A value of one indicates that there can be no gain
in information about fii by gathering more information about the other
coefficients. A value of c2(fi)= � indicates that if the other coefficients
could be specified exactly, the confidence interval for � would be cut in
half.

More generally, if we are interested in estimating the linear combination
�'ig, the incentive to gather information about Rig can be measured by

c22(�,R) =

where V(iglRig) and V(ig) are the conditional and unconditional vari-
ances of Ig.

These measures of the incentive to gather other information are similar
to measures of the intercorrelation of the explanatory variables. Other
measures of intercorrelation between a subset X j, and its complement Xy
are Hotelling's (1936) "coefficient of alienation"

2_ act [ Xf(I- Xy(X/Xy)-'Xf)Xj]
1%-

det(XfXj)

and Hooper's (1962) "trace correlation coefficient"

p� = J-' tr[ (XfX,)-'(Xf(,- X y(X fXy )-'X f )Xj)].
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The analogous measure c2(,�,R), with �'=(�,0) and R=(0,1i) is
f(XfX)-

C2=

Nofi� that the difference between c � and p� is oMy that c: involves
variances of a specific linear combination, whereas p� uses the generated
various, det( V(�;)). They are identicM if the set J has oMy one element.

�e discussion to tMs point has made use of the assumption that the
residu� variance o � is �o�. In that event, the conditional co�idence
internal for �'� �ven R�=r c� never be larger than the co�idence
internal computed without benefit of the restriction. But if o � is u�nown,
imposition of the constraint may, in fact, lead to a larger co�idence
internal, sMce the estimate of o � necess�ly changes. �e multi�llineafity
measure, which by defMition is the ratio of the length of a conditional to
the length of � unconditional Mtemal, may exceed one. �is seems to be
saying parado�lly that more i�o�ation is less info�afion; the more
i�o�ation co�esponding to �owledge that R� = r, and the less info�a-
tion �rrespon�g to the fact that the Mtemal for �'� increases in length.

It is, M fact, not paradoxi�l that specific i�o�ation may make you less
certain, especially if that info�ation is geatly at odds with what you
currently believe. �owledge of R� will sometimes increase and some-
times decrease the co�idence MtemM for �'�. But the expected variance of
�'� �ven R�, expected with respect to the distribution of R�, will always
� less than the �conditional vafi�ce of �'�, sin� V(�'�)=
V(E(g'�IRB)) + E(V(�'�IR�)).

�e Mcentive to obtMn prior i�o�ation about R� shoed be measured
M te�s of the expected vafi�ce of �'� �ven R�:

It is easy to show that tMs measure is precisely the same as the measures
pre�ously su�ested when o e was assumed to be �own. �us the results
heretofore discussed continue to apply. �e proof of tMs proposition could
appeal to properties of multivariate Student distributions, but it is easier
merely to obseme �at, conditional on o �, both V(�'�) �d E[ V(�'� IRD)]
are proportional to o �. Inte�ating each with respect to the �osterio 0
� stfibufion of o �, f(o�[Y,X), will thus multiply each by the sa� constant.
�us the ratio is unaffected by uncertainty in o �.
SLIMMARY

The most discussed aspect of collinearity is the weak-data problem
associated with large standard errors of estimated coefficients and, in a
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Bayesian analysis, the coincidence of prior and posterior distributions on
certain subspaces. As Kmenta suggests, there is nothing special about this
problem in the collinearity context. What is special in the collinearity
context is the major problems of interpreting the evidence.

When prior information is fully specified and unique, both personally
and publicly, the posterior mean and hence the interpretation of the
evidence are unambiguous. The diagonalizations of the data matrix X'X
and the prior covariance matrix that some of us implicitly perform may,
however, lead to very poor approximations to the posterior mean. Qualita-
tive and quantitative summaries of the error of approximation provide one
way of assessing the collinearity problem.

The principal implication of collinearity is that data evidence cannot be
interpreted in a parameter-by-parameter fashion. The informal use of
nondata-based prior information by practicing classical statisticians almost
necessarily implies a parameter-by-parameter analysis, and consequently,
the data ntisinterpretation just described. The great benefit of a Bayesian
approach is that it provides instruction on how to deal with prior informa-
tion in a multiparameter problem. For example, the posterior mean is,
under suitable assumptions, a matrix-weighted average of the prior mean
and the sample estimate, not a simple average.

Although the Bayesian approach appropriately spotlights the fundamen-
tal source of the collinearity problem--personal prior information--it
necessarily leaves the resolution of the problem to the individual. He must
"merely" construct his prior distribution. Difficulties in constructing a
personal prior and/or variation in opinions among intended readers may
cause major difficulties in analyzing and reporting collinear evidence. Thus
the problem of collinearity from a Bayesian viewpoint concerns the sensi-
tivity of the posterior distribution to changes in the prior distribution, and
quantitative measures of that sensitivity may be used to describe the degree
of the problem.

The principal claim of this section is that the collinearity problem
concerns the way in which sample evidence fits together with prior infor-
marion. If prior information dominated sample evidence in all directions,
there would be no collinearity problem. When there is a collinearity
problem, classical inference, which excludes undominated uncertain prior
information, fails as a method of interpreting evidence. Peculiarities in the
'likelihood surface make the BLUE (least-squares) estimate almost irrele-
vant. A fuller exploration of the likelihood contours informally directed by
prior information is difficult and rarely convincing, especially when the
number of dimensions of prior information is more than one. Although a
Bayesian approach cannot provide a complete cure, it does indicate the
source of the disease.
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5.8 Global Sensitivity Analysis:
Properties of Matrix-Weighted Averages

The posterior mean of a normal, linear-regression model with normal
priors is a matrix-weighted average of a prior location vector and a sample
location vector. The prior weight matrix is arbitrary, either because prior
distributions are impossible to measure without error or because intended
readers may differ in their prior judgements. A Bayesian analysis based on
any particular prior distribution, as a result, is of little interest. Practical
users of the Bayesian tools necessarily face the difficult reporting problem
of characterizing economically the mapping implied by the given data
from interesting prior distributions into their respective posterior distribu-
tions, thereby servicing a wide readership as well as identifying those
features of the prior that critically determine the posterior.

One way of characterizing the mapping from priors into posteriors is a
local sensitivity analysis discussed in the previous section that identified
the relative sensitivity of aspects of the posterior distribution to infinitesi-
mal changes in the prior. The usefulness of a local sensitivity analysis is
somewhat limited, since to have great content it must be performed for
many different prior distributions. An alternative is a global sensitivity
analysis that constructs a correspondence between classes of priors and
classes of posteriors. A correspondence can be constructed by answering
questions of the form: "if my prior is a member of this class of priors, what
can I say about my posterior?"

Although both the location and the dispersion of the posterior are of
interest, we consider here only the location parameter. The location of the
prior is taken as given, and a correspondence is developed between classes
of prior covariance matrices and regions in the space of the posterior
location vector. A great deal can be said about the posterior location
without precisely specifying the prior covariance matrix. What is not true,
except under special and unlikely circumstances, is that, element by
element, the posterior location lies algebraically between the prior location
and the sample location. The inappropriateness of this bound is an
important reason why a multiparameter problem is fundamentally diffe-
rent from a uniparameter problem.

The three most interesting results of Chamberlain and Learner (1976) are
reported here. The posterior mean, as usual, is written as

b** = E (18 [Y,H,H*) = (H+ H*)-'(Hb+ H'b*) (5.28)
where H=o-2X'X and Hb=o-ZX'Y. The first result is that if only the
location vectors b and b* are given, then b** may lie essentially anywhere.
This contrasts with the analogous one-dimensional result, which constrains
the scalar b** to lie algebraically between the scalars b* and b. Next, it is
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shown that if X'X is known as well as b and b*, then the posterior location
b** must lie in the feasible ellipsoid (5.1). The third result has already been
reported in Theorem 5.5: if b, b* and X'X are given and if H* is a diagonal
matrix, then b** is a weighted average of 2 k constrained least-squares
points.

The first result of practical interest is that if only the locations b and are
known, the posterior mean may lie essentially anywhere. The proof re-
quires the following lemma.

LEMMA 5.1. Given the prior and sample locations, b* and b, and ar
invertible matrix of common conjugate axes B such that B'HB =pl am
B'H*B=D*, with p an arbitrary positive scalar and D* an arbitrat)
positive diagonal matrix, the tramformed posterior mean

a** = B-'b**=B-'(H + H*)-'(Hb+ H*b* )
lies eoerywhere in the orthotope

la,** (a' + ai*) I 'ai-- ai*'2 < 2
where a--B-�b and a*=B-�b *. The tramformation of this region back
into natural coordinates takes the axes into the columns of B. Thus tht
edges of the bound that are axes in tramformed coordinates are col-
umm of B in natural coordinates. The resultant bound is a parallelotop�
with b*and'b at opposite vertices and with edges parallel to th�
common conjugate axes?

Conversely, given any point b** in this bound, there is a unique (up to �
factor of proportionality) diagonal matrix D* such that b** is a post
erior mean. Thus the bound is minimal.

Proof: This lemma follows trivially by writing

a** = (B'(H + H*)B) - '(B'HBB - 'b + B'H*BB- 'b*)
=(pl +D*)-'(ap +D'a*)

where a=B-�b, and a*=B-�b *. Thus, element by element ai** is a simp]
weighted average of ai and a�*

ai** = (p + d, ) - l(pai + 4ai*) (5.2S
and is constrained to lie in the orthotope described previously.

�gA parallelotope is an n-dimensional generalization of a parallelogram. It is generated 1
a pair of points (opposite vertices) and n vectors that define the faces at each of the poin
The parallelotope is an orthotope if the vectors are orthogonal to each other.
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The converse of this theorem is also true: any point in the orthotope is a
posterior mean for some set of eigenvalues 4. This follows simply by
picking p and' inverting (5.29) to write 4 as a function of ai**.

THEOREM 5.10 (MATRIX-WEIGHTED AVERAGES CAN LIE ANYWHERE).
Given only the prior and sample locations, b and b*, with H and H* any
symmetric positive definite matrices, the posterior mean may lie on the
open-line segment Co, b*) and anywhere off the line through it. That is, only
points on the line through b and b* exterior to the open line segment
Co, b*) are excepted.

Proof.' Choose any point b**satisfying the foregoing bound, and form a
parallelogram in the plane of b**, b*, and b that contains b** and has b*
and b at opposite vertices. If we simply choose the edges of this parallelo-
gram as the first two common conjugate axes described in Lemma 1 and
further choose k-2 additional linearly independent vectors to complete
the selection of conjugate axes, by the converse of Lemma 1 there exists a
set of d� such that b** is a posterior mean. The exception derives from the
impossibility of forming such a parallelogram if b** is on the line through
b and b* exterior to the segment Co, b*). A tedious algebraic proof is in
Learner (1971).

The following result used to prove Theorem 5.11 is essentially the same
as Pratt's (1970); the proof parallels his proof.

LEMMA 2. Given the sample and prior locations b and b* and the
information that the prior and sample ellipsoids have a complete set of
common principal axes (i.e., that the positive definite matrices H and H*
commute, HH* =H'H), the posterior mean is constrained to lie in the
hypersphere

(b** - c)'(b** - c) < (b- b*)'(b- b*) (5.30)4

where

(b + b*)
2

In words, the posterior mean is constrained to lie in the hypersphere
with diameter [b,b*].

Conversely, any point in this hypersphere is a posterior mean for some
choice of H and H* with HH* =H*H. Thus the bound is minimal.

Proof'

and

Global Sensitivi .ty Analysis: Matrix-Weighted Averages
We may write

b** - b*: (H + H*) -'H(b - b*)
b** - b: (H + H*) - 'H* (b* - b)
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(b** - b*)'(b** - b) = - (b - + m) - M*(b - b*) < 0,
since the matrix of this quadratic form is positive definite when H and H*
commute. After some straightforward rearrangements, this inequality is the
same as inequality (5.30).

Conversely, any point in the hypersphere lies in a rectangular solid witl:
vertices at b and b*. The edges of such a rectangle can be taken
common conjugate axes, and the converse of this lemma follows trivial13
from the converse of Lemma 1. For an algebraic proof see Pratt (1970).

The following theorem is of considerable practical interest, since it deak,
with a typical case when the sample precision matrix is known and th�
prior precision is completely arbitrary.

THEOREM 5.11 (ELLIPSOID BOUND). Given the sample and prior loca-
tions, b and b*, and the sample precision H up to a scale factor, the
posterior mean is constrained to lie in the ellipsoid

(b** - c)'H(b** - c) < �- (b- b*)'H(b- b*)
where c= Co*+ b)/2. In words, the posterior mean must lie everywhere
within an ellipsoid from the sample family of ellipsoids with' center at
the midpoint of the line segment joining b to b* and with boundary in-
cluding b and b*.

Conversely, any point in this ellipsoid is a posterior mean for some H*.
Thus the bound is minimal.

Incidentally, the boundary of this ellipsoid is the set of contrainec
least-squares points described in Section 5.1 and illustrated in Figure 5.1

Proof.' Find the coordinate system that transforms the sample ellipsoid
into concentric spheres, B'HB = I. In terms of these coordinates

a** = B- 'b** = (I + n)- '(a + A'a*)
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where A* =B'H*B, a=B-�b, and a*-B-�b *. By Lemma 2, since I and A*
commute, a** is constrained to the hypersphere

l(a-a*)'(a-a*)(a** _ - g) <
where g= (a+ a*)/2. Transforming back into natural coordinates we ob-
tain

(B- 'b** - B-'c)'(B-'b** - B-'c)

= (b** - c)'n(b** - c) < (b - b*)'n(b- b*)
where c = (b + b*)/2.

The converse is also true and follows straightforwardly from the con-
verse of Lemma 2 by noting that A* is arbitrary.

Knowledge of the sample moment matrix is enough to shrink the bound
from essentially complete freedom to a well-defined ellipsoid. We may now
consider how various items of information about the prior precision matrix
further shrink the bound. One fact we may know is that certain linear
combinations of parameters are independent of each other, or equivalently,
H* may be diagonalized by a known transformation. Theorem 5.5, dis-
cussed in Section 5.6.1, implies that the posterior mean is then a weighted
average of the 2 k constrained regressions formed by omitting variables in
all different combinations. TM The converse is not true. All weighted
averages of the 2 k constrained least-squares points are not necessarily
feasible; see Chamberlain and Learner (1976).

2�Note, incidentally, that the weighting function w� in Theorem 5.5 allows us to collapse
these 2 k points into a smaller number of points whenever any of the diagonal elements d,- are
constrained to be equal. In particular, given k� of the diagonals equal to one number, k 2 equal
to another .... the 2 k points can be collapsed into IIi(k� + I) points. The extreme case with all
the diagonal elements equal is equivalent to knowing H* up to a scale factor, and the
resulting minimal bound is the curve decolletage. Theorem. 5.5 describes that curve as a
convex combination of k + 1 points.

Theorem 5.5 applies to several familiar models. The exchangeable model of Lindley and
Smith (1972) with �N(�,o�) and �N(0, o�) implies a variance matrix for the vector fi
with o� + o� on the diagonal and o� on the off-diagonal. The eigenvalues of this matrix (Rao,
1965, p. 54�, are d,-' �o�+ko� with eigenvector (I, 1 ..... 1) and dff' =o� of multiplicity k- 1
with any set of (k-1) eigenvectors orthogonal to (I, I,..., 1). Since the eigenvectors are
independent of the uncertain parameters (o� and o�), there is a known linear transformation
that takes the prior variance into a diagonal matrix, and theorem 5.5 applies. The multiplicity
of the second eigenvalue implies that the 2 � points can be collapsed into 2k points. The
constrained least-squares estimates involve one constraint Y�i�0 and k-1 constraints of
the form !ffi=O with !� a set of eigenvectors orthogonal to the vector of ones. Each of the 2k
points is a weighted average of constrained least-squares points with or without Xi� �0 and
with exacfiy m of the other k-1 constraints for m=O, l,...,k-1. The "ridge regression"
special case with o� � 0 has only a single distinct eigenvalue, and the number of points is
reduced to k+ 1. The limiting degenerate case o�-,oo has one zero eigenvalue d�, and all
constrained least-squares estimates involving the constraint Y�i=0 have zero weight.
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Other bounds are discussed in Chamberlain and Learner (1976). Th.
point of this section is that it is possible to say interesting things about th
posterior distribution when the prior is not fully specified. If only the prio
location and sample location are known, then the posterior modes may li
essentially anywhere. Knowledge of the sample ellipsoid shrinks the set c
feasible points to an ellipsoid; knowledge of the major axes of the pric
further restricts the feasible region to the hull of the 2 � restricted leasl
squares points.

5.9 Identffication

If two models imply the same distribution of the data, no observed dal
can be said to favor one or the other. The posterior odds, defined as tl�
ratio of the posterior probability of one to the posterior probability of tk
other, necessarily equal the prior odds ratio. A mathematical translation {
this statement is, essentially, the classical definition of the identificatic
problem used by Koopman and Riersol (1950). The shortcoming of th
definition is that a "model" usually determines a family of data distrib�
tions indexed by some uncertain parameter vector. The generalization �
the definition to deal with families of data distributions is not obvious.

The probability model we use to illustrate the concepts is the usu
normal linear-regression model, Y--X�+u, with u normally distribut{
with mean vector 0 and covariance matrix o21 with o 2 assumed known. It
assumed that the model suffers from the extreme multicollinearity pro]
lem, Xql--0, for some set of p linearly independent vectors, q�, i--1 ......
Where required, we use a prior for � that is normal with mean b* ar
variance matrix (H*)-�. It should be emphasized that the following discu
sion applies to this linear-regression model, and the definitions and resul
do not necessarily generalize to other statistical models.

Example. It is useful to have in mind a more specific example. Suppo
that the model included only two explanatory variables, Y =x� fl� + x2fl 2
u, with the two variables identical, x� = x 2. In this case, there is only one
vector, q'--(l,- 1), (or any vector proportional to it).

A special case of the model used here has an X matrix with zero vecto
as the first p columns and k-p linearly independent vectors as i
remaining columns. Data generated by such a model pretty clearly pr
vides evidence only about the last k-p parameters. By a linear transfc
mation, any model with p linear dependencies can be taken into this fort
Let C be a k xk invertible matrix with the p vectors q� as its first
columns, and write the regression process as

Y = (XC)(C- 'fi ) + u.



188 INTERPRETIVE SEARCHES

Let the vector 0-- C-113 be partitioned 0'= (01,02) where 01 hasp elements.
By construction, the firstp columns of XC are zero, and the process can be
written

Y=X�02+u, (5.31)
where X�' is a T x (k-�) matrix with linearly independent columns.

Example. The two variable regression model with x� =x 2 can be written
Y=x� fi�+x2fi2+u--x�(fi� +fiz)+u, and we are led to conclude that the
process produces evidence about t� = fi� + fi2.

The first pair of definitions are the ones most commonly used in the
econometric literature.

Definition. A parameter value [3a is observationally equivalent to a param-
eter value [30 if the data distributions f(YI [3=[3�) and f(YI [3__[30) are
identical.

Discussion. Let [3o= [3a+ *t with *t chosen such that X*t =0. Then X[3�=
X[3 ", and both parameter values determine the same data distribution.

Definition. The regression vector [3 is identifiable if there exist no two
(distinct) observationally equivalent values of [3. The model is identified if
its parameter vector is identifiable.

The shortcoming of this definition, as stressed by Kadane (1975), is that
it tends to give up too soon. Although a model may fail to be identified, it
may, nonetheless, provide a great deal of information about some func-
tions of the parameter. The following is a special case of a definition due
to Kadane (1975).

Definition. The linear function �'[3 is identified if, whenever a parameter
value [3a is observationally equivalent to another parameter value [3b, it is
also true that �'[3'�= �'[3�'.

Discussion. The logic of this definition is that although two parameter
points may be indistinguishable, we do not, in fact, need to distinguish
them, if we are interested in functions that assign the same value to both
points.

THEOREM 5.12 (IDENTIFICATION OF �'[3). Given the full set of exact
linear dependencies among the columns of X, X�i =0, i= 1 .... ,p, the
function �'[3 is identified if and only if �'�i =0 for i = 1 ..... p.
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Proof.' It is easily seen that the complete set of values observationally
equivalent to [3" is [3b=[3a+Y,�=�*ti% for any values of %. It is also clear
that �,[3a__�,[3�, for all pairs of vectors in this class if and only if �',ti--O,
i---- 1 ..... p.

A word that is very close in spirit to identifiable is the word estimable.
The concept of estimable functions is due to Bose (1944) and is discussed
in Scheft6 (1959). As is now shown, estimable is mathematically equivalent
to identifiable.

Definition. The linear combination of parameters �'[3 is estimable if there
exists an unbiased linear estimator of �[3.

Discussion. A linear estimator is w'Y, where w is a vector of constants. I1
is an unbiased estimator of �'[3 if, for all [3, E(w'YI[3)--�'[3, that is, i�
w'X[3 = �'[3. This condition is satisfied for all [3 if and only if w'X = �'.

THEOREM 5.13. Given the full set of exact linear dependencies among th�
columns of X, X�i--O, i= 1 ..... p, a necessary and sufficient condition foi
�[3 to be estimable is that � and �i be orthogonal, �'�i--O, for all i.

Proof.' Post-multiplying the condition w'X = �' by �i produces the equal
ity O= �'�i. This establishes the necessity of �'�=0. A constructive proo
of the sufficiency of the condition is useful. We can make use of the sam,
notation as used in Equation (5.31). Observe that d -rv.,v.�-�v*,v is a�
unbiased estimator of 02. Let 0 have arbitrarily chosen values for its first 1
elements and have �2 for its last k-p elements,/�'--(a�,d�). An estimato
of �[3 is �'C� with expected value

o1'
The last term in this expression is zero if the first p elements of �'C ar
zero, that is, if �'�=0; and then �'C� is an unbiased estimator of �'[3.

Example. In the two-variable model with *t --[1, - 1], the function fi� +fi
is estimable.

A feature of a set of observationally equivalent parameter values is tha
they are all assigned the same value by the likelihood function regardles
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of the data Y. The likelihood function is

L(IO; Y) ccexp[ - �1 (Y-XIO)'(Y- X/O) 1.202

Given two observationally equivalent values, Ioa and Iv0, it is easy to see
that L(IOa; Y)--L(IOb; Y) regardless of the value of Y. This suggests some
alternative definitions.

Definition. A parameter value IO� is observationally equivalent to a param-
eter value IO� if the likelihood function L(IO;Y) satisfies
L(IO�;Y) for all Y.

Definition. The model is said to be identified if the likelihood function
attains its maximum at a single point.

Example. Given the two-variable regression model with x� =x2, the likeli-
hood function is maximized along the line (fi�+fi2)=(x'�xO-�x�Y (see
Figure 5.15).

?-he maximum likelihood line

cantoar

A n identifying
res trict/on

Information contract

Fig. 5.15 The likelihood function of an unidentified model.
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We now consider the role that prior information plays in identifying a
model. We first consider exact linear restrictions and then probabilistic
prior information.

Definition. A set of q restrictions Ri0: r where R is a q x k matrix of rank
q is set of identifying restrictions if on the set (IV]RIO =r} the likelihood
function attains its maximum at a single point. The set of restrictions is
said to overidentify the model if a subset of the restrictions identifies the
model.

Discussion. Using the notation of Equation (5.31), the set of restriction:
01 =a is a set of identifying restrictions (see Figure 5.15).

THEOREM 5.14. Given a set of identifying restrictions any function
identified and (equivalently) estimable.

Proof.' Left to reader.

Dreze (1962) and (1975) comments that exact restrictions are unlikely t�
hold with probability one and suggests using probabilistic prior informa
tion. Whereas a model is defined before to include the restrictions, a mode
is now defined to include any probabilistic prior information:

Definition. A model is said to be identified in probability if the pasterio
distribution for IO is proper regardless of the data Y.

Discussion. It is enough to have a proper prior distribution for 0� to ha�
a proper posterior distribution for 0 and hence for IO. If the prior is propc
for IO, any model is identified in probability. This leads one to condud,
erroneously, that the concept of identification is uninteresting to a Bay�
sian. More discussion follows.

Another observation due to Dreze (1962) is that if it is known i
advance of the data Y that the likelihood function will necessarily I:
uniform on some subspace, then, conditional on this subspace, the pric
and posterior distributions will coincide:

Definition. A model is not identified if there exist a set of restrictior
AIO=a such that f(IO[AIO=a)=f(IOIAIO=a,Y) for all Y.

Discussion. The reader may verify thatf(iolO2)=f(iolO2, Y) regardless
the prior f(IV).
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Without saying so explicitly, these definitions of the identification prob-
lem describe deficiencies in the information afforded by the experiment.
The concept of estimability, however, does make explicit reference to the
sample information. An alternative is to compare the prior distribution
with the posterior distribution:

Definition. Given a particular prior distribution, the experiment is person-
ally uninformative about a linear function q/� if the posterior distribution
of q/fi is equal to the given prior distribution for all data values Y.

Example. If H* is the identity matrix and � =(- 1, 1), then from Section
5.7 the data is personally uninformative about �'H*18 = fi2-fly Notice in
Figure 5.15 that the information contract curve is fi2-fi� =0, regardless of
the data Y. Notice also that this curve changes if you choose a different
prior metric, H*.

Discussion. With H* as the prior precision matrix, the experiment is
personally uninformative about �;H*�, i = 1 ..... p and any linear combina-
tion of these (see Section 5.7), but the experiment is personally informative
(i.e., contains information) about all other linear combinations. NotiCe the
sharp contrast between this notion and the notion of identifiability. Given
some linear dependencies among the columns of X, almost all fdnctiofis
are unidentified. Nonetheless, the data are personally informative about
almost all functions. The following definition is the analogue of identifi-
able.

Definition. The experiment is publicly informative about the linear combi-
nation ,�'18 if there exists no positive definite, prior precision matrix H*
such that the experiment is personally uninformative about ,�'18.

THEOREM 5.15. Given the full set of exact linear dependencies among the
columns of X, X�i =0, i = 1 ..... p, a necessary and sufficient condition for
the experiment to be publicly informative about �'[3 is �'�i =0 for all i.

Proof' The experiment is personally uninformative about the function
�iwi�H*�, for arbitrary w c The experiment is publicly informative about
�'�3 if we cannot find a positive definite H* and constants % such that
Ziwi�/H* = �'. Write this equation as (H*)- � = Z%�i, and postmultiply it
by �',�'H*-�,=Zwi�'�i � Given the conditions �'�i=O, this equation
amounts to �'(H*)-�--0 which cannot hold for positive definite H*. Thus
� =0, i= 1 ..... p is a sufficient condition. Conversely, suppose there is a
� such that X�=0 and �'�0. Then let �, j=2 ..... k be a set ofI t

orthonormal vectors orthogonal to �, and let H*= �'(�'�)- +�.
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Observation of an experiment is personally valuable in the sense that
changes the observer's opinions. Observation of an experiment is sociall
valuable in the sense that it leads to a consensus, thereby eliminating th
need for the unresolvable argument over whose prior is best. The last set
definitions are aimed at this social-learning phenomenon.

Der'tuition. An experiment leads to a consensus if, given a sufficie�
number of independent replications of the experiment, all observers wi!
nondogmatic priors have essentially the same posterior distribution,
gardless of their prior.

Definition. An experiment leads to consensus about the linear functk
,�'18 if, given a sufficient number of independent replications of t]
experiment, all observers with nondogmatic priors have essentially t]
same posterior distribution for

THEOREM 5.16. An experiment leads to consensus if and only if the rno�
is identified.

THEOREM 5.17. An experiment leads to consensus about �'[3 if and ot
if the function �'[3 is identified.

Proof' Left to reader.

An experiment cannot lead to consensus if it is impossible to distingu
one prior from another. The following definition is due to Zellner (197
Definition. A prior distribution f�(�3) is observationally equivalent
another prior distribution fo(�3) if the marginal data distributions f�(Y
f f(Y] [� )f� ( � ) d[� and fo (3 0 = f f(y[ [�)fo ( � ) d[� are identical.
Observation. Translate the location of a prior b* to b*+� where
satisfies X;/= 0 to construct an observationally equivalent prior.

In summary, the words identifiable, estimable, and publicly informaC
and the phrase "leads to a consensus" are interchangeable. If a mc
implies a likelihood function that attains its maximum on a (linear) se �
points, the model is not identifiable, and, conditional on that set of po'
(or certain other sets), the prior and posterior distribution coincide.

The concept of personal informativehess is quite different from
concept of public informativehess. No individual would want to disc
the information generated by a model just because the model is
identified, or even because the linear function of interest is not identi!
Given this prior information, the model may, nonetheless, imply us
information.
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5.10 Examples

Two examples of a sensible Bayesian analysis of data are reported in this
section. The adjective "Bayesian" refers to the admission that subjective
nonsample information is used to interpret the data. The modifier "sensi-
ble" refers to the fact that it is unlikely that anyone could with confidence
select a particular prior, and as a result we explore the implications of
many different prior distributions. These results were computed by a
program entitles SEARCH: Seeking Extreme and Average Regression
Coefficient Hypotheses, which is available on request.

SEARCH assumes that the prior distribution is built in three steps. The
prior location is first selected, then the prior "metric" (isodensities), and

�s stly a particular density value is assigned to each of the isodensity
rfaces. If only the prior location is known, the data support an ellipsoid

of estimates described alternatively by Theorem 5.11 as a hull of contract
curves or by Theorem 5.1 as a set of constrained least-squares estimates.
The choice of prior isodensity surfaces further limits the set of estimates to
a curve within this feasible ellipsoid. Lastly, the labeling of the prior
isodensities selects from this curve a point or a set of points as posterior
modes.

SEARCH describes the ellipsoid of constrained estimates in terms of
extreme values of coefficients of interest. The information contract curve is
described in terms of the "rotation invariant average regressions" (Theo-
rem 5.8) and also in terms of a set of points on the curve.

The priors we are about to discuss are not informative on all the
coefficients, and the feasible ellipsoid is suitably adjusted. The prior has
implicit in it a set of q uncertain constraints, R0=r. The feasible set of
estimates can be described as the set of constrained regressions subject to
constraints MR0 = Mr, with R and r taken as given and M free to vary. If
R is invertible, then as M is varied any point on the "feasible" ellipsoid of
constrained estimates is attainable. But when R is not invertible, only a
subset of constrained estimates is attainable. This is made more clear in
the following examples.

DOUBTFUL VARIABLES

It is very common to have a model with a few explanatory variables that
are known to belong in the equation and a longer list of "doubtful"
explanatory variables. The first set of variables is likely to be the focus of
the analysis, and the second set is used to "control" for other influences. If
the list of doubtful variables is long, estimation with all the doubtful
variables included in the equation will produce large standard errors on
the coefficients of the "focus" variables. In this situation, it is typical to try
different subsets of the doubtful variables, and it is hoped that the
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coefficients of the focus variables will not change much as the list t
doubtful variables is changed. But this search is both haphazard an
nonexhaustive. Furthermore, if the coefficients of the focus variabk
change very much, this ad hoc search does not suggest how to average th
many computed estimates into a single number.

SEARCH is ideally suited to deal with this problem. The interestin
bounds that the program can report are the extreme estimates of the focu
coefficients with ideally chosen doubtful variables included in the equ�
tion. There is no way of "fiddling" with the doubtful variables to get a:
estimate outside the reported range. The points on the contract curv
reported by the program are mixtures of the 2 q regressions that could b
computed using subsets of the q doubtful variables. Thus the program bot]
searches exhaustively the set of possible regressions and also suggest
weighted averages of the regressions, the latter being important when th
bounds are wide.

The following example has eight "doubtful" regional dummy variable�
The dependent variable is the wage rate, and the focus variables are th�
education of the wage earner, his age, and the square of his age. A dumm�
variable for a region is necessary if the labor market in the given region i
"separated" from the markets in other regions. To say that the dumm�
variables are doubtful is to say that in the absence of evidence to th�
contrary, we should view the labor market as a national market.

The estimated model with all the dummy variables included is (standart
errors in parentheses):

where

W-.041 D� +.098 D 2 + .051 D 3 --.019 D 4
(.34) (.32) (.46) (.34)

+ .004 D 5 -. 178 06 + .086 0 7 + .060 D 8
(-46) (.43) (.50) (.35)

+ .05 EDUC +. 137 AGE- .0015 (AGE) 2 + 5.737
(.030) (.047) (.0006) (.96)

D� = Mid-Atlantic
D 2 = East North Central
D 3 = West North Central
D 4 = South Atlantic
D 5 -East South Central
06 -� West South Central
0 7 = Mountain
D s = Pacific

(New England omitted)
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The bounds for the coefficients of the three focus variables are reported
in the table below. The numbers in parentheses are the standard errors of
these coefficients if the model that implied the estimate could be taken as
given. (Remember that these bounds include regressions subject to con-
straints such as /5� =/52, which says the Mid-Atlantic and East North
Central regions can be aggregated. They also include constraints of the
form/� = 0.)

Bounds for the Focus Coefficients
EDUC AGE (AGE) 2

.0577 (.0177) .139 (.029) -.00147 (.00035)

.0446 (.0178) .131 (.029) -.00155 (.00035)
Each of these coefficients is quite insensitive to the choice of regional
dummy variables.

Choice of points within these (narrow) bounds requires a more com-
pletely specified prior. Suppose that the coefficients of the doubtful vari-
ables are thought to be small in the sense that zsi= �/5i 2 is likely to be small.
This prior "metric" implies the contract curve incompletely reported in
Table 5.1. On the contract curve the extremes of all coefficients occur at
the end points. One end point is least squares with all the dummies
included; the other is least squares with all the dummies excluded. The
extremes for the focus variables are:

EDUC AGE (AGE) 2
.0521 .1332 -.001489
.0502 .1336 - .001535

These bounds are almost points and it hardly seems necessary to select a
particular point on the contract curve. But notice from Table 5.1 that the
equation with the dummies omitted has a low likelihood ratio (equivalently
a large F) and the data have a distinct preference for an estimate close to
the unconstrained least-squares points.

Table 5.1

Points on Contract Curve

Likelihood Ratio EDUC AGE - (AGE) 2
.14 .0521 1.33 .00148
.31 .0517 1.34 .00150
.48 .0514 1.34 .00150
.66 .0511 1.35 .00151
.83 .0507 1.35 .00152

1.0 .0502 1.37 .00153

Examples 1!

To conclude, for this particular problem the ambiguity in the specifi�
tion does not translate into substantial ambiguity in the focus coefficier.
The specification error implies, for example, an interval of estimates
the education coefficient from .0446 to .0577. But the sampling start&
error of this coefficient in the unconstrained model is .03, which is la�
compared to the specification range .0577- .0446 =.0131. To put it briel
the sampling error is more important than the specification error.

DISTRIBUTED LAG ESTIMATION

Another common problem in economics is the estimation of distributed
processes. Consider the import demand function estimated by ordin:
least squares

Mr-- .13 Y t +2.0Yt_ � -.91Yt-2
(.42) (.48) (.48)

+ .56 Yt-3 -.33 Yt-4-.42Pt --53Pt-�
(.50) (.39) (.50) (.55)

+ .33Pt_ 2 - -72Pt- 3 + .23 Pt- 4 -. 15 + .96e t_ �
(.50) (.51) (.48)

where standard errors are in parenthesis and where

M, --logarithm (United States imports in the tth quarter divided by a pri
index of imports)

Y, -- logarithm (United States GNP in quarter t divided by the GNP pri,
index)

Pt -- logarithm (import price index divided by GNP price index)
t-- 1951 first quarter to 1967 fourth quarter

Economists would generally expect to see the coefficients on the incc
variables positive and the coefficients on the price variables negative. �
peculiar saw-tooth pattern of coefficients would be regarded as hig
unlikely, and some constraint on the coefficients would undoubtably
used to "improve" or to smooth the estimates. One possibility is
constrain the coefficients of each of the distributed lag patterns to lie o
line. The resulting estimates are

Mt=ot+.83Y t +.55Yt_ � +.27Yt_2-.O1Yt_ 3
-.29 Yt-4-'56Pt-� -'38Pt-2 -' 19Pt-3
-OPt_ 4 +.19Pt_ 5.

Although this constraint does eliminate the wild pattern of coefficient�
does not produce coefficients that are all the same sign for each varia
Perhaps we should constrain them all to be equal, yielding the estima
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equation
4 4

Mr=a+.28 � Y,_�-.31 � P,_�.

Each of these three estimated equations is appropriate for one extreme
form of prior information about the coefficients. Since the researcher in
fact holds as his opinions neither one of these three forms of prior
information, he may informally mix together the three results. He notes
that the sum of the coefficients on the income variable is either 1.29, 1.35,
or 1.21, and the sum of the coefficients on the price variable is either
- 1.04, -.94, or - 1.29. Neither of these estimates is particularly sensitive
to the form of prior information. The shape of the lag distribution does
seem to be highly sensitive to the form of the prior, but it does seem that
the biggest coefficient is "probably" either the first or second.

The point of much of the discussion in Section 5.6, especially Theorem
5.5, is that a Bayesian can do nothing more than compute sensible
weighted averages of constrained estimates. The value of the Bayesian
approach is that it provides instruction concerning both the choice of
constraints and the choice of sensible weight functions.

The analysis now to be discusserS makes (us 'of three different prior
distributions. These priors make use of the assumption that RiB has
spherical normal distribution with R defined below:
PRIOR 1 SMALL DIFFERENCES

1 -1 0 0 0 0 0 0 0 0 0-
0 I -1 0 0 0 0 0 0 0 0
0 0 1 -1 0 0 0 0 0 0 0
0 0 0 1 -1 0 0 0 0 0 0
0 0 0 0 0 1 -1 0 0 0 0
0 0 0 0 0 0 1 -1 0 0 0
0 0 0 0 0 0 0 1 -1 0 0
0 0 0 0 0 0 0 0 1 -1 0

This prior reflects the fact that the first five coefficients are likely to be
similar, fl� =/52 =/53 =/54 =/55, and the next five coefficients are likely to be
similar, /56= fl7--fls=fl9=fl�0 � (This is one of Shiller's (1973) proposals,
first proposed by Whitakker and Robinson, 1940).
PRIOR 2

1 -1 0 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0 0
0 0 1 -1 0 0 0 0 0 0 0
c� c� c� ! --1 0 O O 0 0 0

Examples

This prior will smooth only the income coefficient pattern.

PRIOR 3

0 0 0 0 0 1 -1 0 0

R= 0 0 0 0 0 0 1 -1 0
0 0 0 0 0 0 0 1 -1
0 0 0 0 0 0 0 0 1

This prior will smooth only the price coefficients.

0 0
0 0
0 0

-1 0

The bounds over all regressions which make use of the prior constraint
are reported in Table 5.2. Note, for example, that the prior I bound for th
sum of the income coefficients is the fairly small interval [1.2, 1.65
whereas the bounds for the individual coefficients are rather wide. Thi
indicates that the choice of smoothness prior does not have much impac
on the estimated long-rnn effect but does have a substantial effect on hox
that impact is allocated over the individual coefficients.

The set of constrained regressions just discussed includes those that us
constraints of the form fi� =/52; but the set of constraints also includes th
unlikely constraint/5�-/52 =/57-/56- Recall that the set of constraints ar
of the form MRiB = 0 for any M. To avoid constraints that involve jointl
the price coefficients and the income coefficients we would have to restrk
M to a block diagonal. As it turns out, this is a difficult computatiom
task, and instead we use priors 2 and 3, which are diffuse, respectively, o
the price coefficients and the income coefficients. The prior 2 bound f�
the sum of the income coefficients is [1.24, 1.61] which indicates the set (
estimates if only the income coefficients are smoothed. But the set (

Table 5.2

Bounds for Coefficients

Prior 1
1.15 2.22 .80 1.55 .89 1.65 .81 .69 .92 .63 1.10

-.74 .02 -1.42 -.71 -.93 1.2 -1.53 -1.52 -.90 -1.66 -1.17

Prior 2

1.04 2.09 .66 1.41 .78 1.61 -.13 .44 .45 -.25 .37
-.62 .156 -1.28 -.57 -.82 1.24 -1.22 -.63 -.31 -.33 -.14

Prior 3

.27 2.12 -.62 .68 -.03 1.46 .12 .04 .39 -.04 .43
-.08 1.70 -1.05 .21 -.38 1.35 -.78 �--.81 -.31 -.92 -.44
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Table 5.3

Ideal Points for Prior I (Rotation Invariant Average Regressions)

.28 .28 .28 .28 .28 -.31 -.31 -.31 -.31 -.31 -.15

.50 .45 .27 .14 .07 -.28 -.25 -.26 -.29 -.30 -.15

.61 .59 .23 .55 -.02 -.41 -.24 -.19 -.23 -.19 -.16

.65 .72 .16 -.00 -.05 -.55 -.22 -.12 -.21 -.12 -.16

.65 .86 .06 -.04 -.04 -.68 -.18 -.06 -.22 -.07 -.16

.60 1.03 -.06 -.04 -.03 -.77 -.14 -.02 -.27 -.03 -.16

.50 1.23 -.21 .01 -.04 -.80 -.12 .01 -.34 .01 -.16

.36 1.50 -.45 .15 -.10 -.74 -.18 .09 -.44 .06 -.16

.13 1.96 -.91 .56 -.33 -.42 -.53 .33 -.72 .23 -.15

possible constraints is still too large. It includes the higher order poly-
nomial constraint (fll-fl2)=(fl2-f3), but it also includes the unlikely
constraint (fit- f2) = -(f2-f3)' Ideally, we would require the matrix
(MM')-t to be positive, but this too creates computational burdens.

The rotation invariant average regressions for prior 1 are given in Table
5.3. The first point is constrained least squares given all the constraints
implicit in the prior. The last point is constrained least squares given none
of the constraints; that is, it is just the unconstrained least-squares esti-
mate. The intermediate points are weighted averages of constrained least-
squares points. The next to last point is a weighted average of all regres-
sions that involve one constraint. The next point uses constraints two at a
time ....

Any point on the contract curve is a weighted average of these average
regressions points. A trace of the contract curve risks missing important
features of highly variable curves, but the rotation invariant average
regressions cannot.

Selected points on the contract curve implied by prior 1 are reported in
Table 5.4. There are several observations that can now be made. First of
all, observe that the long-run coefficients (the sums) are relatively insensi-
tive to this form of prior information. It simply makes little difference how
confident you are that the differences of the coefficients are small. Individ-
ual coefficients are in contrast quite sensitive to the precision of the prior.
Next, observe that whereas both end points of the contract curve are
peculiar, intermediate points have attractively smooth coefficient patterns.
Thus although neither extreme form of prior information--diffuse prior or
zero difference prior--implies acceptable estimates, "partial" imposition of
the prior constraints does yield sensible estimates. Another thing to notice
is that the income coefficients are smoothed easily, but the price
coefficients resist smoothing. There is pretty clear evidence that the re-

Table 5.4

Selected Points on the Contract Curve, Prior 1

Examples 2�

5 IO

Rel. Like? ]�1 ]�2 ]�3 ]�4 ]�5 � ]�i ]�6 ]�7 ]�8 ]�9 ]�10 � �
i�l i=6

.94 .28 .28 .28 .28 .28
.96 .50 .48 .25 .14 .08
.97 .60 .65 .18 .04 .00
.99 .49 1.24 -.24 .05 -.07

1.0 .13 1.95 -.91 .56 -.33

1.4 -.31 -.31 -.31 -.31 -.31 -1.5
1.45 -.35 -.26 -.24 -.28 -.26 -1.3
1.47 -.48 -.23 -.16 -.23 -.17 -1.2
1.47 -.74 -.17 .03 -.35 .02 -1.2
1.4 -.42 -.53 .33 -.72 .23 - 1.1

aRelative likelihood of the reported point to the maximum likelihood value
computed with o 2 set to s 2.

sponse to the income stimulus is more rapid than the response to the pri�
stimulus. In fact, the data seem to suggest that other lagged price variabk
might be added to the equation. Finally, observe that whereas the max
mum of the first coefficient reported in Table 5.4 is .60, the maximum ide;
point in Table 5.3 is .65. Although the value .65 is not attainable, numbel
above .60 are attainable, and to some extent Table 5.4 is misleading.

A comparison of Table 5.2 with Tables 5.3 and 5.4 reveals the impo
tance of the choice of "metric." Tables 5.3 and 5.4 make use of tk
assumption that/]'R'RI] is small, whereas Table 5.2 uses only the assure I
tion that I]'R'H*RI] is small where H* may be any symmetric positi�
definite matrix. With a suitable choice of H*, ft may be as large as 1.15 �
as small as -.74. But Tables 5.3 and 5.4 reveal that if you are willing t
restrict H* to be proportional to the identity matrix, then ft cannot excee
.65 nor fall short of .13.

The next step in the analysis is to select a particular point or set �
points on the contract curve. Formally, this can be done by specifyin
completely the prior distribution which has to this point been defined oni
in terms of the surfaces on which the density is constant. This is a step
tend to resist, since I have a very difficult time finding sensible questior
that would reveal with any accuracy my opinions about the density value:
I do think it makes sense to examine the contract curve in several ways. I
this case I note that, with a relative likelihood deterioration only to .97,
can get a pattern of coefficients that makes me happy. Incidentally, yo
may infer from this last sentence that there are features of my prior I ha,
not formally used, namely, that the coefficients should not change sign an
should decay in absolute value. For this reason, too, I resist form�
methods for selecting points on the contract curve.
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In the two previous chapters we have considered speci-
fication searches that are intended to introduce into� a
data analysis uncertain pritr 'fixformation. Hypothesis-
testing searches arise when more than one model or
hypothesis receive positive a priori probability. Inter-
pretive searches involve prior density functions that,
although allocating zero probability to all but one
hypothesis, do concentrate the prior probability in cer-
tain regions of the parameter space. In the case of
hypothesis-testing searches the statistical testing selects
among a set of hypotheses with no presumption that in
a large sample one of the hypotheses will be favored. In
contrast, interpretive searches recognize that in a
sufficiently large sample the most general hypothesis
will necessarily be favored. The intent is not to select
among legitimately competing models but rather to
"improve" the estimate of the parameters by using an a
priori estimate when the data evidence is too weak to
yield a reliable sample estimate.

In this chapter we discuss a variety of search that has
yet another motivation: simplification. The most gen-
eral models appropriate for inference with nonexperi-
mental data are usually so cluttered with variables of
an incidental nature that they are nearly impossible to
comprehend directly. It is thus incumbent on the re-
searcher to'find vehicles for communication of his
results. He might, for example, focus his discussion on
a particular parameter of special interest or perhaps
on a hnear combination of parameters. Alternatively,
the researcher might seek from the data an indication
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of the "important" variables. We call this a simplification search.
Thus the function of simplification search is not to ask if a restricted

specification is true, nor to ask if a restricted specification might lead to
better parameter estimates, but rather to ask if a restricted specification
that is undeniably simpler and more easily understood is not also "signifi-
cantly" inferior to the more general model for some hypothetical or real
decisions. If it is, we reject the hypothesis that the benefits of the restric-
tion outweigh the costs.

Formal analysis of simplification problems requires a precise definition
of the costs and benefits of simplicity. The costs of simplicity may be
assessed in the context of some hypothetical decision problems, but the
benefits are likely to elude precise definition. Consequently we concentrate
our formal attention on the cost side, but we first comment informally on
the likely benefits from simplification.

Justifications for simplicity can usefully be divided into two categories.
The first makes a "metaphysical" reference to the' inherent simplicity of
Nature, or at least to man's belief in such. The second category of
justifications accepts a complex Nature but rests simplicity on the finite-
heSS and fallibility of Man's perceptive and reasoning faculties. Briefly,
simplicity is preferred because "Nature is simple" or because "Man is
simple."

The "Nature is simple" hypothesis has, I think, little support among
philosophers and statisticians. Jeffreys' is a widely cited exception. He
writes [1961, p. 4] "It is asserted, for instance, that the choice of the
simplest law is purely a matter of economy of description or thought, and
has nothing to do with any reason for believing the law... I say, on the
contrary, that the simplest law is chosen because it is the most likely to
give correct predictions; that the choice is based on a reasonable degree of
belief;..."

Jeffreys is asserting not only that constrained hypotheses should be
assigned positive probability but also that they ought to be assigned
greeter prior probability than any alternative, more complex hypotheses.
Such a preference for simple models might be inductively derived. Simple
hypotheses could usually yield better predictions. But it is not enough to
observe merely that people act as if simple models had a greater degree of
believability. Any observed preference for simple models may derive not
from the inherent superior believability of parsimonious models but rather
from the undeniable difficulties encountered in working with complex
descriptions of reality. Nor do I know of any proper empirical evidence to
support the assertion that simpler models generalIy yield better predictions.
There is the oft-told story of overfitting in which a naive researcher fits a
polynomial of degree T-1 given T pairs of observations (yi,xi). This
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undoubtably does yield inferior predictions relative to a polynomial of
fixed lower degree. But that can be fully remedied bY assigning a proper
prior distribution to the parameters of the higher-degree polynomial. I
interpret this example as an illustration of-the illogic of using a prior that is
built to be dominated by the data evidence when the data evidence simply
is too weak to do it. It is hardly evidence in favor of simpler models.

I have indicated in the chapter on hypothesis testing that I know of few
cases in which I would assign positive gr9bability to a restricted (simple)
model. Even then I can find nothing that compels me to favor the simpler
model in the assignment of probability. It is the other set of reasons for
simplicity that I find persuasive: Simplicity is desirable because it is
conducive to the transmission and accumulation of knowledge. It greatly
facilitates communication between and among observers and theorists. A
complex, novel theory that might take years to filter accurately to other
researchers can transmit rapidly (but in�curately) if it is simplified.
Possessors of what they regard to be superior knowledge for their own
personal gain are likely to engage in this kind of marketing activity. Many
who buy the product may never realize that there is more to the theory
than the catchy slogans used to advertise it.

Philosophers have argued in various ways that simplicity encourages
progress. Popper (1972) favors simpler models because they are more easily
contradicted, which might at first glance seem to hasten the rejection of
inferior models. This would be true if the simple model were assigned
positive probability, but if such a model is derived from a more complex
system of belief, apparently falsifying evidence can be taken to mean only
that the simple version does not work under all conditions. In that
situation simplicity protects a system of belief from falsification and
thereby apparently impedes progress. On the other hand, protection of a
system of belief from potential falsification is an essential feature of
normal science, according to Kuhn (1962). Filling in the details of a theory
and working out all its implications requires a vast amount of tedious
work. Such labor would hardly be performed by doubters or even agnost-
ics who would imagine the value of their efforts overnight crashing to zero.

Neither the "Nature is simple" nor the "Man is simple" hypothesis
implies any unambiguous definitions or methods of measuring the benefits
of simplicity. The number of uncertain parameters is a possible mechanical
measure of simplicity, but it cannot be generally satisfactory. If we take (as
I do) simplicity as a consequence of man's and society's shortcomings, the
definition of simplicity necessarily changes from social millieu to social
millieu. It is thus impossible and even undesirable to define simplicity
precisely, and we instead must content ourselves with the satisfaction that
the participants in any social information process can know themselves
what simplicity is and what it is not.
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The prototypical'example of this is the construction of a map (Polanyi,

1964). We may take as a theory of the world an enormously detailed globe
which identifies every object down to the smallest grain of sand. The
complexity of this theory effectively prevents us from using it for any
purpose whatsoever. Instead, we simplify it in the form of a set of maps. I
use one map to find my way to the subway station, another to select the
station at which to depart. The pilot of the airplane uses yet another to
navigate from Boston to Washington. Each map is a greatly simplified
version of the theory of the world; each is designed for some class of
decisions and works relatively poorly for others.

The construction of a language is another good example of a simplifica-
tion problem. The number of aurally and visually discernible words and
word patterns is absolutely enormous, perhaps limitless. With as few
characters as are in our alphabet we could form 265> 107 distinct five-
letter words. Such a vocabulary would be beyond the reach of even the
most verbally talented, and the mistaken use of words used infrequently
would greatly distort intended communications. A highly limited voca-
bulary likewise distorts communications by not distinguishing one complex
communication from another, for example, the American overuse of the
word "nice" to describe a wide variety of generally pleasing responses to
environmental stimuli. An optimal vocabulary ideally solves the tradeoff
between miscommunications from too few words and miscommunications
from too many.

Incidentally, there is a great danger that a simple language is not only a
vehicle for communication but that it also creates an impoverished reality
of its own. The art of communication forces an awareness of reality, and
the more subtle is the language, the more practice one obtains in dis-
tinguishing subtleties. Conversely, a coarse language creates no situations
for exercising one's capacities to distinguish subtleties, and those faculties
may atrophy like any unused muscle. We may, in fact, be unable anymore
to distinguish the great variety of sensations we refer to as "nice." This
may also be the case in the communication of scientific theories. We may
come erroneously to believe in the simplicity of Nature because that is the
way scientific theories are communicated.

I do not think it is possible to define simplicity, which is to say in the
language of decision theory that it is difficult to compute precise benefits
or precise costs from any simplification. In this chapter the cost of
simplification is measured in the context of several simple decision prob-
lems, but the benefits are not quantified at all. We hope that what we learn
can have implications for more complex and more realistic decisions.

One thing that is important to understand is that simplification is a
decision problem which uses as an input the current information about the
parameters. When a current sample is available, simplification logically
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follows inference and is confused with the inferential process, at great peril
to the coherence of a statistical analysis. I would 'recommend making as
clear a distinction as possible between inference and decision, by discuss-
ing in separate sections of a research report first the inferential question of
how various prior distributions are influenced by the data and second the
decision problem of how given various posterior distributions the model
can be simplified. Incidentally, since a data set is taken as given, any
probability moments reported in this chapter are necessarily conditional
on that data. It is thus notationally convenient to suppress the data when
writing conditional probability statements, and it is hoped that this will not
cause confusion. For example, the statement E(I$)= (X'X)-�X'Y implies
that the conditional mean of 18, E(18 IY, X), is equal to the least-squares
estimate (X'X)- � X'Y.

A point that merits repeating is that a simplified model that* might
perform adequately for some decision-maldng' circumstances will be unam-
biguously unacceptable in others. It is, therefore, essential to identify
precisely the problem that is considered. Three examples suggest the
potentially great diversity of decision problems.

Example 1. Aggregate consumption of apples C a and aggregate consump-
tion of bananas C o depend on aggregate GNP Y through the functions
Ca = aa +/Sa Y, and C o = a b +/5 b Y. If we wish to predict future levels of
consumption of apples and bananas, may we without great detriment to
the prediction constrain the marginal propensities to consume to equal
each other/�a =/�b and therefore "remember" only the marginal propensity
to consume fruit rather than separate propensities for each fruit?

Example 2. GNP Y is thought to depend on the government deficit G
and the money stock M, Y = a + fig + 7M. If we wish GNP to attain some
target Y*, may we effectively assure that goal by selecting an appropriate
level of the government deficit G* while treating money M as if it had no
effect (7 =0), or conversely, might we better control money M and act as if
G had no effect?

Example 3. A constant-elasticity-of-substitution production function ex-
presses output as a function of capital and labor inputs. If the elasticity of
substitution is equal to one, the investment function assuming profit-maxi-
mizing behavior is a function of one explanatory variable rather than two.
Given the information generated by observing the production process, may
we make inferences about the investment process acting as if certain of its
parameters took on special values?
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These three examples illustrate, respectively, a prediction problem, a

control problem, and an inference problem. Relative to a model of the
formy=z7+w�+u they ask if we may act as if � were zero (1) if we
wanted to predict y, (2) if we wanted to control y, or (3) if we wanted to
make inferences about 7. The inference problem is distinguished from the
others only in that more data is to be gathered before decisions are to be
made. The actual, ultimate decision may, in fact, be either a prediction or
a control problem. This is called a presimplification problem, referring to
the fact that simplification occurs prior to observation. We make much use
of the presimplification notion in Chapter 9, when we discuss postdata
model construction.

It is easy to demonstrate the inappropriateness of classical hypothesis
testing at a fixed level of significance for the simplification problem.
Suppose the prior distribution were diffuse. The only information con-
veyed by the fact that the hypothesis 7=0 is or is not rejected at the 5%
level of significance is the information that the posterior 95% credible
interval includes or does not include the point 7 = 0. Thus you may reject
the hypothesis 7--0 even though with near certainty 7 is infinitesimal.
(Figure 6.1a) And you may accept the hypothesis even though with high
probability 7 is enormous. (Figure 6. lb) It is thus important to distinguish
the words "statistically significant" from the words "economically signifi-

t� /-9� % posterior

�interval
0

rejected

b)y =0 occepted
Fig. 6.1 Posterior distributions.
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cant." The former measures the amount of information in the data; the
latter measures the size of the coefficient in the context of some decision
problem.

A more subtle point is that classical tests have built into them rather
strong and often unwarranted assumptions about the behavior of the
explanatory variables. Consider again the model y = z7 + wi5 + u with 15 and
� assumed known exactly, and with the explanatory variables z and w
satisfying the auxiliary relationship w--rz + el-where u and e are indepen-
dent random variables and r is known. The hypothesis 15 =0 can be used to
simplify the model, yielding either H 0 :y -- z� or H� :y -- z(� + riS), where
the H6 hypothesis allows the included variable to play partly the role of the
excluded variable.

If prediction were the only goal, the hypothesis H� is unambiguously
superior, since it yields a lower expected loss. But for other reasons H 0 may
be a better simplification. A simplification is intended to facilita� com-
munication, and H� may be difficult to communicate, since it seems to say
that the marginal effect of z ony is (7+ riS) when, in fact, it is only �. It
seems desirable at least to distinguish the hypotheses "we may act as if 15
were zero" or "we may act as if w r were zero" from the hypothesis "we
may compensate for not observing Wr," the former pair implying the
simplification H 0 and the latter implying Hr. Classical hypothesis testing
makes use of the second-form H� with r implicitly estimated in a special
way to be discussed subsequently. The other form of simplification is
discussed in Section 6.2.

The remainder of this chapter consists of three sections and a conclu-
sion. In the first section we report Lindley's (1968) formal decision-theore-
tic solution to a prediction-simplification problem. Among the lessons to
be learned is the great importance of assumptions about the process that
generates the explanatory variables. In fact, the simplification problem
depends as much if not more on the process that generates these variables
than it does on the regression process linking the dependent variable to the
explanatory variables. That observation is used in Section 6.2 to argue in
favor of the kind of simplification that makes fewer demands on our
knowledge of the explanatory variable process and that also communicates
relatively clearly. The third section emphasizes the dependence of the
simplification process on the decision problem under consideration by
reporting Lindley's (1968) analysis of a control-simplification problem and
by contrasting that solution with the prediction-simplification problem.

6.1 Simplification for Conditional Prediction

A�s an example of a conditional-prediction problem, consider the two-vari-
able linear regression model

Yt=a+ zt7 + wtiS+ ut (6.1)
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where a, 15 and 7 are unobservable scalar parameters, u t is an unobservable
error, and Yt, zt, and % are observable variables. Suppose that u t (t=
0,..., T) is a sequence of independent normal random variables with zero
means and known variance 0 2. Let a set of T previous observations of the
process be (Y,z,w), which together with a multivariate prior distribution
for the parameters (a, 7,15) imply a multivariate posterior distribution with
mean

z,w)=
In making a conditional prediction of the next outcome, say, YT, we

assume that both the explanatory variables z r and w r are potentially
observable prior to the announcement of the prediction, hence the adjec-
tive "conditional" modifying prediction. It is perhaps obvious, but it is
demonstrated here that if the penalty for prediction e�xor is quadratic, the
optimal prediction given both z r and w r is

�r = � + zr� + wr 5 (6.2)
where � and i� are the posterior means of � and 15. There will, of course, be
prediction errors, partly because of the residual error process u t and partly
because the actual values of the parameters a, �, and 15 are not known.

Suppose, now, that we wished to determine if it is worth the expense to
observe the second variable w r. If w r is not observed, we must estimate it,
by say, �r, and predict Yr as a function of z r only as

�. = � + zr � + �r�. (6.3)
The squared discrepancy between Equations (6.2) and (6.3) is a measure of
the error induced by not observing wr:

^ ^, 2 ^ 2-2 (6.4)=

Note especially that this error depends on the mean of $ but not on its
variance. Note also that in testing the hypothesis 8 =0 in the sense of this
chapter, that is, by computing numbers like (6.4), we are partly asking the
question "is 8 small?" but more importantly we are asking also "how well
can we forecast wr?" To answer the latter question, we must model the
process that generates w r and zr--there is no way the simplification
question can be answered without such a model.

One model (that should, I think, be of little interest to economists
operating with time-series data) is the multivariate random model, in which
the explanatory variables are treated as if they were drawn randomly from
a population with fixed mean vector and covafiance matrix. In particular,
assume that (z,, %) come from a normal population with mean p'--(/�z,/�)
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and covariance matrix

V=[ vn v�2]./921 /922

If we knew the parameters of this distribution, a prediction of w r would be
generated by the conditional regression

with conditional variance

Sample counterparts of these unknown parameters can be used if the prior
for p and V is diffuse and if the number of observations is large. � We
would then have

(wlz,z,w) = (6.5)
w'Mw- (w'Mz)(z'Mz)- ' (z'Mw)

e[(w- = T (6.6)
where � and � are the sample means of w and z and M is the matrix that
removes means M=I-1TT-�I�. The predicting equations (6.3) and ex-
pected squared error (6.4) thus become

f� = a+ (�- (iMz)(z'Mz)-'�)g+ z�(�+ (iMz)(z'M,)-'g) (6.7)

[ w'Mw-w'Mz(z'Mz)- 'z'Mw ] g2 (6.8)e (f� _f�)2 = � (w� - %)292 = T
Two observations may now be made. If the prior for T and 15 were diffuse,
the posterior means �, g, and � would be just the least-squares estimates,
say, b 0, b� and bz. The coefficient of z r in Equation (6.7) would then be
b: +(w'Mz)(z'Mz)-�b,� which is just the estimated coefficient of a regres-
sion of Y on z alone. Furthermore, the penalty (6.8) can be written as
X202/T where X 2 is the x-square value for testing the restriction 15 = 0,

�:[ �'M�- �'Mz(z'M,)-'z'M� ]
0 2

Thus the procedure just described measures the increase in the expected
prediction error when w r is not observed in terms of the usual X 2 variable
for testing 15 =0. As is discussed in detail subsequently, it differs from
classical hypothesis testing in implicitly defining the significance level as a

IUsing the material from Section 3.4, and the diffuse prior assumption with T* =0, S* =0,
and �*=0, the variance of w r given z r is not (6.6) but rather (6.6) times the adjustment
(T+ O/(T- O.

Simplification for Conditional Prediction 211
decreasing function of the sample size. What is perhaps more important is
the fact that the decision theory logic makes unambiguous the otherwise
implicit assumptions about the process that generates the explanatory
variables. In particular, classical tests are appropriate only if the explana-
tory variable vectors are independently drawn from the same population.

Let us now repeat this logic for a general model and for general linear
restrictions. Write the linear regression process as

where Y and X are (TX 1) and (TX k) matrices and are already observed,
where y� is a future outcome of the process and x� is a k x 1 vector of
future explanatory variables, and where [u',u�] is a (1 X(T+ 1)) vector of
errors with mean zero and covariance �E. We are asked to predict y� given
Y, X, and x� and in particular to minimize squared prediction error
[Yr-fi(Y,X, xr)] 2 with prediction f. The expected prediction error can be
written as

E[ y�-f (V,X, xr)]2= E(E([ y�-f (V,X, xr)]21V, X, xr)),
where the expression in the internal brackets is straighfforwardly mini-
mized for every value of (Y,X, xx) by setting

� (Y, x, xr) = E (yrlY, X, xr) = x�-E ( la IY, X, xr) + E (urlY, X, xr)
= x;�r ( � Iv, x) + �r (.�lV, x)

which is a linear function of x r. If some part of x r is not observed, we
assume that the complete vector is predicted as a linear function of that
which is observed. That is, letting xr-(xr, x�r), we assume that E(x r
IY, X, x�-)= Ax�-, and thus the optimal predicting equation becomes

f (Y,X,x�.)-- x�'A'E (� {Y,X)* E (urlY, X).
Or, to make a long story short, we wish to restrict our attention to

� predictions linear in x r

f (V, X, x�) = x;0 (V, X) (6.9)
where the function 0 may be completely free, in which case it is just the
posterior mean of i�, or it may be constrained to have certain elements zero
to reflect the fact that certain elements of the vector x r are not observed
prior to the prediction of Yr- Incidentally, Equation 6.9 implicitly includes
the E (urlY, X) term, since x�- is assumed to have one element equal to one.

For ease of notation we write the conditional expected value operator
E(01Y, X ) henceforth as just E(). If Y and X are given, 0 is just a vector



212 SIMPLIFICATION SEARCHES

of constants, and the expected loss can be written as

E(yr-fir) 2 = E(/3'xr+ "T-- 0'xr) 2
= e4+ Ex�(/3- e)(�'- e')x�

= E.�+ ex�(�- E�+ E�- e)(�- E�+ E�- e)'x y
= E4 + E[x7(p- Ep)(p- Ep)'x�+ xb(Ep- e)(Ep- e)'x�]
= E.�+ t�S (x�) V ( p ) + (Ep - e )'s (x �)(Ep - e ) (6.�0)

where we have written S (XT)= EXTX�. �e three te�s in the last �e of
�is expression are the irreducible mean-square e�or Eu�, a penalty for
uncertainty in �, and an additional penalty for O�E�, �s last te�
wholly independent of the uncertainty in �.

�e mi�mal expected loss if O lies i� the linear subspace RO�r is
simply the expected posterior loss (6.10) �m�ed over that linear sub-
space. This �ation is a simple La�angian problem requiring �e
derivatives of

f= (Ep - e)'s (x�)(Ep - e ) + 2X'(Re - r)
to be set to zero. �at is,

0f =�e-r=0 (6.�)

0f = _ s (x�)(Ep- e ) + R'X =0. (6. �2)
�ese can be solved by premultiplying (6.12) by RS- �(XT) and calculating

X=(RS-' (x�)R')-'(RE(O)-r)
which can be inserted into (6.12) to obtain

e= E(p)- S-' (x�)R'(RS-' (x�)R')-'(RE(p)--O. (6.�a)
�e third term in the mean-square error (6.10) becomes

(� - e )'s (x�)(Ep - e ) = (RE ( p ) - r)'(RS -� (x�)R')-'(RE ( p ) - r).
(6.�4)

It is obvious from �e positive defi�teness of �e third te� in (6.10)
that minimal expected posterior loss requires O=E�, or by (6.14) �at a
restfiction increases expected loss u�ess RE� =r. A simplification thus
nec�sarily decreases expected prediction accuracy. We assume that a
simplification has benefits also, and in �e absence of any clear qu�tita-
tive statement of �ose benefits, a reasonable number to report is the
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percentage increase in the expected posterior loss due to the restriction
R0=r:

(RE(/3)-r)'( RS-� (xr)R')-�(RE(/3)-r) (6.15)
L 2 (g, r) = Eu2r + tr S (x T) V (/3 )

With suitable definitions of prior vagueness we have simply the least-
squares results (remembering that the expected value operator is condi-
tional on X and Y)

E (/3 IY, X) = (X'X)-�X'Y
V (/3 IY, x) -- 0 2 (x'x)- '.

Further, if the explanatory variables are independent observations from a
multivariate process, we would have the x v moment matrix be approxi-
mately (see Section 3.4)

X'X
s (x�) = e (x�xD = -y-.

Using these in (6.13), 0 is seen to be simply the constrained least-squaresestimate subject to R/3=r. Inserting them into (6.14), we obtain the
increase in the posterior expected loss to be T-� times a factor that is well
known to be the increase in the error-sum squares due to the restriction.
The summary L 2 becomes

T -�AESS (6.16)L2(R,r) =

where AESS is the increase in the error sum of squares, k is the number of
coefficients, and T is the number of observations. This contrasts with the
classical summary statistic AESS/0 2, which is comparedwith Xv2(a) where
p is the rank of R and a is the significance level. Thus the classicalcounterpart of (6.16) is the ratio AESS/o2Xv2(a) � In addition to thenonoccurrence of the factor T-� (which for large T necessitates a "signifi-
cant" finding), the classical summary differs from the subjectivist summary
in depending on p, the number of restrictions. The measure (6.16), inciden-
tally, is just the difference in the multiple correlation coefficients of the
two models times a factor that tends to a constant as sample size grows,
L 2(R, r) = ( R 2 _ Ro2)(y,My / To 2) / ( 1 + k T - I). Thus if a res triction does not
greatly affect the R 2 of an equation, it will not greatly increase the
expected squared prediction error.

This rough coincidence of approaches usefully highlights the assump-
tions that are implicit in the use of classical tests to simplify models for
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prediction. Of course, there is the diffuse prior assumption. But more
importantly, the vectors of explanatory variables are assumed to be T+ 1
independent rephcations of a multivariate process. Autocorrelation and
trends in particular are assumed away. Few economists would find that
acceptable. It is also worth stating explicitly that the variance in the
denominator of the t statistic does not measure the uncertainty in the
coefficient but rather the inverse of the conditional variance of the ex-
planatory variable. From (6.10), it is seen that uncertainty in the
coefficients V(i$) does not influence choice of restrictions 0

6.2 Causally Constrained Conditional Predictions

An important aspect of the solution discussed in the previous section is
that observed variables are used to forecast correlated unobserved vari-
ables under the assumption that the correlation structure is maintained.
The prediction effect (the coefficient) of an observed variable thus includes
not only its own estimated coefficient but also a part due to the effect of
unobserved variables assumed to be correlated with it. Interpreted in terms
of hypothesis testing, the change in the R 2 due to a restriction is calculated
relative to a restricted equation with a reestimated set of coefficients.
Whereas this may make good sense if we intend the test to determine the
truth or falsity of the restriction, it makes less sense for the simplification
problem. Do we really mean to say that an effect of an explanatory
variable is negligible when it can be predicted well from observation of
another explanatory variable? This is the question implicit in a classical t
test, for example. A direct application of Webster suggests that a variable
can be considered negligible if we can neglect it without substantial loss.
Neglecting it means not bothering to predict it or otherwise to make
adjustment for not observing it. As will be shown, this is the question
implicit in classical beta coefficients and variants thereof.

Turning now from semantics to metaphysics, we can find another
version of this same argument. To the extent that the full unconstrained
model summarizes our beliefs about the causal nature of the world, the
recalculation of the coefficients implicit in hypothesis testing constitutes a
potential distortion of that causality. That is, since included variables play
in part the role of dropped variables, the constrained equation is causally
misleading unless the included variables do, in fact, cause the excluded
variables. If they do not, the resulting equation is causally inaccurate. An
agnostic attitude toward the causality within the explanatory variable set is
reflected by reporting the original estimates of the coefficients of the
included variables calculated in the context of the unconstrained equation.
These may be described as the direct effects of the included variables on
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the dependent variable. Indirect effects depend on other unspecified causal
linkages.

An example is in order to make clear these relatively obscure notions.
Suppose the equation of motion of a body falling from rest is

d__?__�-� g(1 - flzt)
(dt) 2

where z measures the wind resistance and t the time since departure. The
parameter g is acceleration in a vacuum, and terminal velocity is reached
at time t--1/fiz. Suppose, further, that observations on a set of falling
bodies are used to estimate the equation of location

�t 2 �zt 3 R2=.98
Y= 2 6 '

where the circumflexes indicate estimated parameters. For this particular
sample of falling bodies (including feathers and bowling balls) the follow-
ing auxiliary regression is also calculated

(Zt 3) = � t 2 - &.
The model may be simplified to exclude the wind resistance variable. Two
alternative simpler models are

y = �t2/2 R � = .70 (6.17)
( �-- �/3)t2 � R2=.95 (6.18)+�

Y= 2 6

It is my contention that the first of these equations is the one that should
be used to discuss simplification. It asserts that in a vacuum the estimated
rate of acceleration is � and that for the class of bodies and for the time
periods considered, we ought not to think of the experiment as if it were
conducted in a vacuum, since one's ability to predict the location of the
falling bodies is seriously affected by that assumption. (The R 2 drops from
.98 to .7.) Contrast that perfectly clear statement with the statement
appropriate for the second equation. "Wind resistance is 'negligible' since
by adjusting the rate of acceleration to g-/Jg?/3 and by acting as if the
initial location of the body were �/J�/6 rather than zero, we can track the
position of this class of falling bodies almost as well as we would if we
actually observed the wind resistance."

In fact, wind resistance is not negligible; rather, it can be compensated
for. At the very least we ought to make clear the distinction between these
two statements. For reasons I have explained, I think simplification is
more appropriately interpreted as the problem of neglecting variables,
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rather than the problem of compensating for their effects. There is first the
semantic argument that if simplification were intended to compensate for
rather than to neglect certain secondary influences, we might expect
practitioners to use a more appropriate adjective than "negligible." Second,
in compensating for a secondary influence, the theory may be fundamen-
tally and nonsensically distorted. Consider the gravity example. If we
neglect wind resistance we assert what is completely true: a body falling
from rest in a vacuum accelerates at the constant rate �. Contrast that with
the "theory" that results when wind resistance is compensated for: a body
falling from rest at the time of departure instantaneously falls to a height
tl/�/6 below its initial position, attaining thereby absolutely no velocity,
and thereafter falls, accelerating at the constant rate �-/�?/3. The
distortion of Newtonian mechanics is obvious and absurd.

Simplification tests with unrecomputed coefficients can be calculated
using the same formulas as tests with �ecc;mputed coefficients provided
that we choose the constraint matrices R and r appropriately. If we write
the model as Yr = a + z� + w'r� + u r, a simplification hypothesis is � = 0.
We may prevent recomputation of the coefficients on the z variables by
imposing also the constraint that the coefficients must equal their posterior
means, E(7). Thus a causally constrained simplification is implied by the
constraint matrices

0 0 0

where the first column of R is a vector of zeroes multiplying the constant a
in the equation.

With these restriction matrices the mean-square-error penalty (6.14)
becomes

(RE ( � ) - r)'(RS -' (x T)R')-'(RE ( i$ ) - r)
= [ ) ]' ) ]. (6.19)

Dropping variables without the causal constraint requires constraint
matrices

a=[0 0 I],r=[0],
and the mean-square-error penalty (6.14) becomes

(6.20)
where V(WT]ZT) is the conditional variance of w r, given z r. Penalty (6.20)
is smaller than penalty (6.19) depending on the correlation between the
included and excluded variables, because the included variables are used
to forecast excluded variables.
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Given the assumption of diffuse priors, and supposing that/� is a scalar,

the criterion (6.19) is just the square of the least-squares coefficient times
the sample variance of the variable. If this were divided by the square of
the sample variance of the dependent variable, the resulting number would
be just the beta coefficient, which can be computed as least squares with
variables standardized to have unit variance. Although standardized coef-
ficients are used in other disciplines, in the econometrics literature they are
rarely even mentioned. Goldberger (1964, pp. 197-198) is an exception.

To conclude, criterion (6.20), which is equivalent to (6.16) under diffuse-
ness assumptions, ranks variables considered individually for discarding in
the same way as traditional t tests. Criterion (6.19), however, provides a
ranking identical to the ranking implied by classical beta coefficients. It
seems to me, therefore, that the rarely used beta coefficients could be
usefully resurrected as indicators of significance when models are being
simplified, although the variance of the explanatory variables ought at a
minimum be trend and autocorrelated adjusted.

6.3 Simplification for Control

A point that may be obvious is that simplification is problem specific, and,
for example, simplification for prediction may be quite different from
simplification for control. The one-period control problem of Lindley
(1968) illustrates this fact. Suppose a scalar variable Yr is determined by
the linear-regression process

yr= a + T'ZT+ 8'WT+ UT (6.21)
where T and 8 are vector parameters, a is a scalar parameter, u T is a
residual error with mean zero and variance 02, and z r and w r are vectors
of explanatory variables. The control problem is to select z r and w r in
such a way thatyT is likely to be close to some target t. In particular, let us
choose the explanatory variables to minimize expected loss where loss is
quadratic

L(yr, t) = (YT- t) 2'
Writing the regression process as

YT = a + IO'xr + ur (6.22)
where 11'=[7',� '] and Xr=[Z�-,W[r], the expected loss can be written as a
function of x r as

Setting the derivatives of this expression to zero to obtain the minimizing
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value of x r yields
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which solves to 2
0 = E[ 2/t/t'x r + 2/t (a - t) ]

= (e00')-'e0 (t-.).
Substituting this value of x r into the expected loss, we obtain the minimum
expected loss as

m� = min E[ m(y r, t)lxr]

=o2+ E(a-t)2-E(t-a)l]'(EI]l]')-IEI](t-a). (6.23)
This expression for the expected loss simplifies nicely in the case when

our knowledge of a and j] derives only from observation of the re .gression
process previously. Letting Y be the T, dimensional vector of previous
observations of the process and X be the matrix of observations of the
explanatory variables, the posterior moments are

�r(,) = r- X'(X'MX)-'X'MY --
E ( 0 ) = (X'MX)- 1X'MY = b

where 1 is a T-dimensional vector of ones and M=I-l(l'l)-11',X TM
X'I/T, Y = I'Y/T. Also, the variance matrix can be written as

0 X'I X'X]

=02[ T-! (1+I'X(XqVIX)-i�) -�'(X'IVIX)-i].(x'MX)-'
Using the identity �= b 0 + �'b we may write the regression process as

YT--
=(.- t,o) + ( O -b)'g + +
=-- a* + 0'x�-+ ur (6.24)

2If x r were a scalar and ff a and fi were known to equal Ea and Eft, then the instrument
x� becomes x�-=(t-Ea)/Efi, which is called the certainty equivalence control rule. Assum-
ing a and//independent, the optimal rule can be written in terms of the certainty equivalence
rule as x�=(V(fi)+E2(fi))-IE(fiXt-E(cO)=(l+tff2)-Ix�, where
Thus the optimal rule is more conservative than the certainty equivalence rule in the sense
that the control variable is not turned on as far. The shrinkage factor (1 + tff2) - � is a function
of the uncertainty in fi as measured by t�.
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where

= (.- b0) + (0-b)'g
x�-=xr-X.

Controlling Yr at t is equivalent to controlling y�-=Yr- � at t* = t- 7,
where y�- is generated by the process �lescribed in (6.24). The expected loss
(6.23) attains a simple form since E(Oa*)=O

L, = ( - t* )2 _ t,2b,(bb, + o2 (X'MX)-')- 'b + o2
=Eot*2+ ,*2(1-b'(bb' +o2(X'MX)-')-'b)+o 2

02 t .2= -- + 02+
T 1 + b'X'MXb/o 2

=o2(i+T-�)+ t*2 (6.25)1 +X 2

where we have used the inverse formula (xx'+A) -l=A -�-A-�x(1 +
x'A- �x)- �x'A- 2.

Thus the minimum expected loss is a quadratic function of the deviation
of the target from the historical level of the process, (t-7) 2= t '2. The
coefficient multiplying this term is (1 +X2) -� where X 2 is the value of the
chi-square'statistic for testing � =0. A large X 2 statistic thus implies that Yr
can be pushed from its historical mean without incurring great expected
loss. The part of the expected loss independent of the target is just the
variance of Yr assuming that x r is set to its historical level X,

V(ydx�= �) = �.,2 +o2=o2(1 + r-' ).
Next consider the possibility that none of the variables is controlled. To

compute expected control error it is then necessary to "guess" what the
explanatory variables will be. This means modeling the process that
generates the explanatory variables. For our purposes it is enough to know
the first two moments of x T, since the expected loss can be written as

E (yr-- t) 2 ---- E (a + j]'xr + ur-- t) 2
= o 2 + E(a - t)2+2E(a - t) j]'xr +

Taking as we did in the previous section the assumption of an independent
multivariate process for the explanatory variables, we have approximately
ExT=,�--X'I/T, VxT=X'MX/T, where M=I-l(l'l)-tl '. These
together with the least-squares moments for a and 0 imply in the absence
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of any control

E(yr-t)2=E(yr - Y+ Y-t) 2
=E(y r- �)2+(�--t)2
= O 2 + E (of* + l� 'X�-) 2 + t *2
= 02+ Ea*2+ Etr(x�.x�.'�l�l') + t '2

02 ko 2 , X202 + t '2

=o2(1+ k+l+x2)+t*2 (6.26)T

where k is �e dimensionality of � and X2 i� �e e�-square value for't�sting
�=0, x2=b'X'�b/o 2.

Equation (6.26), the expected loss with no control, is to be contrasted
wi� Equation (6.25), �e expected loss with optimal control. �eir dif-

o2 ( k + x 2) t*2X 2
+ � (6.27)

T i+X 2 '
measures �e incentive to use what is known about the detersants of Yr
in a cont?l exercise. ff it is desired to assure that Yr attars its historical
level t= Y, the second te� drops out (t*=0). �e percentage increase in
expected losses due to deeontrolling x r is then

= � (6.28)I+T -I T+I '

which attains its �nimum of k/(T+ 1) when X2=0. We �e thus led to
compare X2+ k with T+ 1 to dete�ne if deeontrolling x r �uld be
expired to increase expected losses substantially.

If, on the o�er hand, it is desired to control Yr at some value far from
its historical mean, the second te� in (6.27) do�nates the expected loss.
�e percentage increase in expected loss would �en be just X 2, and we
would w�t to compare X 2 with the number one to decide if �n�olling x r
is wor�while.

We have now examined the extreme cases in which either all or none of

the elements of the vector x r- (zr, �r) is under control. �e intermediate
e�e when direct control affects o�y z r is more difficult, since it requires a
model describing how z r aff�ts the distribution of wr or, more accurately,
how z r affects the conditional distribution f(yr[zr). Both the prediction
problem of Section 6.1 and the control problem of this section are most
elegantly solved by identifying the following �nimal assumptions about
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the conditional moments of Yr:

E (ylz) = + Ez)
V (yrlzr) -- a + (z r- Ezr)'A(z- Ezr). (6.29)

These assumptions--that the mean is a linear function and that the
variance is a quadratic function of zr--are implicit in the foregoing
discussion. The prediction problem of minimizing E (Yr-fi)2 where .P is a
function of z r is straighfforwardly solved by letting .P= E(Yr[Zr) with
resultant expected loss E (Yr-�)2 = E [Yr- E (yr[zr)] 2 = EV (YrlZr)= a +
trA g(zr).

The control problem is equally trivial. We wish to choose z r to minimize

= 211z)+ [,-
= min V(yrlzr) + [t- E (yrlzr)]2.

ZT

With the foregoing moments the derivatives of this expression with respect
to z T are

2A(z- Ez) - 2g(t - - � - Ez])
which when set to zero yields the optimizing value of z r

z�-= Ezr+ (A+ gg')-�g(t - Eyr).
The resulting expected loss is

E[ (Yr - t)21zr = z�-] = a + (t - Eyr)g'(A + gg')-�A(A + gg')-�g(t - Eyr)
+ [t- Eyr-g'(A + gg')-'g(t- Eyr) ]2

= a +(t- Eyr)2 [ 1 - g'(A + gg')- 'g]
-- a + (t - Eyr) 2 (6.30)

1 +g'A-�g
Note that this is a quadratic function of (t - EYr), the discrepancy between
the target and the expected value of Yr.

To be specific, let us again work with the diffuse prior assumption. After
some minor manipulation, we may obtain for the constants in the mo-
ments (6.29) the following

E E(z)=Z
g=
A = (;2 (Z'MZ)- �
a=o2+o2(l+k�,+x�)T -'

(the regression of Z on Y)
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where X� = b�(W'MW - W'MZ)(Z'MZ)-iZ'MW)bw/�2' Notice that
gA g-x�l�=0, the chi-square statistic for testing 3,--0, given that 5--
0. The relevant expected loss is then

2 2X�o kw 02 t '2
=o2(i + t-')+-V- 1 2+ X�l� = 0

For control around the historical mean, t '2=0, the percentage increase
in the expected loss if w r is not controlled is thus

i+T -� 1+ T

and we are led to compare X�+ k� with (1 + T) to determine if wt can be
decontrolled with little increase in expected error.

For control far from the historical mean the percentage increase in
expected losses due to decontrolling wr is

(1 2 -I
0

X/� 2- X'h� = o

1 2+X�l�=0

and we are led to compare X� with 1 +X�21�= 0.
It need not be repeated that these results involve the unlikely assumption

that in controlling z r we do not alter the process that generates the
explanatory variables (in the sense that the conditional distribution
f(wtlzr) is preserved). The assumption of known O 2 can be altered by
inserting its posterior mean where relevant� Mathematically more ap-
propriately, we may treat the vector (YT, X�-) as coming from a multivariate
normal distribution with unknown mean and unknown variance matrix. A
conjugate prior for the uncertain parameters implies that the marginal
distribution of (YT, X�-) is a multivariate Student distribution with means
and variances satisfying (6�28) and (6.29). We leave to the tenacious reader
the details of that calculation.
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6.4 Conclusion

To conclude we may restate, first, the more important formal results of thischapter and then reiterate the more important informal lessons to be
learned.The results of this chapter listed in Table 6.2 make use of the assump-tions listed in Table 6.1. If a variable y is generated by a linear regression
process with explanatory variables w and z, if w and z themselves comefrom a multivariate normal process, and if priors for the various parame-ters are appropriately diffuse, then: (1) for a conditional prediction prob-lem, we need not observe w, if the X 2 statistic for testing whether w can beomitted (X�) is small relative to (T+k) where T is the number ofobservations and k is the dimension of x --(w',z ), (2) for control with atarget equal to the historical mean of y, w may be decontrolled if X� + k�is small relative to (1 + T), where k� is the dimension of w; (3) for controlfar from the historical mean, w may be decontrolled if X� is small relativeto 1 + X 2�=�, one plus the X 2 value for testing if z belongs in the equation
given that w does not.The principal caveat that has been repeated ad nauseam is that theseresults involve a very specific and often unwarranted assumption about the

Table 6.1

Assumptions for Simplification Analysis

Model

Observations

Statistics

Yt = et + z'tT + W� + u t
=ot+x�+ut, t----O, 1 ..... T

ut� N (O, 02), 0 2 known
X, �N( p, �E)
p, �E, a,iB have diffuse priors

Y(T X 1),Z(T X k),W(T X kw),
X=(Z, VO(T X L)

b=(X'MX)-tX'MY, M=I-1T-q'
r = rv/T, X = rX/r
b0 = Y - Xb
g= (Z'MZ)-'Z'MY, /70 = Y-Z'g
x� -- b; [W'MW - W'MZ(Z'MZ)- 'Z'MW]b./o 2

--b'X'MX/o
X�21� = g'Z'MZg/o 2



224

Conclusion 225

process that generates the explanatory variables. No s�nplification deci-sions can be made w�thout either an �nplicit or explicit study of the
behavior of the explanatory variables, and we hardly need say that it seems
clear that an explicit study of their behavior is highly desirable.

For both prediction and control problems the effects of the excluded
variables have been compensated for by adjustment of the included
variables, and we have argued at length that it may be desirable not to
adjust in this way. Semantically, adjustment is undesirable, because rather
than asking if a variable can be neglected, in fact, we ask if it can be
compensated for. Metaphysically, adjustment is undesirable, since it im-
plies a causal link between the included and excluded variables. Statisti-
cally, the predictions and control that result may be quite inferior if
anything happens to change the historical correlations between the vari-
ables. Control, especially, is likely to alter those correlations.
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Variables that are used in theoretical statements often
are not directly observable. When a researcher wishes
to discriminate empirically among a set of theories, he
must describe precisely the observable differences in
the theories. In particular, hypothetical variables must
be linked at least probabilistically to observable phe-
nomena. In this situation there is a tendency among
empirical workers to dismiss the apparent failure of a
theory as merely a breakdown in the link between a
hypothetical variable and an observed variable. One
might report that "the low R 2 can be interpreted to
mean that we have yet to find the appropriate proxy
variable." If a theory is thereby completely protected
from falsification, we might naturally ask if it is com-
pletely protected from verification as well. The goal of
this chapter is to answer this question.

We would like to determine the extent to which it is
possible to make inferences about theoretical parame-
ters when the hypothetical variables are measured with
error. As an extreme possibility, the theoretical parame-
ters may be taken as known and observations used only
to determine the accuracy of measurement. A less
extreme procedure is to identify several possible ways
of measuring the hypothetical variable and to select the
proxy that yields the "best" results. This procedure is
called a "proxy-variable search." At least when the
number of proxy variables is finite, this method appar-
226
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ently spends part of the data evidence to pick a proxy variable but leaves
part of the evidence to make inferences about the theoretical parameters.

To give an example of a proxy search in economics, the lifetime budget
constraint makes it almost tautological to say that "permanent" consump-
tion depends on "permanent" income. A great deal of empirical work has
sought to determine the best way to measure these hypothetical constructs
without directly questioning the underlying theory.

The basic statistical model we use is summarized by the equations
Yt=a+ Xtfi+ zD,+ u ,, (7.1)
x t = 0+ �Xt + e t, (7.2)
Xt = *t + o�zt + et. (7.3)

Equation (7.1) describes the theoretical dependence of an observable
variable Yt on an observable variable z t and an unobservable variable Xr
Equation (7.2) describes the process that yields the vector of measurements
x t of the unobservable Xt, and Equation (7.3) indicates the relevant part of
the joint distribution of Xt and z t.

We could have treated both Yt and z t as unobservable as well. Measure-
ment error in Yt of the sort described by (7.2) has obvious consequences
implied by rewriting (7.1) to allow for the measurement error

Yt=Oy + Sy(Ot + Xtfi + zt'y + ttt) + eyt,
where Or, l�r, and err describe the measurement error in Yt. In such an
equation, even if Xt were observable, we could only determine the
coefficients (fi, 7) up to the scale factor /�r. If the measurement error
amplification/�r is known, we can estimate fi and 7 by a regression of Yt
on �YXt and �yZ t. Conversely, if one of the regression coefficients, fi or 7,
is known, we may use the same estimates to solve for the other two
parameters. Thus we have the choice between spending the evidence to
estimate the theoretical coefficients or spending the evidence to estimate
the measurement error. Intermediate cases would be implied by assigning
proper prior distributions to /�r, fi, and 7, which though conceptually
straightforward seems to be mathematically intractable. A possibility not
discussed here is multiple methods of measuring �t, each with different
inherent biases. The multivariate process that results has proportionality
restrictions across equations. For a discussion of maximum likelihood and
other estimates see Jtreskog and Goldberger (1975).

Measurement error in the explanatory variables presents problems that
are not conceptually straightforward. Except in Section 7.6 we have chosen
to deal with the case in which one variable is subject to measurement error
and the other is not. This is intended to approximate either the situation in
which one variable is known to be measured with relative accuracy or the
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situation in which one is interested in the process conditional on the
measurable variable z t rather than its theoretical counterpart.

This raises the question of why we should be interested in the parame-
ters of the theoretical process defined conditional on the unobservables Xa
instead of the obviously estimable parameters of the observable process
defined conditional only on the observables x t. For example, a conditional
prediction problem in which Yt is predicted as a function of other observ-
able variables surely requires only the latter parameters. I think the answer
to this question has to do with the problem of pooling information from
different sources. "Pure" prior information may apply to the theoretical
parameters, and even if interest centers on the other parameters it is
necessary to know their relationships in order to make use of prior
information. When prior information comes from a different experiment
with a different measurement device, the two sources of information can
be pooled only by identifying what they have in common--the theoretical
parameters. Even if pooling is not the immediate goal, it would be terribly
unwieldy to have a hundred sets of parameters, all corresponding to a
different measuring device, and we thus hypothesize a single set of parame-
ters implied by perfect measurement.

This chapter is designed to proceed step by step toward a discussion of
the proxy variable model and its extensions involving many proxies. Wefirst consider simple normal sampling models in which there are inade-
quate numbers of observations to estimate the unknown parameters. In the
Bayesian framework this means that the likelihood function is not integra-
ble and some form of prior density is necessary to compute a proper
posterior distribution. The value of analyzing these simple models is thatwe are able to define concepts and explore peculiarities characteristic of
the proxy-variable model in problems that have clearer intuitive resolu-
tions. For example, we learn that maximum likelihood estimates are not
defined for some of these models in the sense that at the apparent
maximum likelihood point the likelihood function is peculiarly behaved.

In the second section we review the simple errors-in-variables model
with �=0, 0=0, /5--1, w=0. No statistical model in the econometric
literature has led to so many confusing and erroneous statements as this
simple errors-in-variables model. Textbooks tend to suggest that inferences
are precluded by the lack of identification; yet intuitively, the observed
correlation between Y and x seems to contain information about/5. In fact,
/5 may be bracketed on one side by the direct least-squares estimate andon the other by the reverse regression estimate equal to the inverse of the
regression of x on Y. The likelihood function attains its maximum along a
line corresponding to these values of/5 and suitably chosen values of the
other parameters.
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A comprehensive summary of the literature on the errors-in-variables
model is provided by Moran (1971). I have selected from that literature
only the material that I regard to be most useful. For example, exact prior
information about various parameters has been suggested to break the
identification log jam, but since such precise prior information is unlikely
to be available, I have not included a discussion of it.

The rest of this chapter deals with natural extensions of the simple
errors-in-variables model. In the third section we explore the single-proxy-
variable model implied by Equations (7.1) to (7.3), and in the fifth section
the multiple-proxy-variable model. For each of these, it is possible to
compute bounds for � analogous to the errors-in-variables bound, actually
computed by direct and reverse regressions. Without reference to prior
information, it is not possible to say anything about /5, however. An
instrumental variables model is discussed in Section 7.4. This model is a
hybrid of the errors-in-variables model, in that there is both a measure-
ment of the unobservable variable and also an independent proxy.

In describing the likelihood function of all these models we must decide
first whether Equation (7.3) is part of the "model" or merely a description
of one's prior belief about Xt. Such a distinction to a Bayesian is, of course,
meaningless--the "model" is itself merely a description of one's prior
belief. But Equation (7.3) with a normally distributed error e t may be such
a special and unlikely "prior" that it may be better to analyze how the
posterior distribution is influenced by the model as defined by Equation
(7.1) and (7.2) alone. As will be shown, this is not an easy task.

A confusing terminology has been developed to distinguish the model
that makes use of (7.3) from the model that does not. The unobservables Xt
that affect the distributions of specific observations are called incidental
parameters, and the others are called structural parameters. The structural
form of the model makes use of (7.3) to integrate out the incidental
parameters and only structural parameters remain. By default, the model
consisting only of Equations (7.1) and (7.2) is called the functional form. In
place of functional and structural form, I would suggest the words condi-
tional and marginal.

One other bit of terminology is used here. Let the joint likelihood
function of two parameters be L(al,a2). A marginal likelihood function
makes use of a probability distribution for #2 to integrate #2 from the
function: L'�(a�)=f L(a�,a2) f(az)da2. A concentrated likelihood function
maximizes the joint likelihood for each value of #�: L
[Note�that the value of #2 depends on #�, �2=�2(#�), and L�(#�) --
L(�i,�2(�I))-]

The principal conclusion of this chapter is that "reverse" regression
should be a part of standard operating procedure. The choice of "depen-
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dent" variable for least-squares regression has nothing to do with
metaphysical notions of causality. The "left-hand side" variable should be
the one measured most inaccurately.

Two important mathematically related questions remain unanswered:
What confidence intervals should be used for these models'?. How do priors
effect the decision whether to allocate the evidence to inference about
theoretical parameters versus inference about measurement error parame-
ters?

7.1 Infereno�s with Inadequate Observations

In this section we consider the inferential puzzles that arise in several
simple models whose common feature is an excess of uncertain parameters
relative to the number of observations. This discussion is intended to
provide insights into the more complicated proxy variable problems to be
discussed in later sections.

MODEL 1. x�N(x, o2) � Suppose that a single measurement x is made of
some unknown quantity X with a measurement device that generates
normally distributed measurement errors with mean zero and variance 0 2 .
A single observation from a normal distribution does yield the point
estimate x, but without resort to other information, it does not seem
possible to say anything about how close x is likely to be to X. Somewhat
surprisingly, this proposition is not transparently obvious on examination
of the likelihood function.

The likelihood function given the data x may be written

L(x, o2; x)o:(o2)-l/2 exp[ - �o2 (x- x)2 ]. (7.4)
We may attempt to maximize this function by setting the logarithmic
derivatives to zero

OlogC(x, o2;x) -(x-x)
0 � �

OX 02 '

01ogL(x,�2; x) 1 (x-x) 2
0 �--- �)O2 202 204

The apparent solution to these equations is
x = x, o 2 = (x- x) 2 = 0,

which suggests, contrary to intuition, that the datum favors 02--0.
However, since the exponential term in the function (7.4) involves the

ratio of two zeroes at the apparent maximum, a more careful examination
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of the function is in order. In fact, the function is not properly defined at
(x,0) since within any neighborhood of the point, the function takes on
any positive value whatsoever. This can be demonstrated by identifying the
lines on which the likelihood function is constant. Setting the logarithm of
(7.4) to a constant c we obtain

1 2 I (x-x) 2
-�1ogo -2 o� =c

which can be rewritten as

(X -- X) 2 = -- 0 2 log o 2 _ 2CO2.
As o 2 goes to zero, the right-hand side of this expression goes to zero
regardless of the value of c. Thus every line of constant likelihood goes
through the point (x, 0). Such a point may be called an essential singularity.

Although the behavior of the likelihood function in the neighborhood of
(x, 0) is peculiar, it remains to be demonstrated that this point is inferen-
tially uninteresting, since there are points close to (x,0) that are more
"likely" than most other points in the parameter space. But, in treating a
likelihood function like a probability distribution (a posterior with a
diffuse prior), we are interested in the behavior of the function only to the
extent that it generates volume under it. Thus, for example, a likelihood
function that is uniform between zero and one is inferentially equivalent to
a likelihood function that is the same except at the point .5, where it is
enormous. Unless the prior allocates positive probability to the point .5,
both functions imply the same posterior probabilities.

In an analogous fashion, unless the prior allocates positive probability to
the line X-- x, the point o 2 = 0 will not be an "unusually" interesting value.
Let us take as our prior for X a normal distribution with mean rn* and
finite variance ox2; then the density of x conditional on o 2 but marginal
with respect to X is normal with mean rn* and variance o2+ox 2, and the
(marginal) likelihood of 0 2 is

Lm(o2;x)cr(o2+2x-'/2 [ (x-m*)2] (7.5)ox} exp[ 2(�2+�x 2)
The mode of this function occurs at 02 satisfying 02+02x=(x-m*)2 ,
provided that (x-m*)> 02x. Otherwise, the mode is at the origin, and the
marginal likelihood at 02=0 takes on the bounded value (02x)-W2exp
[- �(x- m*)2/o�]. In words, if the datum x is far from the prior mean m*
in units of the prior standard error, then the datum favors some value of 02
greater than zero. If x and m* are close, the datum favors 02 --0; but 02--0
is never a singular point of the marginal likelihood function, even though it
is a singular point of the concentrated likelihood function max x L(X, 02; x).
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Similarly, unless the prior allocates positive probability to the line 02= 0,
the value X = x will not be an "unusually" interesting value. Let us take as
our prior for 0-2 a gamma distribution with location and scale parameters
s '2 and �*. Then, by referring to properties of a normal-gamma distribu-
tion, the marginal likelihood becomes the Student function

Lm(x;x)c%

I (x_ x)21-�'+'>/2-- (7.6)OC p,* + S '2
Although this is a function that has a maximum at X = x, for no value of
r*> 0 is the function unbounded at that point.

The conclusion that is appropriate from this discussion is that the
likelihood function is difficult to interpret by itself. We have suggested the
slogan "the mapping is the message" to indicate that the evidential content
of the data is a mapping from priors into posteriors. Sometimes that
mapping is obvious from examination of the likelihood function alone. In
this case it is not, and overt reference to prior information is required to
determine the values of a 2 that are favored by the datum.

In analogy with the errors-in-variable terminology, the statement that x
is distributed normally with mean X and variance a 2 could be called the
"functional" form, and the statement that x is distributed normally with

2 could be called the "structural" form. Themean zero and variance 02 + o x
preceding paragraph then concludes that inferences about 02 ought to be
made in the context of the,' structural form of the model since the func-
tional form may lead to erroneous conclusions?

I It is interesting also to consider the consequences of diffuse prior distributions. The usual
degenerate prior for 02 is implied by �*=0, and the marginal likelihood (7.6) becomes
IX-xl- �, which has a nonintegrable singularity at X = x and is, furthermore, nonintegrable in
the tails of the distribution. The usual uniform prior for X would imply a uniform marginal
likelihood for 02 (integrate (7.4) with respect to Y0 which is nonmtegrable in the tail. Thus ff
you desire a proper posterior distribution for X, you need a proper prior for 02, and ff you
desire a posterior distribution for 02 that is different from the prior, you need a proper prior
for X.

This brings up the question of whether the parameter 02 is identified or not. It is true that
no two sets of parameters imply tbe same data density. For this reason, given a proper prior,
it cannot be the case that the prior and posterior probabihties of any measurable subset will
necessarily coincide. Nonetheless, ff the prior for X is uniform, the posterior and prior on 02
will necessarily coincide. It does seem intuitively clear that without some knowledge of X, the
datum contains no interpretable information about 02 . We may wish to enlarge the definition
of identification to include this circumstance. Kadane (1975) provides further discussion.
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MODEL 2. xi�N(x,O?) , i=1,2. A single observation from a normal
distribution yields an estimate but no meaningful measure of the reliability
of the estimate. Suppose next that two independent measurements of X are
made with different measuring devices that may have different variances.
In this case, some information about the variances may be derived from
the difference between the measurements.

The likelihood function for this model is

2 2. I [L(x,o,,o2,x,,x2)cr(o,o2)- exp (x- x,) 2 (x- x2)2 ]2o, 2 2o� 2

The same pathology as above occurs on the lines

(X,o�E, oEE)=(xpO, o�) and (X,o�E, oEE)=(x:z,o�2, O).
It is instructive in this case to concentrate the likelihood function by
selecting the value 2 2X(Oi, 02) that maximizes the function for a given 0/2 and
022:

X(o/2, o22) = 2 + + o-2x2).
The concentrated likelihood function is then

2222. exp[ ].1 (x2- x,) 2o,o2 2(o/2 +
In terms of the ratio r 2= 2 2 d 2_ 2 2 this function can01/02 and the sum -oi +02,
be written

r �-�(x 2--x,) .
On any ray out of the origin (r fixed) this function attains its maximum at
d2=(x2-xO 2 independent of r. Holding d fixed the function attains a
minimum at r 2= 1 and is unbounded at r2=0 and r 2= o0. The point r 2= 1,
d2=(x2-xl) 2, X=(xi+x2)/2 is thus a saddle point of the likelihood
function.

There is one parameter that seems to be unambiguously "estimable"
from these data; it is 0/2 + 022 with "estimate" (x�- x2) 2. This is a reasonable
estimate, since x�- x 2 is normal with mean zero and variance 0/2 + 022. The
value of knowledge of d 2 = 0/2 + o� is that it implies the constraints o�2 < d 2,
022 < d 2, which in turn may be useful in constraining confidence intervals.
To make this clear write the likelihood function in terms of d 2 2=O I + 022
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L(x, d2, r2;x,x2) o: (xlm(r2),v(r2, d2))

(d2 )- ' /2 exp[ - (Xl - X2)2]
x I + r2x2

re(r2)= 1 + r 2

(7.7)

v(r2, d2)= d 2r2
(1 + r2) 2

In words, the likelihood function is the product of a conditional normal
distribution on X times a function independent of r 2. The second factor is
just the likelihood function of d 2 given the observation of xl-x 2 distrib-
uted normally with mean zero and variance d 2.

If we use a diffuse prior for d 2, f(d2)crd -2, we may integrate this
likelihood function to obtain a Student distribution on X conditional on r 2,

Lm(x, r2;x2, x2) cr fs (x[rn(r2),r2(x, - x2)2/(1 + r2)2' 1).
Although a Student function with one degree of freedom has no moments,
it is possible to compute shortest size-a confidence intervals, which will be
located at rn(r �) and have length proportional to the square root of
(X 1 -- x2)2r2/(1 + r2) 2.

A marginal posterior distribution on X requires us to integrate this
function with respect to a prior distribution on r 2. Personally and/or
publicly acceptable priors for r 2 are unlikely to be available. An alternative
is to describe the mapping of one-point priors into posteriors, that is, to
compute posterior intervals for X conditional on r 2 for all values of ?.
Referring to the formulas above, as we vary r 2 from zero to infinity, we
vary the location of the interval from x� to x 2, and we vary the length of
the interval from zero (see Fig. 7.1) to a maximum at r 2-- 1 and back to
zero. Thus although it is impossible to compute precise posterior credible
intervals, it is possible to give a very reasonable class of posterior intervals.
Incidentally, the union of these intervals contains X with probability in
excess of a regardless of the prior for r 2.

MODEL 3. xit�N(xt, o2); t=l ..... T; i=1,2. Whenever possible, it is
desirable actually to compute the marginal posterior distribution of the
parameter of interest. A model due to Neyman and Scott (1951) provides a
dramatic demonstration of the need to marginalize a likelihood function
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Fig. 7.1
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Confidence intervals for X; x�N(x,o�2), xe�N(x, 022), 2 2 2r �Oi/O 2.

and/or the posterior distribution. Suppose for each of T quantities, x,(t =
1 ..... T), we obtain two measurements x�, and x2, distributed indepen-
dently with mean X, and variance 0 2. The likelihood function may then be
written as

-- 1 Z ([Xlt--Xt]2"j-[x2t--Xt] 2L(X l ..... X,,o2; X) cc(o-2) r exp 2o--�

�(o 2)rexp -�,=� �(x�,
where X is the t x 2 mat� of obse�ations and �, = (x�, + x2t)/2. Ma�-
ing this function with respect to the parameters yields the estimates X, = �,
and

4T

Curiously enou�, however, the expected value of (x� - x2) 2 is 2o �, and it
is easy to show that the estimate just reported converges in probabi�ty to
2o2/4 = o2/2 as

A m�nal l�el�ood computed by integrating (7.8) �th respect to a
diffuse distribution for Xt, X2 ..... Xr is easily found to be

402 � (Xl,-
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which has a mode at Y�(x�,-X2t)2/2 T which does converge in probability
to o 2 .

This peculiar example is not easily made sense of. The following is an
attempt. The likelihood function implied by two observations from a
normal distribution is

m(x, o2[xl,x2)oc(o2)-lexp[-�2(X-.�')2-�o2(Xl-X2)21
with a mode at (X, o2)=(�,(xl-x2)�/2)- The contours are as depicted in
Figure 7.2. Although the function attains its maximum at o2=(xt- x�)2/2,
most of the mass is located at values above the maximum. In fact, the
usual degrees-of-freedom adjustment would imply the estimate (x I -x2) 2,
thereby implicitly allowing for the relative "thinness" of the likelihood hill
at the maximum. If the number of observations is increased, holding X
fixed, this peculiar shape of the likelihood hill corrects itself, and the joint
maximum appropriately indicates the point favored by the data. If, as in
the example being discussed here, the mean changes, one never gets to the
large-sample situation, and the likelihood hill, in fact, becomes increasingly
thinner at the maximum. Thus, loosely speaking, in the limit the function
approximates its maximum on a set of measure zero.

By the way, this example has had a significant impact on this author's
thinking. I used to be relatively uninterested in the difference between

2

Fig. 7.2

x! ,'x 2

Likelihood contours: xi�N(x,o:), i= 1,2.

x
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marginal and joint modes, and I would have flippantly asked, "Who chose
the (prior) probability distribution that was used to marginalize the likeli-
hood function?" Although that question remains, it is now clear that at
least for some problems, marginalization seems essential.

MODEL4. xit�N(Oi-l-SiXt, oi2); t=l,...,T; i=l,...,N. Certain measure-
ment instruments may generate systematic biases. Is it possible by observa-
tion of the measurements to determine the extent of the bias? Probably
not. In vector notation, a model with biased measurement is

xt=O-�Xt-�t, t--I .... ,T,

where x t is a vector of N measurements of the quantity Xt, 0 and � are
N x 1 vectors describing the bias, and e t has a multivariate normal distribu-
tion with mean vector zero and variance matrix D--diag{o�,o�,...,o�).
We observe in passing that this is the factor analysis model, with a single
factor Xt. (See Harmon, 1960; J6reskog, 1963; and Lawley and Maxwell,
1964.) As usual, the joint likelihood function has essential singularities,
implied by the restrictions that the ith measurement (any i) is errorless,
o�=0 and Xit=Oi'�SiXt � Maximizing the rest of the likelihood function
subject to this restriction requires us merely to regress all of the other
measurements on x�, thereby estimating the equations x�t = O� + 8�X t = 0�+

:,,, - o,) /
There is also an identification problem, since by altering the scale of the

unobservable Xt with an offsetting change in the scale of � we do not alter
the distribution of the observables x. Thus � can be determined only up to
a scale factor: equivalently, we may only conclude that some instruments
give relatively high readings and others relatively low readings, but it is not
possible to say which is right, if any.

The structural form of this model assumes that the quantities X� come
� The vector x, isfrom a normal distribution with mean � and variance o x-

thereby assumed to be drawn from a multivariate normal distribution with
mean 0 + � and variance � ��ox� + D. As in the structural model � can be

2 and �, themultiplied by any constant, and with a suitable rescaling of o x
distribution of the observables is unchanged. We might as well proceed
with the assumption that ox� = 1 and �=0, keeping in mind that � is
determinable only up to a scale factor. Maximum likelihood estimation
then requires maximization of

x, .....

xexp[- �-� (x,-O )'(88' +D)-'(x,-O ) ].2 t
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Algorithms for the maximization of such a function are discussed in the
factor-analysis literature. The work of J6reskog (1966) especially should be
mentioned here.

7.2 The Errors-in-Variables Problem

The errors-in-variables problem has the feature of all the models just
discussed: the ratio of observations to parameters is unhappily small. We
must accordingly be alert to the possibility that direct examination of the
likelihood surface may be misleading. We nonetheless attempt to explore
the likelihood surface directly, a task which may be easier now that we are
armed with the knowledge of its potential pitfalls. In this section, and in
the sections to follow, we fir:st explore the joint likelihood function of the
functional form of the moclel in which the incidental parameters are
treated like the other parame, ters. The salient feature of this function is its
essential singularities. We then explore the (marginal) likelihood function
of the structural form of the model in which the incidental parameters are
integrated out of the.function with respect to a probability function with
possibly uncertain hyperparameters.

The errors-in-variables model is mathematically equivalent to Model 4
just discussed with N = 2, but with
form we may write the model as

a known normalization. In its simplest

fiX, + u, (7.9)
xt = xt + (7.10)

to indicate that an observation Yt is linked by a linear process to an
unobservable Xt, which is measured by x t subject to measurement error et-
In effect, we have two measurements of Xt, one unbiased and the other
subject to amplification f.

The least-squares estimate of f suffers from the errors-in-variables
"attenuation"--it is biased toward the origin. The bias does not disappear
as sample size increases. This sampling property has its counterpart in the
likelihood function which in vector notation is

L(x,f,o,,2, o:; Y,x)cr:(o,,2)-r/2exp[- �o,,�(Y-xf )'(Y-xf ) ]

This function, as shown by Solari (1969), has essential singularities at the
points satisfying o�2=0 and X=x or %2=0 and Y=Xf- Minimizing the
nonpathological part of the function, subject to these two pairs of con-
straints, yields, respectively, the "two regressions" ��---(x'x)-�x'Y and
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]�R= [(y,�)-ly,x]-1, the first being the simple regression of Y on x and the
second being the inverse of the regression of x on Y. These are the extreme
estimates of f analogous to the estimates x� and x 2 of X with x�N(X, Ol 2)
and x2�N(X,o�). These are not maximum likelihood estimates, since the
function is not defined at these points. As mentioned before, there is a
tendency for the simple regression /�o to underestimate f (/�o is
"attenuated"), and to compensate for this the "reverse regression" /�R
yields an estimate larger in absolute value than the direct regression. Using
the formula R 2= CY,x)2/x, xY,y we may derive the result

R2�=� 0 (7.11)
with 0 g R2g 1. Furthermore, it may be shown that the reverse regression
estimate tends to overestimate f, and the two regressions therefore con-
sistently bound fl.

As in the two-observations-per-mean model (Model 2), the stable point
of the likelihood function is a saddle point (Solaft, 1969). The estimate of f
at the saddle point is a geometric average of the two regressions, and X is a
simple weighted average of x and Y/f, completely analogous to the saddle
point discussed previously, in which the estimate of X was a simple
compromise between x� and x2. Another feature of this point is the curious
relationship among the estimates/� 2= �2 �2o3/o i . This phenomenon has gener-
ated a great deal of confusion in the literature. It is not especially
surprising if we were to write the process like Model 2 as

and observe that because of the symmetries, it is not surprising to find a
2 2 2saddle point at Varxt=Varx 2, that is, at o,,/f --0�. In the former

problem the constraint o� = 022 seems reasonable by an appeal to symmetry.
No such symmetry exists between Y�/f and x�, and it is unlikely that the
saddle point will be a point of special interest between the two extremes.

A (prior) distribution for the unobservables X� may allow us to make
clearer inferences. In the structural form of this model, we assume that
each X� was drawn from the same normal population xt�N(�,ox2). This
amounts to assuming that the vector (Yt, xt) comes from a bivariate normal
distribution with mean (f�,�0 and variance matrix

z= + ,,}[

(7.12a)
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The fact that the mean of Y, is fl� and the mean of x, is � suggests an
estimator foi- fl: �/�, the ratio of the observed means. But if the relation-
ship between Yt and Xt included the constant a, Yt=a+flXt, the mean
vector would be (a + fl�, �), wMch would not imp� an estimate of fl. In
fact, we could only solve for a in te�s of fl, a = Y- fl� = Y- fl�. Except
in the u�ely event that we �ow a or have a proper prior for it,
inferences about fl depend ent�ely on the covariance mat� of the process
and not on the location vector. Henceforth, we proceed as if there were an
uncertain a in the theoretical relationship. �e l�el�ood functions re-
ported below have been "concentrated" by setting � to � and a to Y-
�is has the effect of removing the means of the obsemations, x�-�and

Obseme in passing that the conditional distribution of Y� �ven x� is
2 2+ o[). �is su�ests that in recessing Y on xnormal with mean x, flox/(o x

we obtain the "shm�en" coefficient: flo�/(o�+ o[). Conversely, the re-
cession of x on Y yields the coefficient flo�/(o�+ f12o�)=fl-
+ f12o�)), fl- � times a factor less than one. �e first shfi�age factor is2 whereas the second is close to oneclose to one for o[ small relative to o x,
for o� small relative to B2o 2 This shoMd generate some further under-
standing of the content of the "two recessions."

The l�el�ood function of the structural fo�, assu�ng no�ality and
with variables defined around their means, is

x)
= IZI- r/2exp[ - � trZ-'S] (7.12b)

where

,S=[x,y Y'xX�X

The following result describes the maximum likelihood region.

THEOREM 7.1 (ERRORS-rN-VARIABLES BOLrND). The likelihood function
(7.12b) with Ig defined by (7.12a) attains its maximum at any value of fl
between the direct regression estimate l}D=(x'x)-�x'Y and the reverse
regression estimate t� R = (x'Y)- �Y'Y.

Proof.' If �E is unconstrained, this function attains its maximum of
IS/T[-T/2 exp[- T] at 52 = S/T. This is a feasible value of 52 if we can find

52(ou,ox, o�,fl)-S/T. We can,2 o�2, and fl such that 2 : : - in fact,values of o�2, o x,
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do this by selecting a value of fl, and solving for the other parameters as
2_ x'Y

�x Tfl
2 22 Y'Y fi �x-Y'Y-x'Yfiou -- T T

o[ = x'x 2 __ x'x- x'Vfi -T ox T
The constraints o� > 0 and o� > 0 imply that not all values of fl can be
associated with the maximum of the likelihood function. These constraints
imply Y'Y > x'Yfl and x'x > x'Yfl - �, that is,

V,V(x,V)- 1 /�n
(x'x)-'x'V

In words, any value of fl between the direct regression/�D and the reverse
regression/� R with suitably chosen values of the other parameters imply a
likelihood value equal to the maximum.

The general features of the concentrated likelihood function

L 2 2 2.L�(g;Y,x) = max (g,o;,ox,o; ,Y,x)
o�2 > 0,4 > 0, o2x >0

are difficult to compute. From the preceding discussion we know it has a
plateau of height Is/rl-�/:exp[- rl between/�D and �a. It is also easy
to derive

L c (0; Y,x)= [x'xY'Y/T �] - r/2 exp[ -- T]
(by observing that given fl--0, x and Y are independent with different
variances). Similarly,

L�(fl;Y,x)> max L(�,% 2, � o�2;y,x)2 2 2 OX' 'o� ;� 0, o� >0, ox=O

-- L � (0; V, x).

L�(fi;r,x)> max L(fi,%2, 2 o:.V,x)2 2 2 OX� e �o� ;� 0, o� =0, o x > 0

--[(Y-x/5)'(�-x/5)]-r/2[x'x]-r/2Tr/2exp[ - r],
2 2 2.L�(/5;Y,x) > max L(/5, o.,ox,o;, Y,x)2__ 2 2o,, -- O,o� >O, ox > 0

=[ (x-Yfl-' )'(x-Y/5 -' ) ]- r/2[y,y]_ r/2rr/2exp[_ r].
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Concentrated likelihood function: the errors-in-variables model.

Note that this last function (whose leading term is associated with the
reverse regression) in the li:mit tends to the value LC(0; Y,x).

Normalizing so that the likelihood value at the maximum is one and so
that Y'Y = x'x = 1, and by observing that IS[ -- (x'x)(Y'Y)(1 - R 2), where R 2
is the sample correlation coefficient of Y and x, we obtain the lower bound
for the concentrated likelLhood function depicted in Figure 7.3. Note that
in addition to having a plateau, this function is uniform for large absolute
values of f. To the extent that the concentrated likelihood function is an
appropriate one-dimensional description of the evidence about f, we are
led to conclude that it is impossible to distinguish one large value of f
from another, although values of f with the same sign as/�D are favored
over values with the opposite sign. Decisions that depend on the tails of
the distribution thus necessarily are heavily dependent on prior informa-
tion about f or about the variances. 2

An approximate posterior distribution for this model has been derived
by Lindley and E1-Sayyad (1968). They use the ignorance distribution for
o�, proportional to o�-2, antd show that in a large sample f, conditional onn 2/�2 is normal with mean fix, the root of thethe variance ratio �.= �./,,�,
quadratic equation (with sign of x'Y)

hx'x - Y'Y
f2+ tfl-X=0, t= x'Y '

:Note also that the likelihood ratio of fi=0 versus fi4:0 is unaffected by the measurement
error in X. It is erroneous to conclude from this fact that a test of the hypotheses fl=0 versus
fl=P0 is umnfluenced by the measurement error, since, as we have argued in Chapter 4, the
relationship between a likelihood ratio and an appropriate hypothesis test is indirect.
Nonetheless, it is comforting to [mow at least that the t value of the regression coefficient has

.... , ........ � .:: ..... ;^. +k�t �.c�ht tc� anDIv to B.

� Proxy-Variable Problem

Upperlilni�

�LLower limit
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Fig. 7.4 Confidence intervals: the errors-in-variables problem.

and with variance

f� (x'xV"V- (x'V) 2)
T(x'Y) 2

There is little sample information about h, and in the absence of legitimate
prior information, it makes sense to consider the class of (approximate)
posterior distributions for h�0, as we did for Model 2 in the previous
section.

The (nonzero) root of the quadratic equation for h = 0 is re--Y'Y/x'Y,
the reverse regression estimate of fl. As h converges to infinity, the
(appropriate) root of the quadratic equation converges to foe =x'Y/x'x,
the direct regression estimate of fl. The standard error is always propor-
tional to f� and at h-�oo the variance takes on the value

( x'V] 2x'xY'Y-[x'Y]2 x'xV'V-(x'V) 2x,x rx47 = '
w�hich happens to be just the usual least-squares estimate of the variance of
�. Figure 7.4 indicates this class of internals which vau from the usual
internal located at the dkect least-squares �a to an intemM located at �e
reverse recession est�ate �th length expanded by the factor I I.

'7.3. � Proxy-Variable Problem

A variable x is called a proxy for another variable X if x and X are
positively correlated. Within the normal family we may write E (x[x)= 0 +
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�X, and the assumption of positive correlation is equivalent to � >0. In
contrast, x is a measurement of X if E(xtX)--X, that is, if 0--0 and �--1.

The simplest proxy variable problem is described by equations analo-
gous to (7.9) and (7.10)

Y, -- fiX, + u, (7.13)
xt = �Xt + et (7.14)

where, as in the errors-in-w�riable problem, we take Yt and x t to be defined
around their means. The parameter of interest may be considered to be r,
in which case x t is a proxy for the explanatory variable Xc This model
suffers from the identification problem associated with factor analysis (see
Model 4): the vector (fl,�) is unique only up to a scale factor, since the
distribution of the observables (Yt,xt) is unaffected by a scale change in
(fl,�) offset by a scale change in Xc A regression of Y and x can by itself
determine only the sign of fl (given the sign of �).

The essential singularities of the joint likelihood function implied by
(7.13) and (7.14) occur on the lines (o,�,X)=(0, Y/fl) and (a�,X)=(0, x).
Maximizing the nonpathological part of the function subject to these,
constraints yields the estimates l�/,�--(x'x)-�x'Y and (/�/�)=(x'Y)-�Y'Y,
which are just the direct and reverse regression estimates. Note that the,
consequence of the identification problem is that the location of these',
modes depends on the ratio fl/� only.

A more interesting model is described by the equations
Y, =,Sx, + l,z, + u, (7.13')
xt = �Xt + et. (7.14'11

This differs from the previous model in allowing another variable, z t, to
affect the dependent variable Yc As before, the essential singularities are
implied by o,=0 or o�=0. Using these constraints, we may write the
model in the first case as x.t = �Xt "{- 'Et = � ( Yt - 'YZt)/ ]� + 'Et and in the second
as Y�=(,8/8)xt+Tz�+uc The first equation implies that � may be esti.-
mated by regressing x on Y and z and by resolving the resulting equation
to put Y on the left-hand side. This may be called the reverse regression
estimate of ), and is denoted by �n. Referring to the second equation, we
see that the essential singularities implied by o�2--0 suggest regressing Y
directly on x and z. The estimate of ), that results is called the direct
estimate and is denoted by �D.

If the logic of the errors.-in-variable model is extended to this proxy-vari-
able problem, we conjecture that in the structural form of this model the
concentrated likelihood function has a plateau between � D and � n. This is,
in fact, the case. The structural form of this model requires a distribution
for Xt. To make the problem interesting, we allow Xt and z t to be
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correlated. In that case, the simple e, stimate of ), computed by regressing Y
on z alone is potentially misleading, since a variable correlated with z has
been omitted from the equation. This creates a pressure on the researcher
to find a proxy for the unobservable Xt- Assuming in particular that Xt is2normal with mean to2 t and variance o x

the means and variances of the observables become

( ] : [ ( t,o+ ]

r[ (r,,;,,)lz,]: o,, + o.
By an argument analogous to the rnaterial in the previous section, it may
be shown that the likelihood function has a plateau between the direct and
reverse regressions. The following result analogous to (7.11) can also be
derived.

Let � s be the "simple" regression estimate of 7, (z'z)-�z'Y, computed by
omitting x from the equation. Let �o and �n be the least-squares estimate
and the reverse least-squares estimate. Then it is easy to verify that

(7o_ ?s): R 2 (?a_ ?s), (7.15)
where R 2 is the squared multiple coorelation coefficient computed when Y
is regressed on both x and z. Interpreting this result, we conclude that
when an error-ridden proxy variable is included in an equation, the
estimates that result are insufficiently far from the estimates when the
variable is omitted altogether. The difference should be expanded by a
factor no larger than 1/R 2.

7.4 Instrumental Variables

Suppose next that the variable Xt is measured with error, but in addition,
there is a proxy variable available. �]�e model then consists of the follow-
ing three equations:

Yt: ,SX, + ut (7.16)
3Jt:Xt'� Elt (7.17)
w,: 6X, + �2,, (7.18)

where variables are defined around their means, x t is a measurement of Xt,
w t is a proxy variable, and ut, ett, and �:t are independent normal random
variables with zero means and variances o, �, o�, and o�, respectively. If the
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proxy equation were errorless, that is, if o� were zero, we could use the
relationship Xt = %/8 to determine Y� = flw�/8 + u� and x� = %/8 + e�t.
Thus in regressing Y on w we would estimate r/8, and in regressing x on
w we would estimate 8- (. The ratio would then estimate r:

/�,v= Y'w (7.19)X�W

This estimator is known as the "instrumental variables" estimator of fl.
The variable w is said to be an "instrument" for x, and the estimator is
often derived in the following way. The variable x is regressed on w to
obtain an estimate equal to (w'w)-tw'x and a "predicted" value of x equal
to �=w(w'w)-tw'x. Then fi is estimated by regressing Y on the predicted
x: ($:'$:)-t$7Y=Y'w/x'w, which is the instrumental variables estimator.

The instrumental variables estimator is due to Reiersol (1945) and to
Geary (1949). It is not difficult to demonstrate that /�v is a consistent
estimator of fi, for example, see Malinvaud (1970). A careful examination
of the likelihood function may help us choose between the consistent
estimator /�v which may have a large small-sample variance and the
inconsistent estimators /�D and/�n which may have relatively small vari-
ances in small samples.

The likelihood function implied by the functional form of this model has
essential singularities on the surfaces (o2, X)=(O,Y/fi), (o�,x)=(O, x), and
(o�,x)=(O,w/8). Maximizing the nonpathological part of the likelihood
function subject to these constraints yields the estimates /�D=x'Y/x'x,
/�n =Y'Y/x'y, and/�=Y'w/x'w, respectively. For the models discussed
previously, the essential singularities of the functional form are maximum
likelihood points of the likelihood function of the structural form. The
structural form of the model being discussed here, however, has a single
maximum likelihood point, located at one of the three estimates/�D,/�n, ,or
/�. It will be shown that if all three estimates have the same sign, then
the instrumental variables estimate is maximum likelihood d it lies between
/�D and/�n, that is, if it satisfies the errors-in-variables bound. Otherwise,
the maximum likelihood ,estimate is one of the end points of the bound,/�i D
if/�'v is less in absolute value than ]�D; /�n if /�v exceeds/� n.

The structural form of the model makes use of the assumption that tire
incidental variables Xt are independent normal variables with variance o2x.
Equations (7.16), (7.17), .and (7.18) then define a trivariate normal proce, ss
with covariance matrix

(7.20)

and the likelihood function is

where

Instrumental Variables

1 try_iS 1L(52; Y,x,w) cc IZI- r/2expl - �

[Y'Y Y'x Y'w]S = [ x'Y x'x x'w .
Lw�Y w'x w'w

2A7

(7.21)

THEOREM 7.2 (INSTRUMENTAL VARIABLES). Maximization of the likeli-
hood function (7.21) subject to the constraint (7.20) with the variances
2 2 o�, and 2 nonnegative implies the following estimate of�:Ou,01, 0 x

(a) If t� � and t� D are the same sign
/� =median (/�o,�,/�t� )

(b). If t� iV and/�D are opposite in sign

if the smallest correlation is

Proof' A well-known result is that if � is unconstrained, maximization of
(7.21) with respect to �E yields the ,estimate

This is the maximum likelihood estimate for the constrained problem if the
constraints are not binding, that is, if there exist parameter values such
that 52 = S/T. The three off-diagonal elements of this matrix determine the
following estimates

X�W

2_ Y'xx'w
ox TY'w
8- Y'w

Y'x '
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These values together with the diagonal elements of � imply
2 2�_ y'y fi �x = Y'Y-w'YY'x% - T Tx'w

O 2 X TM 2 _ x'x - Y'xx'wI = �- - Ox - TY'w
Z �z 2 2 W'W-- Y'WW'X

o 2 = -� - � Ox = TY'x
If the estimated variances are all positive, these are the maximum

2 > 0 implieslikelihood estimates. The constraint o x
Y'xx'______�w > O.

Y'w

This means that �D and �v must have the same sign. Without loss of
2>0,generality, we assume that x'Y > 0. Given x'Y > 0, the constraints o.

> 0, o� > 0 imply, respectively,

/�R= Y'Y > w'�Y =/�,v (7.22)Y'x w'x

/�v__ w'Y > Y'x =/�D (7.23)W'X X'X

Y'x Y'ww'x > 0. (7.24)
W'W

If one or more of the four inequalities is violated, it is not possible to
have �= S/T. In that case, the maximum occurs on the boundary of the
constraint set. It could occur interior to the constraint set only if the
likelihood function had more than one local maximum, which it does not,
in fact, have. The constrained maximum can be found by imposing the
constraints one at a time and selecting the constraint that yields the highest
likelihood value, provided no other constraints are violated once one of the
constraints is imposed.

Now consider the maximization of the likelihood function subject to one
of the constraints 2_ or o�=0. If 2_ (7.16) becomes Yt=�Xto.-0, o�=0, o.-0,
without error and can bc substituted into (7.17) and (7.18):

Y,e
W t � '-� q- �12t.

Maximization of the likelihood function of this normal process leads to the
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following likelihood value and estimate of fi:

2_0:/�_ Y'Y L, cc[(y,y)(x,Mrx)(w, Mrw)]-T/2o�- x'Y'
where M r =I- Y(Y'Y)-�Y'. Similarly, given the other constraints,

o�=0 : ]�= x'Vx'x L: cc [ (x'x)(Y'M�Y)(w'M�w) ] - T/2
02�=0:/}__ w'V Lacr[(w,w)(Y,MwY)(x,M:x)]_T/2W�X '

The constraint ox:=0 implies the obviously inferior likelihood value
[(Y'Y)(x'x)(w'w)]-T/2, and that constraint need not be considered further.

If we neglect the exponent and multiply by (Y'Y)(x'x)(w'w), the three
likelihood values become, respectively, [(1-r�)(1 2 -�,-%)] [(1-r})(1-
r�w)l- �and [(1 2 2-r�;w)(1- Gw)] . The first of these three numbers is the
largest if r;2� is the smallest of the squared correlations, the second if r�
is the smallest, and the third if r� is the smallest. This establishes part (b)
of the theorem.

All that remains to be shown to prove part (a) is that if/�v and/�D have
the same sign, then the violation of inequality (7.24) implies that r� is the
smallest correlation; and if I <lt% then r�5 is the smallest correla-
tion; and if I/RI then r;,:,, is the smallest. For convenience, we
continue to assume rxy > 0. If inequality (7.24) is violated, then in terms of
correlations 0 < r� < ry�rw�. But usin� ry w < 1 and r� < 1, we obtain G <
ry_� and r� < r�. Similarly, I/�vI implies 0 < 9�/r� < %, or r� <
�r�, and rf�is the smallest; I'l<t'vl implies O<r�<9�/G � or�2 2 �2 2 ��<r/� �, and � �s the smallest.

This theorem may be used to evaluate a statement that is often made
about the use of instrumental variables estimators. It is often suggested
that w is a "good" instrument if it i.s hilly correlated with x. On the other
hand, if w and x are hilly correlated, the instrumental vahables estimate
may not � much different from the direct estimate, and it is then difficult
to see how the estimate could be an improvement over direct least squares.
�e result just proved does shed some li�t on this p�le. Noraaloe the
data so that the obsemed vectors all have length one, and let �e three
obse�ed co,elations be the numbers Gy, G�, rye. Since �e correlation
matrix is positive definite, it must be the case that

1 % %0<det r�y 1 r� =l+2%r�,,9�-r2- 2. yw
Lrw
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rxw -- ryw/rxy
i

Ellipsoid (7. 25)

rxw =ry w rwy

ryw

Fig. 7.5 Choice of estimates: the instrumental variables model.

which can be rewritten as

I 1 --rxyl[rxwl<l-- 2 (7.25)
Holding fixed rxy, inequality (7.25) implies Figure 7.5. By inspection of this
figure, a high value of r�w does not guarantee that �v is maximum
likelihood. In fact, an increase in r�w may shift the estimate from/�v to
/�D. That is to say, the maximum likelihood estimate may be direct least
squares even when r�w is high, if ry w is low. Note, however, that if r�w is
one, then the only feasible point is on the ray rx�= ryw/rxy, and/�v=/�D.
In that sense, the statement about r�w is valid. (Each ray out of the origin
corresponds to a different value for ]�m, increasing in the clockwise
direction.)

By the way, the maximum likelihood estimate is a peculiar discontinuous
function of the data if �e and 4 D are opposite in sign. A small change in
the data induces a shift from �D to j�IV, and thus a reversal of the sign of
the estimate. Such a property is intuitively nonsensical. May we surmise
that measures of uncertainty are in that case enormous, so that the
discontinuity is small when measured in units of uncertainty? Or is the:
mode of the marginal likelihood function the more appropriate point.
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7.5 Multiple Proxy Variables

A generalization of the preceding is the multiple proxy variable model
described by the equations

Y, = fiX, + 'yz, + u, (7.26)
xt = '�Xt + et (7.27)
Xt = w�zt + et. (7.28)

Equations (7.26) and (7.28) are unchanged from the discussion in Section
7.3. Equation (7.27) is as before, except that it describes the generation of
an m-dimensional vector of proxies rather than a single one. We take ut, et,
and e t to be independent, normal random variables with means zero and

2 respectively, where g is an m x m covariancevariances o�, g, and ox,
matrix.

The essential singularities of the joint likelihood function of the func-
tional form occur when o� or when the determinant of g is zero. Since I
have been unable to connect these points with the maximum likelihood
points of the structural form, I do not discuss them further here.

The structural form of the model makes use of (7.28) to integrate out the
incidental parameters. In effect, this assumes that ( Yt, x�) has a multivariate
normal distribution with mean and variance

E ( Y,, x',) = ( flwz t + 7z,,

I/(Yt'x;) = afiox2 2 , '&x � +g
As usual, the basic identification problem arises. The distribution of the
observables is unaffected by a scale change in (fi,&) offset by a scale
change in (w, �x). Note also that there are proportionality constraints on
this (rn + 1)-variate distribution, since both the covariance between �� and
x� (�&) and the vector of regression coefficients (o� �) are proportional
to 5.

Unconstrained maximum likelihood estimate of the parameters of this
process leads to the equations

BW + � = (Z'Z) - Iz'Y
0� t �, (Z/Z) -- IZ, x

flex:&_ Y'M:XT
fi2ox: 2 Y'M:Y+ '% - T

&�x:�' + g -- X'MzXT
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where Mz = I-z(z'z)-�z' and X is the T x m matrix of m proxy variables.For the sake of producing an analytical result, we assume that the
sample moments satisfy the proportionality constraints of the process

(z'z)-�z'X ccY'MzX-

THEOREM 7.3. If the sample moments satisfy the proportionality con-
straints, all "reverse regression" estimates of � are identical. (A reverse
regression estimate is computed by regressing one of the proxies on Y andz, and then transforming the estimated equation to write Y as a function of
z and the proxy.)

Proof.' A reverse regression estimate of � can be written
�iR = (z'z)- 'z'V - (z'z) -'z'xi/�, R

where/�i n is the reverse regression estimate of �:
/}i n = (Y'Mzxi)- 'Y'M�Y-

The proportionality constraint is
ZtXi Z�Xj

Y'M�xi Y'MzX�

which implies z'x�/� n =z'x�[i�. Using this .in the equation for �n produces
the desired equality �R = �js'. This is true, Oy the way, not only for any one
proxy but for any linear combination as well.

THEOREM 7.4 (MuLX�PLE PROXY V^gIABLES). If the sample moments
satisfy the proportiona[ity constraints, the values of � corresponding to themaximum of the likelihood function are bounded on one side by the
(unique) reverse regression estimate

�n ..= (z'z)-'z'Y - (z'z)-' z'xi/� n
where/�n =(y,M�xi)-�y'MzY� and on the other by

where R 2 is the multiple correlation coefficient and �D is the estimate
computed when Y is regressed on z and all the pro?cy variables

y,M:X(X'MzX)- :X'M:Y
R � :-- -- y,Mz Y

Nolice also that � D satisfies the equation
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Proof.' Select any value of fl and ,$� and solve the equations for the other
parameters

�= (z'z) -'z'V - (z'z) - 'z'x, �fl�
Y'Mzx 12

o,- T T �l
X'M�X

t 2 �
X'M:X X M:YoxY M:X

T �2 4n 2

__ X'M:X-X'MzY Y'M:X.'� TflY,M:Xl'
The constraint o� > 0 implies

Y'MzYfi< __
�1 Y'M:xt

The constraint ft positive definite implies 3

( Y'MzX' fi ) - ' <(y,M�X(X,M�X)- �X,Mzy)- '
that is

fi Y'M:X(X'M:X)-tX'M:Y =/�nR:�-�-> y,Mzx�
These two constraints on fi/�t determine the hypothesized constraints on �.

An interesting implication of Thteorem 7.4 is that extra proxies are not
enough to identify the coefficients, but the bounds for the coefficients are
reduced, depending on the multiple R 2 of Y on all the proxies. If the
proxies were independent of each .other, that is, if ft were diagonal, extra
proxies would be more helpful, however. 4

3ft=S-�oz�' is positive definite if for ,any vector �b, 0< �'S�-�'�o:z�'�, which M turn
requffes o 2 < m� �'S� / �' �' � = 1/ �'S- �&

4�s does not lend it�ff to a ve� tractable an�ysis and is not �scussed here. �e
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7.6 Errors in Many Variables

Another more general model has all k variables measured with error:
(7.29)Y,=[Yx, + u,

x,--X, + e, (7.30)
where variables are measured around their means, Xt is a k-dimensionalvector of incidental parameters, xt is a vector of measurements of )6, and et
is a vector of measurement errors distributed normally with mean vectorzero and diagonal covariance matrix D. The structural form of this modelmakes use of the assumption that Xt is normal with mean zero and
covariance �2.

Thus the vector (Yt, xt) has covariance matrix equal to

The maximum likelihood estimate can be found as before by setting �E
equal to the sample moments

S= I Y'Y Y'X 1.T-�X'Y X'X ]

where X is the T x k matrix of measurements of )6, t = 1,..., T. Given the
diagonal matrix D, we can solve for the other parameters as

� = �- 'X'Y _. (X'X - TD) -IX'y (7.31)T

� = X'__�_X -D
T

62= Y'Y -�'$,2� = Y'YT T. T 2

Any value of � corresponding to any nonnegative diagonal matrix D is,therefore, a maximum likelihood point provided that � is positive serm-
�2 is nonnegative.definite and o uAs far as I know, an exact description of the set of maximum likelihood

estimates is not known. It is possible to compute k-1 "reverse" regres-sions in which one of the explanatory variables is used as the dependentvariables. Each of these reverse regressions is feasible, given a suitablychosen D, as is the direct regression. It is natural to conjecture that the...... � ........ �,,11 �f these k reeressions. This is correct if all
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k regressions are in the same orthant, a result implicitly due to Frisch
(1934), proved by Reiersol (1945) �md Koopmans (1937), and discussed by
Malinvaud (1970, p. 43). When the estimates lie in different orthants, the
feasible region is apparently unbounded with sides generated by the k
regressions.

It is interesting, in closing, to contrast Equation (7.31) with the matrix-
weighted average that is the posterior mean of 18 given a normal prior with
mean zero and precision matrix D. For the prior-dependent problem the
least-squares estimate is shrunk toward the origin by adding to the X'X
matrix a positive diagonal matrix. For the errors-in-variables model the
least-squares estimate is blown away from the origin by subtracting from
the X'X matrix a positive diagonal matrix. I have sometimes chided my
colleagues who are enamored of rMge regression that the net effect of the
two forces may mean that least squares is just right!

7.7 Priors and Proxies

The interesting problems of the relationship between prior information and
proxy variables have yet to be disc:ussed. To give an example, when "bad"
estimates are implied by a data se, t, they are sometimes "explained" with
reference to the errors-in-variables model. "The coefficient is smaller than
it ought to be because of the errors-in-variable attenuation," or "the theory
would have worked better if we could have found more appropriate proxy
variables." Are these statements and statements like them appropriate?
Can it be that there is a form of prior information that allows us to discard
or discount especially unreasonable estimates but to ignore the errors-in-
variables issues if the coefficients are relatively consistent with the priors?
Are more proxies necessarily berter than less? What are the inferential
consequences of searching for a proxy until one is found that "works"?

Most of these questions refer to measures of dispersion of posterior
distribution. To get close to answers, we must generate approximate
measures of dispersion. The last time in this chapter that such measures
were discussed was in Section 7..2, in which we reported Lindley and
E1-Sayyad's (1968) analysis of the errors-in-variables model in which
diffuse priors were assumed for the regression parameter. Their analysis
could be generalized to the more complicated proxy problems, but that
work remains to be done. We report here a few simple results that
constitute a minor foray into an intriguing and important field of research.

With reference to the simple proxy variable model discussed in Section
7.3, the following proposition can be explored: % poor proxy is worse than
none." With a proper prior distribution this cannot be the case, just as it is
never better in an inference problem to leave a variable out of a regression,
unless there is some cost of observation, or in a more general framework,
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cost of constructing a prior. But it may be the case that the regressioncomputed with the proxy variable left out is a better approximation to thelocation of the posterior distribution than is the regression with the proxy
variable in the equation.In the material on interpretive searches we began with a prior located atthe origin and concluded that a variable may be omitted if its estimatedcoefficient was not far frorn zero. A proxy variable may be a candidate foromission (a) if its coefficient is small, (b) if its coefficient is far from thevalue we would have expected if we had perfect measurement, or (c) if thecoefficient on z is closer to the value we expected when the proxy isomitted. Although each has been used in practice and each has a certainappeal, none is an obviously valid procedure. Prior information is clearlythe foundation of these procedures, and we now turn to a consideration of
how priors affect our estimates.First we observe that prior information about either fl or � can be usedto normalize the vector (/5,8), but otherwise, because of the identification
problem, it has no effect ,on the modes of the posterior. It is not uncom-mon, however, to have prior information about both fl and & A prior for 8is likely to be located at one, of course, and it may be that the researcherhas some more-or-less ditstinct ideas about fl as well. Let us take theextreme case in which fi and $ are known exactly. This implies noconstraints on the maximum likelihood estimates if no inequalities are
violated. In that event, the appropriate estimate of � is

, ,, fl (7.3:!)? =: (z'z)-'z'V- (z z)- z x�,

which is the least-squares estimate of y with the constraint that the
coefficient on x is equal to the ratio/5/8. 5In the second best world, in which we can choose between regressionswith or without the x variable included, we need only determine which ofthe two resulting estimates is closer to (7.32). This is equivalent to selectingthe regression with x omitted if the least-squares coefficient on x is closerto zero than to/5/8. IncMentally, it is necessary only to know the sign of/5/8 to know that it is better to omit x if its coefficient has the wrong sign.We may now consider situations in which there is prior informationabout � (possibly zero). We begin with the presumption that if the
least-squares estimate of � is close to the value we expect, we mayconclude first that the coefficient on x is likely to be close to/5 and secondthat it is desirable to adi�ust the prior estimate of � in the direction of the

5Note that '� is an unbiased estimator of T.
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least-squares estimate. If, on the other hand, the proxy doesn't "work," it
produces a coefficient far from �te prior estimate. We would be led to
conclude that there is little information about/5 or about � generated by
the experiment.

In fact, it is not enough to have even exact prior information about �,
since the basic identification problem remains; if we multiply the vector
(/5,8) by some constant and make an offsetting change in (ox:,w), we do
not alter the distribution of the observables. 6 The fact that prior informa-
tion about � alone is of little value for estimating/5 is fairly obvious when
we consider that � may be close to the true value merely if w is small, that
is, if X and z are uncorrelated. It is necessary, but it is not sufficient.

If both 3' and 8 are known, there is no identification problem, and we
may solve for the maximum likelihood estimates as

(ZtZ)- lzt X

(z'z)-1z'(Y - �z)
/5=

= 8 (z"x)-1z'(Y - �z)

x'MzY2�
o x Tfi8

o.�_ Y'M�YT
o�2 _-- x'lVlzx:r

6An interesting observation is that these assumptions determine only a subset of the set of
all bivariate normal processes. Denoting the means and variances of ( Y� - �zt, xt) by

(m. m2) = �, (/%,.&,)

tl Ox + O;
from the fact that the variances are positive we may derive the constraints

t�12 DI 1 rn 2

It can be shown that ff the direct and reverse regressions do not bracket �, then the data favor
a bivariate normal process excluded from I�s class.
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provided the variances are I�ositive. Note that fi is an instrumental vari-ables estimator, with z used as an instrument for x in the regression of
y-yz on x.An appealing proposition is that if x is a "good" measurement of X, thenwhen we regress Y on x and z, the coefficient on z should be close to the
known value of �. If it is not, then it seems unlikely that we could obtain
much information about fl. Intuition thus suggests that the uncertainty in
fl may be related to the difference between � and 7- This, like a long list ofother interesting questions, will remain unanswered until some appropriate
approximations of the posterior dispersion are available.

8
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Theoretical models are often vague or have nothing at
all to say about the choice of particular observations.
Even less frequently do they suggest the circumstances
in which two or more observations can be regarded as
independent pieces of relevant information. It is thus
necessary for the empirical worker both to select a
subset of potential observations and to determine the
extent to which observations are correlated. To put it
another way, the researcher must identify observations
or transformations of observations that can be consid-
ered to be independent replications of an unchanging
"experiment." In practice, this may mean estimating
coefficients with different subsets or different transfor-
mations of the data set and selecting the result that
appears best according to some criteria. We call this a
data-selection search.

The fact that this process is data dependent obvi-
ously has consequences for the interpretation of the
final result of a data-selection search. It seems clear
that when the data evidence is partly spent to pick a
data set, the regression equation that is finally selected
to convey the data evidence at least overstates the
precision of the evidence and likely distorts it as well.
The function of this chapter is thus to describe the
inferences that are appropriate when some of the data
are discarded or when the data are transformed by a
data-dependent function.

In the case of interpretive searches, a constrained
regression can at best approximate the location of a
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�osterior distribution, which i:s, in fact, a mixture of many constrained
egressions. Similarly, a Bayesian will necessarily discard none of the
�bservations but will instead place relatively low weight on some. The
,,xtent to which one can approximate his posterior distribution by dis-
:arding altogether some observations and assigning equal weight to
he remaining ones is not extensively discussed. Nor is the interplay be-
;ween prior information and ciata selection extensively discussed. Instead,
:his chapter reports the likelihood functions implied by statistical models
that generate outliers or interdependencies.

Although a data-selection search involves features of interpretive
searches, the two may be distinguished in the following way. Let a linear
model be written as Yt = at 4'[�ttXt where x t is a vector of observable
�xplanatory variables, Yt is the observable dependent variable, and (at,l�t)
is a vector of unobservable parameters applying to the tth observation.
Assume that the unobservables (at,lgt), t--1,..., T have a common mean
(a,18). It is the business of a data-selection search to pick the multivariate
distribution of the unobservables around their common mean (a,18). An
interpretive search, on the other hand, is designed to make use of prior
information about the means (a,18).

The usual least-squares logic results from the assumptions that 18 t does
not vary from observation to observation and that ott is the sum of a + e t,
an independent normal random variable with constant variance. A first
step toward relaxing this assuraption is to allow for dependence among the
et random variables. This is diiscussed in Section 8.1 under the heading of
"nonspherical disturbances." Alternatively, the assumption of normality
may be relaxed. The consequences of fat-tailed nonnormal distributions
are described in Section 8.2. The next two sections explore models that let
the slope parameters 18� vary from observation to observation, but maintain
the assumption of normality.

No attempt is made to relax all assumptions simultaneously, and this
chapter does not suggest a mechanical approach to the data-selection
problem. In that regard, it is like the chapter on interpretive searches,
which takes the data distribution as given and analyzes the mapping of
prior distributions into posterior distributions. The point is made in that
chapter that if the prior could be uniquely determined, there would be a
unique interpretation of the data, but ambiguity in the choice of prior
implies ambiguity in the posterior distribution. In the case of data-selection
searches, if the data distribution could be taken as given, the data would
imply a unique likelihood function. But just as it is impossible unambigu-
ously to select a prior, so too is it impossible unambiguously to select a
data distribution. Not only must the interpretation of the data evidence
thus remain elusive, but also the data evidence itself must be defined
imvreciselv. A researcher cart only report features of the mapping of prior
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8.1 Nonspherical Disturbances

The conditional distribution of the error vector has heretofore been
assumed to be multivariate normal with mean vector zero and covariance
matrix o2I. The further assumption of a gamma distribution for 0 -2
implies that the error vector is distributed (marginally) multivariate Stu-
dent with a covariance matrix also proportional to the identity matrix. We
now wish to consider the consequences of using a covariance matrix that is
not proportional to the identity matrix. We refer to these errors as
nonspherical disturbances, thereby implying that the isodensities of the
random errors are not spheres, as they are when the assumptions above
apply.

Some consideration of nonspherical errors seems absolutely essential
with nonexperimental data. Careful elicitation of one's personal opinions
about the error process is quite unlikely to lead to zero covariances
between the errors, and inferences from observable data may be erroneous
if there is no adjustment made for departures from sphericity. To give an
example, a time-series data set may be enlarged by a factor of 12 merely by
using monthly data instead of annual data. But because of the dependence
in the monthly residuals, the number 12 greatly overstates the real gain in
information. This has been accurately called "counting your wealth in
small change."

The nonspherical regression process may be written as

Y--X�O+u (8.1)
where Y is T x 1, X is T x k, �O is k x 1 and u is a T x 1 normal error vector
with mean vector zero and covariance matrix 0252 and where � is a known
matrix. The likelihood function may then be written as

,f(Y[/�, 0 2, 52) cc 102521- �exp
0 2

The exponent in this function may be decomposed as
(y _ Xl 8 ),52- l(y _ X� ) = (Y - Xb)'52- '(Y - Xb) + ( 0 - b)'X'52- 'X( 0 - b)

where b is a solution to

X'52 - lXb = X'52 - Iy.

When b is unique, that is, when X'52-�X is invertible, b is called the
generalized least-squares estimate of /3, since it is the value of 18 that
minimizes (Y - X0)'52- l(y -- Xl � ).

By an inspection of these formulas, the consequences of 52-�I are first,
to alter the location of the likelihood ellipsoid from (X�X)-�X'y to
(X'52-�X)-�X'52-�Y, second, to alter the shape of the ellipsoids (X'52-�X
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the error sum of squares is computed differently) -� We know from theiiscussion of sensitivity analysis in Chapter 5 that each of these may have� significant effect on the posterior distribution. For example, althougheast squares and generalized least squares may be exactly the same,:lifferences in the precision matrices X'�-�X and X'X may mean that the
two posterior distributions, corresponding to these two error processes, are
quite different.A more common situation arises when :E is not known with certainty. Itis then necessary to select a personal prior distribution for :E, which maybe done by first writing Y as; a deterministic function of some vector ofparameters 0, and then by assigning to 0 some hopefully convenient prior.As far as I know, there is no convenient way to analyze such models. The
posterior distribution of 18 may be written as

f( fl{y,X)cr fof( flly,x,O )f(OW, X)d 0 (8.2)
where f(IBIY, X, 0) is a tractable distribution of 18, given some covariancematrix :E(0), and where f(01Y, X) is proportional to the product of a(tractable) marginal likelihood function f(YI 0, X) and a prior for 0. Unfor-tunately, numerical methods are required to evaluate the integral (8.2)The most commonly analyzed form of nonspherical disturbances is
first-order autocorrelation witth

T-I

1 p p2 ... p
p 1 p . . . pT-2
2 1 ... pT-3 (8.3):E=o: P P

pT-� pT-2 pT-3 � �� 1

and

:E-i = o-2(1--p2) -1

1 -p 0 -.. 0 0
-'P l+p2 -p --. 0 0

0 -p 1 +p2 ��� 0 0

0 0 0 ''' I+P 2
0 0 0 .... P 1

.... -, �a �.:-�;A o ,�.rticular likelihood value.
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The marginal likelihood f(ylo ) can be computed without difficulty, since
can be diagonalized by the transformation Y- � = C'Co- 2 where

(1-p:)� 0 0 -.. 0 0
-p 1 0 --- 0 0
0 -p 1 --- 0 0

0 0 0 --- 1 0
0 0 0 .... p 1

Thus the vector Y*=CY is distributed normally with mean CXI8 and
variance C:EC'= [C'- l�E- tC- t] - t = o:[C '- tC'CC- �] = o21. Then, for exam-
ple, if the parameters (/],o :) are assigned a conjugate prior, the marginal
distribution of Y*---CY is given by Equation (4.13) in Chapter 4, since all
the assumptions leading to that equation are satisfied.

If, in particular, we take the diffuse prior assumption with vt and N* in
that equation set to zero, we obtain the marginal density of Y* as

f(Y*lp) cc IX'C'CX I- I/2(ESS (p))- T/2
where

�SS (.)= [ CV- CXh(.) ]'[ CV- CX�(.) ].
Of course, Y* is not observed, and it is necessary to transform this den-
sity into a density of Y=C-�Y *, a transformation with Jacobian [C[=(1 - p2)(l- T)/2.

f (YIP) cr (1 - p2)(l - n/lx,c,cx I _ '/2(ESS (p))-
Under the same assumptions, 2 lg given p has a Student distribution with

parameters

� ( i a IP) = b(,) = (X'C'CX) -'X'C'CY
H**(p) -- X'C'CX/s:

I'=T

vs 2 = ESS (p).
As a result, the marginal posterior distribution of 1g is a mixture o[ Student
distributions. 3

2This follows directly from the material in Chapter 4. Incidentally, there are certain
technical differences between this treatment of autocorrelation and Zellner's (1971, pp.86-98), having �o do with the distribution of the first observation and also the choice ofdiffuse prior.

3See Zellner (1971, pp. 86-98) for an explicit expression for the result of an essentiallysimilar integral.
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As an interesting alternative way of looking at these distributions,

)bserve that :g-� can be decomposed as
o�(1 -d)�-'=(1- 2.+ d)�

l -1 0 '" 0 0
-1 2 -l -" 0 0

0 -1 2 -" 0 0
+p

0 0 0 '" 2 -1
0 0 0 .... 1 1

1 0 0 '" 0 0
0 0 0 "' 0 0
0 0 0 "' 0 0

0 0 0 0 0
0 0 0 '-' 0 1

--_(1 - + + + -
In the event that prior information is relatively diffuse, N* =0, the (gener-
alized least-squares) posterior mean of 18 is
E ( 18{Y, p) = (0,X'X + 02X',tO{ + 03X'BX)- ' (0,X'Y + 02X'AY + 03X'BY),

where
01=(1-29+92 )
02=p
03 = p(1 - p).

Finally, since B is almost a zero matrix, we may write the conditional
posterior mean approximately as

E ( 13IY, p) -' (0,X'X + 02X'AX) - ' (0,X'Xb + 02X 'AXba)
where b is the usual least-squares estimate and b a is the "first difference"
estimate, b�--(X'AX) - �X'AY computed by least squares with data in first
difference form

Y,- Y,-,= Z flj(xj,-xj,_,).
J

In words, the generalized least-squares estimate of �{ is approximately amatrix-weighted average of ordinary least squares and least squares withdata in first differences. It is worthwhile recalling here the discussion of..... �: : .... t;o,,l�r the fact that the
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The first-order autocorrelation matrix (8.3) is one very special kind of
interdependence. For other models the reader is referred to Granger and
Newbold (1976) or to Box and Jenkins (1970).

8.2 Outlien and Nonnormal Errors

Researchers who share with computers the task of examining data points
almost always want to discard extreme observations. In some cases the
resultant apparent inferences are greatly affected by the choice of observa-
tions. Were the assumptions implicit in the least-squares estimate actually
accepted, there would be no logic to such a procedure. But in the rejection
of outliers, a researcher is implicitly rejecting the assumption of normality,
in particular, he is opting for a distribution with fatter tails than a normal
distribution. Just as it is undesirable to choose a prior or a model after
having seen the data, it is also undesirable to choose an implicit data
density in this way. First of all, the inferences that are thus gathered are
not fully legitimate. Second, the rejection of outliers tends to ignore the
fact that it may be quite important to know the probability laws according
to which the outliers are generated. In this section we consider formal
models that involve "outlier rejection." It must be said at the outset that
these models are relatively intractable and that cheaper, "data analytic"
methods of discarding outliers may be preferred. 4 In fact, the discussion in
this section may be nothing more than an apology for reasonable proce-
dures.

Consider first the following model, due to Box and Tiao (1968). Let the
values Y�, Y2,..., Yr be a random sample from a normal population with
mean tt and variance 02. Assume that Z t = Yt is usually observed but that
occasionally an outlier occurs and instead Zt. = Yc + ec is observed, where
e r is distributed normally with mean 0 and variance 02+ ck 2. If o 2 and q�2 as
well as the occurrence of the outliers are known, then the mode of the
likelihood function of tt is located at the weighted mean of the observa-
tions with weight 0 -2 on the regular observations and weigl�_t (o2+q�2) -�
on the outliers. If I is the set of n regular observations and I is the set of
T-n outtiers, the likelihood function is

4By the term "data analytic" methods I refer to procedures such as discarding observations
more than three standard deviations from the mean. These orocedures do not refer exolicitlv
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If the set [ of outliers were known in advance, the analysis is relatively

straightforward. The more interesting case with I uncertain involves greatcomplications, since there are 2 T different subsets I. As a result, there are2 T different "models," each corresponding to a different allocation ofoutliers, and the posterior distribution is a mixture, Y�iw�.(P), of 2T
distributions.

Note that the implicit data density in this example is a mixture ol
normals

f(Z, I/�, o2, �2) = or/,, (Ztl/�,02) +(1 -or)f�v (Ztl/�, 02 + e?2)
where 1-0r is the probability of an outlier and f�v(Z{l�,O 2) indicates a
normal density with mean #: and variance 02. Another fat-tailed distribu-
tion that is a continuous mixture of normals is the Student function

fs (ZI I& s2'v)--= f fN (zl 1�,o2)f�(o-21s2, v) d�-2 (8.4)
An analysis of Student sampling has been done by Blattberg and Gonedes
(1975).Another class of nonnormal distributions has been analyzed extensively
by Box and Tiao (1973, Chapter 3). They explore the class of exponential
power distributions

f(yl�,%/5)=kq�-lex p _� .�_ ,-�c<Y<�c' (8.5)
where k is a normalizing constant depending on /5 and the parameters
satisfy q�> O, - o� < � < o�, - l </5 < 1, with /5 = 0 corresponding to the
normal distribution.

8.3 Pooling Disparate Evidence

The inferential models so far discussed have been constructed to answer'
questions of the form: given that a coin lands heads up, what conclusions;may be drawn about the probability of getting a head if the same coin is;flipped again? We now turn to questions of the form: given that coin Alands heads up, what conclusions may be drawn about the probability of
getting a head if coin B is flipped? No objective distinction should bemade between these two inferential problems. Any inductive inference
depends on the subjective link between observed and unobserved events;.Although there may be ge.neral agreement that two flips of the same coinare more closely linked than two flips of two different coins, there can be
no incontrovertible argument to that effect. Thus in this section we
consider the kind of joint priors for p� and pj that would induce us to use,ho ,,h�o�vod Behavior of coin A to draw inferences about p�, the probabit-
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consider nontrivial joint priors for (Pt,P2 .... ) where p� is the probability of
getting a head on the ith flip of some particular coin.

The regression model is written as

_ , i= 1 ..... N (8.6)Y. - �,x. 4- �. t = 1,..., T
where /3. is a (kx 1) vector of coefficients and x ais a (kx 1) vector of
observable explanatory variables possibly including a constant. As an
example of such a model, Y. may be purchases of oranges by individual i
in time period t, and %, may be 'the income of individual i in period t. The
errors e,t and the parameters 18. are doubly subscripted to reflect the fact
that the demand for oranges varies across individuals and across time (as
social tastes for oranges change or as the individual grows older, for
example).

The question of interest is whether observation of (Yj�, x�.) yields infor-
mation about (e.,fi.) for t--Pt. ,�my solution to this problem depends on
the prior distribution for the (k + 1)NT unobservables. One extreme would
have the vector (Eit,I�itt) independent of (ej,,[3]O for all (i, t)%(j,r), and it is
obvious, in that case, that there is no information in the observation of the
jth process, Y�,, about the unobservables of the ith process (e�t,18�). Other
assumptions imply pooling of evidence in one way or another. Let us for
now postpone the issues raised by the variability of parameters over time
and impose the conditions

fii, =/1� for all t.
This implies a set of N equations

r,, -- 18,'x,t + eit, i -- 1,..., N (8.7)
each of which describes the generation of T observations. Vectors of
observations and errors of the it]h process are denoted by

and the whole set of observations by

Y�] X�0 ...Y2 0 X2 � � �
Y= � , X=

Y�v 0 0 --. 00 g2



268 DATA-SELECTION SEARCHES

This allows us to write the set: of regression equations compactly as
Y=X0+. (8.8)

The generalized least-squares estimate of � is thus
b = (X'�-�X)- �X'�- ty

where 52 is the NT x NT variance matrix of e. Furthermore, assuming a
normal prior for � with mean b* and variance (H*) -t, the posterior
moments of � are

E(�iy, x)=(H,+X,�E-,X)-'(H*b*+X'�E-'Xb ) (8.9)
v ( p Iv, x) = (H* + X'::- 'X) - '. (8.10)

Several special cases of these formulas are now discussed.
MULTIVARIATE REGRESSIONS: UNCORRELATED COEFFICIENTS

The first model of interest allows the errors e,, to be correlated across
equations but constrains to zero the prior covariance between coefficients
of different equations. The initial reaction that this is unlikely to lead to
pooling of evidence has led Zellner (1971) to call the multivariate regres-
sion model a system of "seemingly unrelated regressions."

Using the notation of equation (8.8) let the prior moments of � be

E(/{) =b*, 1/(11�) =V* =H *-t=

H� -� 0 -.- 0
0 H� '-t -- � 0

(8.11)

thereby indicating that there is no a priori correlation between the
coefficients in the various processes. The processes are related in the sense
that the residual terms are correlated:

E (e;,,sy,)= { �ii if t = �- .0 otherwise

Thus, letting fl be the N x N matrix of contemporaneous covariances
the covariance matrix of e becomes

I;= V(r)=��l r

f o�il T Oi21T' �. OINIT ]
(8.12)
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where I T denotes a T x T identity and where � is the Kronecker product.
With (8.11) and (8.12), the posterior moments (8.9) and (8.10) become

E(O]Y,X, fI)=(H*+X'[��IT]-IX)-'(H*b*+X'[IT�fI]-'Y) (8.13)
V( 0 tY, X, f�) = (H* + X'[f� � IT] -iX) -' (8.14)

with s

[R�lr]-t=R-��I r .
The further assumption that the explanatory variables are the same in

each equation X� =X i involves no loss in generality, since the list of
explanatory variables may be implicitly varied by using prior distributions
that concentrate the probability of some parameters in the neighborhood
of the origin. In Kronecker notation, let X= I N �X�, and the formula for
the posterior mean becomes

E (/I IY, X, f�): (H* + f�-t �X;X,)-'(H'b* + (f�-' �Xi)Y )
since

and
(I N �X�)(f�- '� Ir)(l � �)X,) = (n - ' �)X�)(l� �X;) = n - '� X�X,

Two extreme cases imply no pooling of information across equations. If
prior information is relatively diffuse, H* =0, the posterior location be-
comes

E ( p IY, X, �2) -- (�2- ' �XjX,)-' (�2-' �x;)�
: [a�(x;x,)-' ] [ a-' �x: Iv
--[IN�(XiX,)

(x',x,)-'x',�,

= , (8.15)

which makes use of the assumptions X�=X i for all i.j. In words, if prior
information is relatively diffuse about the parameters lB, the posterior

5See Appendix I for the algebra of Kronecker products. Two properties are used here
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location can be computed by performing least squares, equation by equa-
tion. Similarly, if f� is a diagonal matrix, the formulas can be written as

E ( 18,1Y, X, f�) = (H*i + oi? IX',Xi) - '(H�b�' + off 'X;Y,), i = 1.... , N,
and the N equations may be analyzed separately.Thus when the coefficients in the various equations are a priori indepen-
dent with covariance matrix (8.11), the desire to pool evidence springsfrom the coincidence of correlated errors and prior information about the
coefficients. Since correlation of the error terms may in many circum-stances be significant, the critical bottleneck to pooling across equations isthe formation of legitimate prior information about the coefficients. It mayseem strange that prior information about the coefficients in one equationinduces this kind of pooling. More peculiar still is the fact that if/I t is the
parameter of interest, until Yi is observed, there is no informational valuein observations of the other' processes Y�, since the prior and posteriordistributions of/{i coincide, f(/li)=f([3ilYj) f�rJ4= i'6 Thus the only effect
of Y� is to alter the interpretation of Yi. This may all become clear if it ispointed out that the conditional mean of the residual in the ith equationdepends on the true residual in thejth equation, E(e, = �0�f (Yv
-Xj�). To adjust for this nonzero mean it would be appropriate to regressyi_oO. ojft(yj-xj[�j) on Xi. 7 When the prior for 18j is diffuse, the bestestimate of Yi- X�18i is just the vector of residuals in thejth equation. Thisvector is by construction orthogonal to X� and hence to X�. This variablecan, therefore, have no effect on the estimate of 181when it is subtracted
from Y�.The point I have been leading up to may now be clear. The poolingphenomenon associated with multivariate regression is very subtly basedon prior information. "Seemingly unrelated" regression estimates shouldbe used with the same kind of care that we would apply to problems that
call for more overt forms of prior information. Mechanical, thoughtless use
of such routines is to be discouraged.
MULTIVARIATE REGRESSION: CORRELATED COEFFICIENTS
A more direct reason for pooling evidence across equations is a priori
correlation of the coefficients. A time series of observations on many
individuals is an example; the individuals are unlikely to be identical, but
we do expect them to be "similar." For each individual we would specify a

6The reader is asked to verify this. Gary Chamberlain has pointed out to me a similar less
confusing situation. Suppose in the usual normal regression model Y depends on two,explanatory variables Y--x�/� +x2 r2 +u- The conditional distribution f(/�lx2) is indepen-.
dent of x2, yet f(/�[Y, x2) depends on x�.7The resultant estimate of 18� is bi-ooojf�(bj-iB)) where bi is the usual least-squares
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different regression equation, bu�I we would have a prior distribution that
summarizes the feeling that the coefficients are likely to be similar.

As an illustration of the intuitively compelling reasons for some kind of
pooling of observations across processes, suppose we estimated for eight
different individuals a linear consumption function with consumption
expenditures as the dependent 'variable and income as the explanatory
variable. The following table of least-squares results summarizes the data
information about the slope coefficient (the marginal propensity to con-
sume) in these equations:

individual 1 2 3 4 5 6 7 8
least-squares estimate .81 .80 .82 .86 .85 .84 .86 .83
standard error 2.1 2.4 1.8 1.2 3.6 4.0 5.1 1.1

Note that the standard errors are very large, and a 95% posterior interval
for individual one's coefficient, assuming a relatively diffuse prior, would
be approximately .81 _+ 4.2. But notice also that the marginal propensities
to consume are very close for all individuals. This fact intuitively makes us
more confident about the number .81 than is suggested by this interval.
Furthermore, we may want to adjust the number .81 upward to make it
more representative of the class of estimates.

It goes without saying that it is not always desirable to pool evidence in
this way. If equation 1 were a consumption function, equation 2 a
production function, equation 3 an investment function, and so forth, the
peculiar coincidence of coefficients would be regarded as a statistical
artifact, and no pooling would be desirable. But for "similar" processes,
pooling is intuitively sensible �md, in fact, is necessary to avoid the
following "clairvoyant" paradox: In a population of individuals that
contains no clairvoyants, you will come to believe with essential certainty
that someone is a clairvoyant.

As an example of the clairvoyant problem, suppose N different coins are
flipped T times each, in an effort to find a coin that lands heads up with
high probability. Let p� be the probability of a head if coin i is flipped, and
take as observations T flips of each of N different coins. Suppose that a
prior distribution for these probabilities is selected that would not imply
pooling of the evidence across different coins. In particular, let Pi, i=
l,...,N be a set of N independent identically distributed random variables.
If the number of coins is large enough, there will almost certainly be at
least one coin that yielded all heads, even if the probability of a head is
one-half for all coins. If, furthermore, T is large enough, the evidence of T
heads in T flips will lead to tJhe conclusion that this coin will almost
certainly yield a head again. Thus you will conclude that there is a coin
that usually lands heads up. This is a perfectly proper Bayesian procedure,
and fault cannot be found with it on logical grounds. If you do not like its
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mplications, it is only because you do not like the prior distribution. The
�rior implicitly says that the probabilities Pi are drawn independently fromLn urn that does contain some values ofp close to one. Given enough such
.elections, you should indeed obtain a �i close to one. An alternative prior
tistribution might have the varmnce of this urn be uncertain. The probabil-
ties Pi would then be a priori dependent, f(Pl ..... P�v)=fo [Htf(pilO)]dO'vhere 0 is a variance parameter. This prior would imply pooling of the
,�vidence across different coins and would not necessarily lead you to
:onclude that there is a biased (clairvoyant) coin.

Three "everyday" examples may make the point most forcefully.
Example 1. Several days before a United States presidential electiontelevision newsmen find a town that has always voted for the winner of the
past elections. A preference poll of the town's inhabitants is then used to
predict the outcome of the election.

Example 2. One thousand individuals are sent a letter describing a
revolutionary new investment advisory service. Half are told that stock ,4
will rise in value, half are told that it will fall in value. If stock ,4 rises in
value those 500 who were so informed are sent another letter. Half are told
that stock B will rise; half are: told it will fall. By this process you will end
up with approximately ten individuals who have been given seven accurate
stock tips in a row. It is then time to begin charging for the investment
advice.

Example 3. At the end of the first month of the baseball season, there are
always some hitters with batting percentages above .400. But at the end of
the season, it is very rare to have even one hitter with an average above
.400. (For an analysis of batting averages, see Efron and Morris, 1975.)

Returning now to the regression problem, the two significant features of
the pooling phenomenon above--shrinking estimates toward a common
mean and reducing standard errors--can be effected by selecting a prior
covariance matrix (H*)-� that does not have the block diagonal form. A
convenient way to construct such a matrix is to assume that the vectors
are an exchangeable normal process, that is, to assume that your opinions
about the vectors are normal and unaffected by their ordering. In that
event you will act as if the coefficients were selected randomly from a fixed
normal urn: 8

SThe notion of exchangeability is due to deFinetti (1937) and is skillfully exploited by
Lindley and Smith (1972), from which this section is derived.
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with u i distributed normally with mean vector zero and covariance matrix
V(ul)=V. A normal prior for the "hyperparameter" � with mean � and
variance V(�), implies that igi is the sum of two normal vectors and is
itself normal with moments

E

..- v+(fi)
= +

�e variance matrix may be inverted to obtain the precision matrix. 9

,*= V-'(�)= [I�V]-t-[I�V]-'[I�I�]

[(I�IO'(I�V)-�(I�10+ V-�(�)]-t
1[ �I�] [�V] -'

Finallyre under the further natural assumption that information about the
mean � is relatively weak, �-�(�) may be set to a zero matrix to obtain
the (singular) precision matrix:

�-� (�)= [�W�]- [ �V-�] [� �V-�]-�[ �V-�]
=[I�V-�]-[I�N-�I�][I�V -�]
=I�V -�-I�N-�I�V -�

9Using the formula (A + BDB')- � = A- � - A- I B01'A-- �B + D- �) - �B'A- I.
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Note that this precision matrix times the prior location is zero, indepen-
dent of the choice of l�

= (l�v -- l�i -'I;I�)�V-' � = I�0�V-' �= 0�
where 0� is a zero vector of length kN.

�e posterior moments may now be �tten as
b**= E (� IY, X, U) = [ (In- InN-'I�)�V-'

+ X,0a-, �ir)X ]-' [X,(U-' �Ir)X]b (8.16)
V(0iy, x,u)=[(i�_i�N-,i;)�V-' +X'(U-'�Ir)X]-' (8.17)

where b is a solution to the nodal equations

These formulas can be .�eatly simplified in the event that fl is a
diagonal mat�.It is then convenient to write the posterior distribution of � and � as the
product of the conditional distribution of � given � times a mar�nal on �.
Conditional on �, � is independent of �y, i �j, with moments

I --1- ,-

%ese are the usual formulas if the prior were normal with moments � and
V. To compute the distribution of � given Y it is necessa� to write the
distribution of Y given � as

y� = Xi� i + e� = Xi�+ Xiui + ei,
which is the usual regression process with mean Xi� and variance Xi� +
%It. With � a priori diffuse and �ven all the vectors Y�, we have
strai�tfo�ardly

which is the generMized least-squares estimate of � and
, t -Ix -1
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These last two formulas can be further simplified by observing that

X�(X,VX�+%Ir)-' -'X;- -' ' - XiX,+V-')-'-'= Oii Oi i XiXi(oii I , Xioi 7
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--I , _ -I](x;x,)-' -'(o. x,x,+v ')= Oil -- Oii

(o:'X;X,+V-,)-' ,Xi

o. 'v-'(o,:-'x;x, +v-')-' '
Thus we may write

E ( [�[Y,�,X) = [ ,�.( o�7'X�X,+ V- ') - 'X�X�o,7' I - '
x[�i(oi7'X,Xi+V-')-'X'iXibioiT']

where bi = (X�X�) - �X�Y i.

(8.21)

The pooling of information across processes with this kind of correlation
structure and with the processes otherwise independent (fl diagonal) is
thus summarized by two equations. Equation (8.18) describes the pos-
terior location of Oi as a compromise between the least-squares estimate b i
and the grand mean i�, which is itself a matrix-weighted average (8.21) of
each of the least-squares points.

ERROR-COMPONENTS MODEL

What is known as the error-components model, introduced into the econo-
metric literature by Balestra and Nerlove (1966), is a special case of the
multivariate model discussed in the previous subsection. The model
assumes that the slope vectors in the various processes are identical and
also constrains the contemporaneous precision matrix �-� to be propor-
tional to a special matrix. The model is written as

k-I

Yi, = � Xo'tg'+ fiO+�ti+'Yt+eit (8.22)
j=l

to indicate that there are k-1 slope parameters (/�,j-1 ..... k-1) com-
mon to every process and that the process level or constant includes four
additive variables: a constant/�0; a component ai, common to all observa-
tions of the ith process; a component 7. common to all observations in the
tth period; and an independent normal error �., assumed to have mean
zero and variance o[. Furthermore, O�i and 7t are assumed to be indepen-
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Note that this precision matrix times the prior location is zero, indepen-
dent of the choice of �

= (1� -- l�i -'I;I�)�V-' � = I�0�V-' �= 0�
where 0� is a zero vector of length kN.

�e posterior moments may now be �tten as
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These formulas can be .�eatly simplified in the event that � is a
diagonal mat�.It is then convenient to write the postefor distribution of � and ff as the
product of the conditional dist6bution of � given � times a mar�nal on �.
Conditional on �, � is independent of �, i �j, with moments

8.18>
I --1- ,-+o,, x,x, .

�ese are the usual formulas if the prior were normal with moments � and
V. To compute the distribution of � given Y it is necessa� to write the
distribution of Y given fi as

Y; = Xi�i + �; = Xi�+ X;ui +
which is the usual regression process with mean Xi� and vafance Xi� +
%It. With fi a priori diffuse and �ven all the vectors Y�, we have
strai�ffo�ardly

which is the gener�ized least-squares estimate of � and
, � -Ix -1
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These last two formulas can be further simplified by observing that

X;(XiVX:+o,ilr)-' -'X;- --' t -- XiXi �_V- ,)- ,- t ,= Oii Oi i XiXi(oii I , Xioi 7

275

--I , _ -I]-'x;x, (x;x,)-' -'(o,, xix,+v ')= Oil -- Oii

�' Oi-- IX;X/[ oij- 'I k �- (X:Xi)- 'V-' - oij-II k ]
(o:'X;X,+V-,)-' ,Xi

o,, 'v-'(o,? 'xx, +v-9-' '
Thus we may write

E ( [�IY,�,X) = [ ,.�.( oi7 'X�X,+ V- ') - 'X�Xio,7' I - '

where bi = �Xi)- IX�Y/.

(8.20

The pooling of information across processes with this kind of correlation
structure and with the processes otherwise independent (� diagonal) is
thus summarized by two equations. Equation (8.18) describes the pos-
terior location of � as a compromise between the least-squares estimate b i
and the grand mean �, which is itself a matrix-weighted average (8.21) of
each of the least-squares points.

ERROR-COMPONENTS MODEL

What is known as the error-components model, introduced into the econo-
metric literature by Balestra and Nerlove (1966), is a special case of the
multivariate model discussed in the previous subsection. The model
assumes that the slope vectors in the various processes are identical and
also constrains the contemporaneous precision matrix �-� to be propor-
tional to a special matrix. The model is written as

k-I

Yi, = '� Xo'tg' + J90 + �ti +'Yt + l�it (8.22)
j=l

to indicate that there are k-1 slope parameters (/�,j-1 ..... k-1) com-
mon to every process and that the process level or constant includes four
additive variables: a constant/�0; a component ai, common to all observa-
tions of the ith process; a component �t, common to all observations in the
tth period; and an independent normal error �t, assumed to have mean
zero and variance o[. Furthermore, 0t i and �t are assumed to be indepen-
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8.4 Time-Varying Parameters

The usual analysis of a regression process implicitly or explicitly rests on
the assumption that the parameters that govern the generation of the data
are "more-or-less" the same for all data points. Formal analysis requires
the much stricter assumption of perfect constancy, although in practice
this, like all other assumptions, is thought to hold in some approximate
sense. The parameters are thought to be sufficiently constant to allow a
fruitful analysis based on the constancy assumption. If the parameters do
vary, then estimators describe "some kind of weighted" average of the
parameter in question. The. vagueness in this informal relaxation of theconstancy assumption clearly leaves much to be desired, particularly in
poorly specified models, in which "parameters" are functions of thetime-varying correlations between the included and excluded variables.An interesting example ot� conflicting behavior occurs when a data set is
arbitrarily selected. Data sets are often truncated because of the possibilityof structural shifts, yet the resulting data subset is then analyzed as if
structural changes were impossible. For example, pre-1953 data may be
excluded from the analysis on the basis of structural changes. Paradoxi-
cally, the same researcher who discards pre-1953 data on the basis ofstructural change proceeds to analyze the remaining data with simple
regression methods. It is, of course, most unlikely that the economic worldwould undergo an important and fundamental change in 1953 and there-
after remain relatively stagnant. In fact, when we decide to ignore pre-1953
data we are likely to feel that the 1954 data point is only marginally
relevant as well.

The heteroscedastic model with declining variances is often suggested in
such circumstances, since it can be used to discount the importance of the
earlier data points. Although this discounting is intellectually appealing, it
is based on an unacceptable assumption about the behavior of the error
term; specifically, data points are weighted by the precision of the error
term which is assumed to be small for the older observations. However,
one's desire to discount the older observations is not related to the
precision of the process. Rather, as one gathers older and older data, hebegins to question the appropriateness of the constancy assumption. He is
likely to be interested in the most recent structure, and the more distant
the data point, the less related the structure, and the more meaningless the
information obtained. Although the heteroscedastic discount is appealing,
there is no assurance thai. it accurately reflects the decay in the informa-
tional value associated willh the changing structure, since it is based on the
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decay in informational value associated with a decreasing process preci-sion. � �

From a Bayesian point of view, this problem is straightforward. Every
data point may be assumed to be generated by a unique regression
process; one observation is made from each process, and the pooling of
evidence across processes as described in Section 8.3 applies. Of course,
the prior distribution reflects the fact that the regression parameters are
thought to be roughly constant over time. This statistical model is the
natural extreme of the Bayesian view of inference. Inasmuch as no two
data points are related objectively in any way at all, it is impossible to
make objective inferences about the nature of the world. Inferences are
possible only if subjective prior information is available, that is, only if you
(irrationally?) believe the world is orderly.

The model with time-varying parameters has three important implica-
tions. First, the discounting of the evidence in earlier observations is based
on structural change. Second, the diffuseness of predictions increases
naturally as we attempt to project the current structure farther and farther
into the future. That is, the value of sample information decays with time,
paralleling the decaying relationship between the sample process and the
future process. It is intuitively clear that our ability to predict and/or
control economic systems decays with time. Stochastic control systems
built around a constant parameter ,assumption result in solutions that rest
on greatly overestimated knowledge of the system's future. This tends to
result in reckless current decisions, which ignore important elements of
uncertainty in the future. The thiird implication of this model is that
"outliers" are legitimately discarded when they suggest structural change.
Extreme data points require a suitable adjustment of the regression coef-
ficients applying to the outlier period, and regression coefficients applying
to other periods may be insensitive to the presence of the outlier.

The model being discussed is

y, = x$[3, + u,, t = 1 .... , T, (8.23)

�It should be pointed out that it is possible to build a formal model of time-varying
parameters that does imply heteroscedasticity. Cooley and Prescott (1973a, b) write a model as
y� = flx� + a,, where at is the time-varying parameter. The stochastic model they suggest can
be described by the equations et�=ut+ et, u,r= ut-� + v t, with v t and et being independent
spherical normal random variables. Conditional on Ur, say, the variance of a t is an increasing
function of IT-t], which is a heteroscedasti:c feature. But the model also implies a specialkind of correlation between the residuals.
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where 13�is a k-dimensional vector of parameters applying in the tthperiod, x, is a (kx 1) vector of explanatory variables, and u, is anindependent normal random error with mean zero and variance 0 2�Thiscan be written in the form of a multivariate regression as

ix,, 0 ... 0

L� 0 "' x3L
The prior distrbution that is commonly used for ume-va�ingters is normal with mean E� =b* and variance matrix

parame-

V OV ,/,:V ... q,r-�V

ii Vq,' V �V "� q'�-�vV . = Vq,'2 V0' V '" ��3V
� V�,. r_ � V�,r- 2 V� 'r-3 .-. V

�e reader may verify t�hat the conditional moments of such a normal
process are E(�tl�,._p�t_2,...)=b,+�(�t_,_b. ) (8.24)

r ( �,��,�_,, g,_ :,... )=v -�v-'�. (8.25)
�e important feature of these moments is that they depend o�y on themost recent value of the parameter vector. �is allows us to write the pdor
as f(�rl �r- 0f(�r- �1�r-9' ' 'f(Suppose first that we obse�e y� o�y. �e distribution conditional on y�
only is proportional to

f(�ly,)�f(�'l�-, )f( �-,l�-: )" ' f(�' )f(Y '��' )

In words, the obse�ation ofy� affects o�y the mar�nal distribution of �
and not the conditional distributions. In the usual way the moments are

E(D,ly,)=(o-2x,x'� +V-')-'(o-2x, Y, +V-
V(D,ly,) = (o- 2x,xl +V-

Inferences about the Hyperparameters 281
The moments of 132 given y� can be computed by integrating out 13� from
the joint distribution f(1321D�)f(,�ly�) which we can do simply by using
the moments of 13� and the formulas (8.24) and (8.25):

E (1321Y�)=b* +q'[ E (13�lY O-b* ] (8.26)
V(1321y,) = V-�V-'�' +�V(13,ly0q/. (8.27)

Next, suppose Y2 is observed. If interest centers on 132, the moments just
reported can be used as if they were prior moments, since we can write

f(1321Y,,y2) cr [ft�,f( 1321 13, )f( 13, )f(Y,I 13, )d13, ] f(Y21 132 )
--f (13�ly ,) f ( y21132 )

where f( 1321Y0 has the moments (18.26) and (8.27). Thus, as usual, we have
the moments of 132 as

E( 1321Y i,Y2)= ( V-I (1321Yl) + o - 2x2x�) -1
x (V-' (132}y,)E(132[y,) + o-�x2y�)

V(13�IY,,Y2) -- ( V -' (1321Y,) + o -2x�x2)-'.
Repeated application of this logic leads to the recursive relationships due

to Kalman (1960)

E (13,]yt-')=(I-q,)b* +q,E ( g_,ly t-')
E( 13,13/)= V( 13,13/)( V-'( 13,13/-')E( 13, i3/-') + o- 2x,y,)

where 3/= (Yt,Yt- �..... yi), and

v-' (13,13/)= v-,
r(13,13/-')=o�(13,_,13/-')o'+v-ov-

8.5 Inferences about the Hyperparameters
The reader should have objected before reaching this point that a large
number of parameters or hyperparameters whose values are likely to be
relatively uncertain have been treated as if they were known. Conceptually
it is straightforward to assign a probability distribution to any unknown
parameters and to proceed directly to Bayes' rule--probably by integrating
out the parameters of little interest. In most cases this is a most unpleasant
task. The purpose of this chapter is not to solve real inference problems
but only to illustrate how data set,,; ought to be massaged in a number of
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interesting circumstances. Since the massaging concepts and principles
seem little affected by the uncertainty in the hyperparameter, the treatment
to this point is adequate for the purpose at hand.

Nor do I wish now to deal with the tedious algebra that would be
required to treat uncertain hyperparameters. Typically, this involves
assigning a hyperparameter some diffuse distribution and either integrating
it out of the posterior analytically or writing the equations that would be
jointly solved to find the modes of the posterior distribution. In some
cases, particularly with the time-varying parameter models, it is still an
open question as to which parameters may be assigned diffuse priors and
which may not, if a proper posterior is desired.

For treatments of an uncertain autocorrelation coefficient the reader
may consult Zellner (1971, Chap. 7), for multivariate regressions with an
uncertain covariance matrix, see Zellner (1971, Chap. 8). Lindley and
Smith (1972), Gelsset (1966), and Box and Tiao (1964) deal with many
different multivariate models. Swamy (1971) and Hildreth and Houck
(1968) also discuss inference about the parameters of a (prior) distribution.
For time-varying parameters there are many papers and references in a
special volume of the Annals of Economic and Social Measurement, Na-
tional Bureau of Economic Research (1973).

Another model of time-varying parameters--switching regressions---has
been analyzed by Quandt (1958). For a review see Brown et al. (1975).
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The theory of statistical inference takes as given a fixed
set of maintained hypotheses. A critical feature of
many real learning exercises is, however, the search for
new hypotheses that explain the given data. An exam-
ple is a judicial proceeding in which the lawyers for the
defense spend their time looking for hypotheses that
are plausible given the available facts and that discredit
the prosecutor's hypothesis of their client's guilt. Once
the proceeding gets to the court, it may concentrate on
the statistical inference issue of identifying the data
evidence in favor of a set of fairly well-defined
hypotheses. But before it gets there, the participants
scramble for hypotheses that explain the given evi-
dence. When the search for new hypotheses is success-
ful, the following dilemma must be confronted: how
can we say whether the data favor or cast doubt on the
new hypothesis, when the new hypothesis was, in fact,
constructed to explain the data?

A fictitious example illustrates this dilemma. In a
large survey involving many questions it is discovered
that coffee drinking and heart disease are correlated, a
fact which suggests some control of coffee consump-
tion. The lawyers for the defense, the American Coffee
Institute, argue that coffee drinkers tend to fill their tea-

�This chapter is taken from Learner (1974).
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pots with the first water out of the tap in the morning, that this water is
brackish from sitting in the pipes overnight, and that it is brackish water
not coffee that causes heart disease. They recommend plastic pipes. After
allowing for the consumption of brackish water by the individuals survey-
ed, the correlation between coffee consumption and heart disease is greatly
reduced, to the point of insignificance. Is coffee guilty or innocent?

A real example of the phenomenon is reported in an interview by Jones
(1974), subtitled "Princeton Professor Charles Westoff Finds Twenty Per-cent Increase in Frequency of Sexual Activity Among Married Ameri-
cans." (Reprinted from People Weekly, � 1974 Time Inc.)

What did you find out?
We started by looking at the relationship between coital frequency and method of
contraception in order to determine whether methods with high and low frequencywere the same in 1965 and 1970. Then I noticed, almost in passing, that there
seemed to be a 20 percent increase in frequency of sexual intercourse between 1965
and 1970.

What was your reaction?
The figures excited my curiosity. I tried to explain the increase at first by looking atobvious reasons, such as the fact that the entire population was younger in 1970
than in 1965, and we know that young people have a high coital frequency and that
it declines steadily with age. That explained only a small part of the increase. ! then
checked our hypothesis that the increased use of the modern birth control methods
might explain the increase, but that explained only about a third of it.

Did you then accept the fact of increased sexual activity among married couples?
I was still not sure. It could have been that the apparent increase was not real but
rather a reporting phenomenon. That is, because of the more permissive atmo-
sphere surrounding sex, people talk about it much more freely than before andperhaps even feel a pressure to be "with it." The reported increase in sexual activitycould be a matter of exaggeration in 1970 and/or under-reporting in 1965.

How did you resolve this "exaggeration factor"?
There was only one test I could think of, and it is hardly definitive. Since the same
20 percent increase in coital frequency showed up more or less among women
using different birth control methods, or no method at all, ! reasoned that amongwomen who did not practice any contraception, either because they wanted to get
pregnant or for other reasons, that a 20 percent increase in sexual intercourse mightbe reflected in a decrease in the length of time it took such women to become
pregnant. So we looked at that and, much to my surprise, saw a substantial changewhich, quite fortuitously, also showed up as a 20 percent reduction in the time
required to conceive in the absence of contraception.
In the end, I was forced to two conclusions. First, that there is a striking
relationship between frequency of sexual intercourse and type of contraceptive
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method, with the greatest frequency associated with the pill, the IUD, and male
sterilization. Second, that there has been an increase of about 20 percent in the
frequency of sexual intercourse between married couples under the age of 45
between 1965 and 1970.

How do you account for the increase?
I can only speculate about that. I have already mentioned the influence of more
effective and more convenient contraceptive methods. The increasing availability
of legal abortion has also reduced anxieties among many women about unwanted
pregnancies. There has been an increase in openness and permissiveness about sex
in our society during this period. Another possible cause results from the fact that
divorce rates have been going up, with the consequence that the average duration
of marriage was lower in 1970 than in 1965. To exaggerate it, there were more
women on their honeymoons in 1970 than in 1965.

This is a delightful example of how research with nonexperimental data
frequently proceeds. The observed fact of 20% increase in sexual activity
sequentially stimulated the three hypotheses:

1. A younger population.
2. Greater use of birth control devices.
3. Reporting problems.

The first two could not fully account for the increase, and the third was
eliminated by the clever use of outside information. This led to two
additional hypotheses, not actually examined:

4. Increased permissiveness. (How do we measure it?)
5. Fewer years of marriage.

This is a very clear case of observations in search of hypotheses. If one of
the hypotheses turned out to be "successful," can we say that it is favored
by the same data? This problem is quite outside the scope of Bayesian
statistical theory. The formal Bayesian learning model describes a superbe-
ing who begins his existence with a joint probability function on all
uncertain events. Empirical learning amounts to nothing more than the
transformation of a marginal to a conditional distribution. In contrast,
much of our informal nonnumerical day-to-day learning, and at least some
of the more formal statistical-numerical learning, begins without any
explicit joint distribution. If the Bayesian learning model is used, it must,
therefore, make use of a joint distribution that is constructed given the
observed data. This is both philosophically and practically questionable,
since it clearly risks double-counting the data evidence.
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I like to describe this as Sherlock Holmes inference. Sherlock solves the
case by weaving together all the bits of evidence into a plausible story. Hewould think it indeed preposterous if anyone suggested that he should
construct a function indicating the probability of the particular evidence at
hand for all possible hypotheses and then assign prior probabilities to the
hypotheses. He advises instead, "No data yet .... It is a capital mistake to
theorize before you have all the evidence. It biases the judgments.

There is, incidentally, a tendency among social scientists, particularly
those most trained in statistical inference, to disparage Sherlock Holmes
inference. "Boy, he really went on a fishing expedition that time, didn't
he?" The fact that Sherlock Holmes procedures invalidate statistical in-
ference is even sometimes taken to mean that Sherlock Holmes inference is
"unscientific." Nothing could be further from the truth. In fact, a strong
argument can be made that statistical inference, not Sherlock Holmes
inference is unscientific. The nineteenth century French physiologist
Bernard (1927, pp. 137-138) writes (quoted by Cornfield, 1975)
A great surgeon performs operations for stones by a single method; later he makesa statistical summary of deaths and recoveries, and he concludes from these
statistics that the mortality law for this operation is two out of five. Well, I say that
this ratio means literally nothing scientifically and gives no certainty in performing
the next operation. What really should be done, instead of gathering facts empiri-
cally, is to study them more accurately, each in its special determinism...bystatistics, we get a conjecture of greater or less probability about a given case, but
never any certainty, never any absolute determinism... only basing itself on experi-
mental determinism can medicine become a true science ....

Of course, this overstates the case, but there can be no doubt that an
essential part of the scientific method is a careful examination of the
anomalies of the data, with the intent of finding plausible explanations if
possible. Kuhn (1969, pp. 9-10) makes this point forcefully in explaining
why astronomy is a science and why astrology is not:

Compare the situations of the astronomer and the astrologer. If an astronomer's
prediction failed and his calculations checked, he could hope to set the situation
right. Perhaps the data were at fault: old observations could be re-examined and
new measurements made, tasks which posed a host of calculational and instrumen-
tal puzzles. Or perhaps theory needed adjustment, either by the manipulation of
epicycles, eccentrics, equants, etc., or by more fundamental reforms of astronomi-cal technique. For more than a millennium these were the theoretical and mathe-
matical puzzles around which, together with their instrumental counterparts, the
astronomical research tradition was constituted. The astrologer, by contrast, had

2Doyle (1888).
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no such puzzles. The occurrence of failures could be explained, but particular
failures did not give rise to research puzzles, for no man, however skilled, could
make use of them in a constructive attempt to revise the astrological tradition.
There were too many possible sources of difficulty, most of them beyond the
astrologer's knowledge, control, or responsibility. Individual failures were corre-
spondingly uninformative, and they did not reflect on the competence of the
prognosticator in the eyes of his professional compeers... In short, though astrolo-
gers made testable predictions and recognized that the predictions sometimes
failed, they did not and could not engage in the sorts of activities that normally
characterize all recognized sciences.

An implication of both of these quotations is that Sherlock Holmes
procedures are an essential feature of scientific learning. But when models
are instigated by the data, the traditional theories of inference are, regret-
ably, invalidated. It does seem intuitively clear that the data evidence is
weaker than it would have been if a complete set of models had been
hypothesized before observation commenced. It thus seems desirable to
have a method by which evidence can be formally discounted when
postdata model construction occurs. This would have the desirable benefit
of putting a price on this kind of data mining. Researchers would then be
encouraged more carefully to consider the cost of hypothesis specification
relative to the costs of data evidence deterioration through Sherlock
Holmes procedures.

I propose in this chapter a method of discounting evidence that parallels
a formal decision-theoretic analysis of a presimplification problem in
which models are simplified before observation to avoid observation or
processing costs. During the analysis, relatively inexpensive tests may
indicate that the simplification is undesirable, and the full model may be
resurrected. Postdata model construction may thus be interpreted as the
data-dependent decision that presimplification is undesirable.

For example, given the two-variable linear regression model Y =xfl + z�
+ u and the auxiliary regression z = xr + e, it is not necessary to observe z
in order to make inferences about/�, if either � or r is zero. Even if neither
is identically zero, it may be uneconomical to suffer the costs of observing
z. However, once Y and x are observed, you may change your mind about
observing z, possibly because the sample correlation between Y and x is
too low or the wrong sign.

This formal decision theory proolem requires a supermind, capable of
fully specifying an unsimplified model and the relevant prior distributions.
But the principal reason most of us use presimplified models is to avoid the
(unlimited?) cost of a full probability assessment. Once a full assessment is
made, it seems likely that the true ("believed") complete model would be
used. Although a simplified model thus cannot usefully result from the
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formal decision-theory apparatus, we can think of our models as if theywere so derived. In fact, the informal construction of a "working hypothe-sis" parallels closely the formal decision-theory problem. Models areconstructed not as reality but rather as simplifications useful for some
implicit or explicit decisions.The reason for adopting this attitude toward models is that it impliesconstraints on priors for models constructed after the data analysis com-mences. The implication of these constraints is that data evidence isdiscounted in an appealing way when it results from a postdata modelsearch. In the two-variable model mentioned previously, the conditionalmean of Y given x is x( ]�+ rT). The regression of Y on x thus yields anestimate of ]�+ rT. If you interpret this as an estimate of ]�, then you haverevealed that you think ry is small. If you then decide to observe z, and ifyou do not improperly alter your prior, you will shrink the estimate of ytoward the revealed prior mean of zero. Thus the data evidence will haveto be strong enough to overcome this prejudice, and in that sense the

evidence is discounted.Yhis chapter is divided into six sections. The phenomenon of conceptformation is further introduced in section 9.1. The implications (or ratherthe nonimplications) of stopping rules for inference are discussed inSection 9.2. A surprising conclusion of this chapter is that suspicion ofpostdata model construction should derive not from the rule used to addvariables to an equation, but rather from the improper alteration of one's
original implicit priors.The idea that is being introduced in this chapter is presimplification of
models. Concept formation is interpreted as the decision to use a morecomplex model that was at least implicitly known all the time. Inferencewith presimplified models is discussed in Section 9.3. A presimplifiedmodel necessarily involves an uncertain misspecification error, which causesus to discount any evidence implied by it. Inference with models that areconstructed after data are observed--data-instigated models--is discussedin Section 9.4. Quite simply, in using the simple model a researcher revealscertain things about his priors for the more complex models. We aremerely suggesting that he stick with those judgments. The fifth sectionreports an example and the sixth some concluding remarks.

9.1 Concept Formation

The problem of concept formation may be illustrated in a simple example.A mythical kingdom is inhabited only by (green) parakeets, (green) croco-diles and (white) swans. A newly arrived visitor named Richard first meetstwo swans and two crocodiles. The latter, being in a nasty mood, proceed
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to bite Richard on the leg. That evidence suggests to Richard the slogan
"green bite, white all right," a theory that seems to work well enough when
he meets a third swan and a third crocodile. However, the seventh being he
confronts is a friendly parakeet, who forces Richard to alter his slogan to
"white all right, green usually bite." Being a good Bayesian with a undorm
prior for p, the probability that a green being will bite, Richard assigns
degree of belief 4/6 to the proposition "The next green being I meet will
bite me," and he furthermore anticipates that he will accumulate evidence
about p, the proportion of green beings that bite. Richard's wife, who is
little awed by the mathematical and logical bases of Richard's statement,
proclaims "You fool! In truth, 'Four legs bite, two legs all right'."

Well, that is a theory that indeed "predicted" the data with certainty.
The probability that three out of four green beings bite given p, the

proportion of green beings that bite, is only (43)P3(1-p)--4p3(1-p).
Richard approximated his prior for p .with a uniform distribution and
computes the "Bayes factor" in favor of the "legs" hypothesis relative to
the "color" hypothesis as

P (data legs theory)
fP (data color theory with proportionp)f(p)dp

He concludes that his wife's hypothesis is favored by the ratio five to one
relative to his own. In fairness to his wife, Richard supposes that he had
equal prior degrees of belief in each hypothesis, from which he calculates
the probabilities of each hypothesis as

P (legs hypothesis]data) = 5/6
P (color hypothesis]data)= 1/6.

With these he can calculate his degree of belief (4/6)(1/6)+1(5/6)=
34/36 it/the proposition "The next green being with four legs that I meet
will bite me."

At this point Richard, who is used to changing his degrees of belief only
in response to data evidence, observes confusedly that his degree of belief
in this proposition increased from 4/6 to 34/36 in response only to his
wife's observation, "Four legs bite, two legs all right." "Can this be data
evidence?" he asks himself. In retracing his steps, Richard discovers that
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the assumption that the legs hypothesis receives zero prior probabilitywould mean that he would not change his degrees of belief. He tentatively
suggests that what he has done is to alter the relative prior probability ofthe two hypotheses, and that more generally his current degrees of beliefdepend on that relative probability. Perplexed, he asserts,. "If I alter therelative prior probability of the two hypotheses it is because my wife
pointed out certain compelling regularities in the data evidence not be-cause of any new experiments. My rules of inference are designed to
prevent me from making inferential errors, in particular from double-counting the evidence. It is obvious double-counting to let the data firstalter the prior odds ratio from zero to one as I change the prior odds in
response to my wife's suggestion and secondly alter the odds ratio fromone to five as I would if I applied Bayes' rule to the new prior odds. I shall
stick to my original assessment." To this his wife replies, "You fool. Can
you not see that your original odds ratio was a mistake? You surely neverheld degree of belief zero in the legs hypothesis. Better to admit yourmistake now than to perpetuate your error." Richard sighs in response,
"Yes, I suppose it was a mistake. But I don't see how I can withoutself-deceit assess any new prior odds ratio which is legitimately unpolluted
by the data, and I don't see therefore how I can correct my old mistakewithout making a new one. Besides, you are so skilled at 'explaining'
observations that, regardless of the data you would have come up with
some plausible and compelling hypothesis. Why should I believe this one?"This example aptly illustrates the dilemma of concept formation. In anyreal learning situation, data evidence strongly compels us to alter our prior,
but if we do so, we risk double-counting the data and placing excessivefaith in the current evidence. An appropriate model of inference would
necessarily allow hypothesis discovery but would also discount the data
evidence when it occurs. We propose a method that does just that. It restson the observation that Richard's �, the probability that a green being will
bite, is not conditional on all other features of the being. It is rather a
marginal probability such as

� = p (bite[green)
-- p (bite[green and two legs)P (two legslgreen)

+ p (bitelgreen and four legs)P (four legslgreen).
In particular, let us suppose that conditional on the two hypotheses, the

probabilities of biting are as given in Table 9.1. Furthermore, let 1-f bethe proportion of green beings with two legs, f the proportion with four
legs. Assume also that Richard observes randomly selected beings.

Table 9.1

Probability of Bite

Hypothesis H o H�
Green, two legs Po 0
Green, four legs Po I
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Letting or-- P(H0) , 1 -or= P(H�), we can then calculatep as
� = p (bitelgreen)

__{ P0 with probability or (9.1)f with probability 1 - or

We suppose that Richard has a prior distribution for �0 and f and also
that he assigns a number to or, which, together, imply the mixed distribu-
tion (9.1) for p. When he first arrives in our mythical kingdom he makes
the judgment that he will observe only color, partly because he is not so
good at counting legs and partly because he does not have much faith in
H l (or is close to one). His prior for � together with the likelihood function
implied by three bites in four trials imply a posterior distribution forp. At
this point, since his wife implicitly lowers the cost of counting the legs,
Richard proceeds to observe the number of legs and therefore to condition
on that data as well in applying Bayes' rule. He uses his prior for �0 and
the likelihood evidence of three bites in four trials to compute a posterior
for �0 conditional on .H 0. He also uses the Bayes factor as above to
compute the posterior probabilities of the two hypotheses.

What, then, is the problem of concept formation? We have just de-
scribed a perfectly valid application of Bayes' rule with sequential con-
struction of theories. Most of us would be suspicious of the new concept
because it was "constructed" only when the first one failed to predict the
data perfectly. But the decision to observe the number of legs when the
color concept "falls" is what is known as a noninformative stopping rule
that to a Bayesian has no implications for inference. (More is said about
noninformative stopping rules shortly.) The problem of concept formation
lies not in the stopping rule but rather in the failure to observe the
constraints implied by the probability function (9.1). In particular, p andp0
are not the same parameter unless or= 1, the trivial case in which the
observation of the number of legs, is ignored.

Of course, in constructing his prior probability function for p, Richard
did not consciously have in mind the alternative hypothesis H I. It is thus
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not possible to treat the problem of concept formation strictly as describedabove with the distribution for p derived from distributions for f and P0.
Inference in the context of concept formation is, therefore, necessarily not
a topic that can be handled by formal methods of statistical inference.Richard can, however, act as if he were deriving his distribution for p from
the more basic distributions. Several arguments may be made that this is a
desirable approach. The fact that Richard wants to change his mind when
his wife makes her suggestion is evidence that Richard does not assign to
H0 a degree of belief equal to one. Unless 0z were one, a prior for p isnecessarily a derivative distribution, and Richard could not apply Bayes'
rule to make inferences about p unless he could implicitly derive the prior
distribution for p from the more basic distributions. And finally, quite
pragmatically, if he behaves as if he so derived his distribution for p, wecan solve the inferential issues raised by the phenomenon of concept
formation; otherwise they remain entirely beyond our reach.

9.2 Stopping Rules and Inference
At first blush the problem of concept formation appears to be associated
with the fact that new hypotheses are data instigated. How could we
possibly claim that the data favor H l relative to H 0 when the only reasonHi is examined at all is that H 0 did not work? To be more specific, imaginea researcher who adds variables to his regression equation until a favorite
coefficient is significantly positive. We would all chastise him for prejudic-
ing his conclusions in such an obvious way, and we would want todiscount his results because of his biased rule for observing the data.

For me, the greatest surprise of the Bayesian logic is that these instincts
are simply wrong. This rule and, practically speaking, any rules for
observing the data are noninformative stopping rules. They have no
implications whatsoever for inference. This counterintuitive assertionneeds considerable argument before it can be accepted. Thus we consider
in this section the inferential problems implied by stopping rules.

As an example of the kind of problem raised by optional stopping,
consider binomial sampling with a sample size equal to one if there is a
success on the first trial and equal to two otherwise. The sampling
distribution and a hypothetical estimator of p are given below.

Sample Probability Estimator
S p a
FS p(1 -p) b
FF (1 _p)2 c
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If we wanted our estimator of p to be unbiased, we would have to choose
a, b, and c to satisfy for all p

p---=ap+bp(1-p) + c(1 _p)2
or

O=c+(a+b-2c - 1)p+(c-b)p 2.
This is satisfied in the interval 0 < p < 1 if and only if all three coefficients
in this polynomial are zero. The only solution is c= b =0, a = 1. This is
equivalent to throwing out the second observation.

The usual estimator--the number of successes r divided by the number
of trials n--has a= 1, b= 1/2, and c=0. The expected value of this
estimator

2

exceeds p. That is, the sampling scheme prejudices the sample in favor of
high values of p, since there is a tendency to observe samples with too
many successes.

But let us look at this from a Bayesian point of view. The posterior
distribution of p is, of course, the product of the likelihood function times
the prior. But the likelihood function (the second column in the table) is
exactly the same for every sample as the likelihood function derived under
a sampling rule with fixed sample size. Thus from a Bayesian point of view
the meaning of the sample FS does not depend on the stopping rule, and
the fact that you might have stopped on the first trial is quite irrelevant
for the interpretation of this particular sample.

A more concrete example illustrates why the stopping rule should not
matter. Suppose that boys are born with probability one-half, and that all
families stop having children if their first is a boy, otherwise, they have two
children. Family composition and probability would then be

Family Probability
B p=l/2
GB p(1-�)= 1/4
Go (1 - p)(l -p) = 1/4

The average proportion of boys per family would be 1/2+ 1/4-1/2=5/8,
more than one-half. Apparently, the stopping rule has biased the popula-
tion in favor of boys. But the proportion of boys in the whole population is
still one-half. Apparently, the stopping rule has failed.

Concern over the stopping rule derives from the following proposition:
the mean proportion of boys per family exceeds one-half; if you estimatep
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by taking an average over all families of the family proportions, you willnecessarily exceed one-half. The error being made, however, is not that
families are reporting "biased" numbers; rather, it is that you have not
allowed for family size. If you weight families by family size, you will
obtain the right number. Exactly the same thing can be said about the
estimator (r/n). The fact that (r/n) is a biased estimator is not because
r/n is a "biased" summary of the data for any sample; rather, it is because
the expected value operator does not weight by sample size.

It is easy to see that stopping rules dependent on the data only are
noninformative. Let 0 be the parameter of interest, let XpX2 .... be a
sequence of observations, and let N be the sample size. Given the sampleXi = Xl , X2 = x2 .... X n = x. and N = n, we may write the likelihood function
as

g(O; X, FI) OCe (X 1= Xl,X2 = X2,--',Xn �---xn'N�'� FllO )
= p (N =rtlX l=Xl,X 2=X2,...,Xn=Xn,O)
P(Xl= Xl,X2= x2,...,Xn= xnlO ) �

But the stopping rule is assumed to terminate sampling with probability
one given the sample x�,x2,...,x,; thus P(N = niX=x,0)= 1, independentof 0, and the likelihood function is proportional to P(X =x[0) regardless of
the stopping rule. 3

3The apparent danger of a stopping rule is that a researcher can prejudice the sample inany way he sees fit. He may even be able to sample to a foregone false conclusion. Supposethat we sample from a normal population with mean zero and variance one. If we wish toprove that the mean is, in fact, not zero, we may want to continue sampling until the sample
mean is "significantly different from zero." That is, let

ran= � xi/n,
i�l

the mean of the sample of size n, and adopt a stopping rule
if Itnnln�/2 > 1.96, stop

otherwise, continue sampling.

The statistic mnn I/2 is, of course, the normal statistic typically used to test the hypothesis�=0 against the alternative �=0. A value of Itn,,Int/2> 1.96 is taken as evidence against the
point-null hypothesis.Surprisingly enough, this inequality will eventually be satisfied with probability "essentiallyone." It is apparently possible to sample to a foregone false conclusion. The paradox iscompletely resolved, however, by noting the discussion in Chapter 4.2, that from a Bayesianpoint of view a value of mnnU2 equal to 1.96 may, in fact, be overwhelming evidence in favorof �=0, if the sample size is large enough. That is the significance of a "statisticallysignificant" result depends on sample size. If it takes a large sample to get the result, thisshould be taken as evidence in favor of the null hypothesis. For references and further
discussion see Cornfield (1969).
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To sum up, we have argued by analogy with the problem of estimating

the proportion of boys in a population that the bias of the usual estimator
when there is a stopping rule should cause uncomfortablehess not with the
estimator but with the concept of bias. Constructing an unbiased estimator
is roughly equivalent to passing a law that families with one boy may tell
the truth, whereas larger families must report to the census taker that they
have no boys at all. Bias, being a property of a sampling distribution, is not
of direct interest to a Bayesian. Concern over bias from a sampling theory
point of view apparently derives from the followingsproposition. If � is a
biased estimator of 0, if n inde[�endent values t� .... ,0,, are observed, and if
a composite estimator 0,* =Y.O�/n is computed, then as n grows, 0�* will
converge (in a probability sense) to a value different from 0. Thus ac-
cumulation of evidence will not lead to the truth. The counter-argument,
as we have seen, is that the appropriate pooling of evidence does not lead
to 0�*. Instead, we should maximize the composite likelihood function
formed by multiplying the individual likelihoods together. Bias should,
therefore, concern us only if for some peculiar reason we are compelled to
pool information from different samples in this undesirable way.

Most practical stopping rules that lead to biased estimators are from the
Bayesian point of view noninformative and therefore irrelevant to the
inference problem. In particular, the class of rules dependent on the data
alone is noninformative.

9.3 Inference with Presimplified Regression Models
The idea on which our solution to the problem of concept formation rests
is that inferential models are highly simplified versions of the learher's
inherent set of beliefs. In this section we discuss inference with regression
models that are simplified versions of more complete models.

A regression function in a linear nonstochastic world may be written
Y=X0+Z� (9.2)

where X and Z are observable matrices, Y an observable vector, and 18 and
� are unobservable parameter vectors. As in the example in the introduc-
tion, inferences about 18 may be made by observing Y and X alone,

e (0 IY, X) ffz e (Y,X, z, 0,
The integral in Z is easily computed by writing the linear regression
function (an assumption)

ZlX = XR + U
where U is a matrix of random variables subjectively independent of X and
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where R is assumed known. The resulting working hypothesis is then

yIx =Xl8 + XR3'+ U3' (9.3)
where we have written YIX to emphasize the point that other observables
have been marginalized out.

The usual regression model
y=XiO+ u (9.4)

with u independent of X is derivable from the working hypothesis (9.3)only if R3,=0- Thus the usual analysis involves a (well-known) specifica-tion assumption that left-out variables have either zero effect (3,--0) or areuncorrelated with included variables (R = 0). Postda[a model constructionin response to peculiarities in the least-squares estimate of iO constitutes a
de facto rejection of this assumption.

The model (9.5)y--XiO+XiO� +u

with u--N(0, o21) offers a closer approximation to the probability assign-ments implied by the working hypothesis (9.3). It admits the possibility ofleft-out variables (iB �plays the role of R3,) but does not require us actuallyto identify them. It also fits, with minor modification, into the traditional
statistical theory. iOc the bias in the information about iOThe parameter vector summarizesdue to excluded variables. It is called either a contamination vector or anexperimental bias vector. The usual regression model (9.4) is called a falsemodel, since it unbelievably sets the contamination vector to zero and sinceit yields reasonable results only if that approximation is adequate. Theamended model (9.5) is called the working hypothesis, indicating thatdegrees-of-belief are not allocated directly to it but rather are derivedimplicitly from a true model or "worm view" such as (9.2). A workinghypothesis includes a statement about the quality of the experiment (a
prior on iOc); a false model does not. i�cWe may "identify" model (9.5) by specifying and making inferencesabout the theoretical coefficient i��or by specifying i� and making in-ferences about the experimental bias i��. Informative priors offer a rangeof intermediate inferences. Analysis of this model from a Bayesian point ofview is a straightforward generalization of Pratt, Raiffa, and Schlaifer's(1965) biased sampling. Let the prior be normal with mean and variance

01 -I 9.7,V �-- o2� 0 B '
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with o2=Varut . With N=X'X, the posterior precision of the coefficient
vector is

0 B N
with posterior variance

V � IY =02 N B+N
=02[ D-I-E-IN (N*+N)-I

with
-D-IN (B+N)-I I (9.8)

and
D=N*+N- N(B+N)-�N

E=B+N-N(N*+N)-IN.

Similarly, the posterior mean is (with b a solution to X'Xb=X'Y)

-E-IN (N*+N)-I E_i Nb

=[ D -I (N*b*+[N-N(B+N)-IN]b)E-IN (N*+N)-IN* (b-b*) J' (9.9)
Notice, first, that the posterior mean of/1 is, in the usual way, a weighted

average of the prior mean b* and the sample mean b. Whereas ordinarily
the sample mean receives weight N, its weight is here reduced to N-N(B
+ N)-IN= N(B + N)-lB. That is to say, we discount the evidence provided
by contaminated (or potentially contaminated) experiments. The discount
depends on B, the prior precision of the experimental bias/1 �. As B grows
the posterior parameters converge to their values in an uncontaminated
experiment.

The posterior mean of i� � is a matrix-weighted average of zero and
(b-b*). When b exceeds b* we conclude in part that fi exceeds b* (in the
matrix-weighted average sense) but we prejudice the posterior distribution
toward b* more than' in the case of a true model. We adjust for this by
moving the distribution of �c from the origin; that is, part of the excess of
b over b* is attributed to experimental bias, part to large �.
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Given a diffuse prior for i�, with N*--0, the posterior parameters are

� _B -� B-�

where we have used the fact that

[N_N{B+N)-'N]-t:N'-'+B -'.
This result is of interest, since it suggests that the least squares estimatorb is the best we can do when the direction of the bias is unknown(EtV=0). The posterior variance matrix, however, differs importantlyfrom the usual OLS result o2N - I. We must add to this matrix anothermatrix oaB - l, which is just the prior variance of tl c. Most importantly, assample size increases, this second term does not decay away and thusbecomes a lower bound to the variance of fl. In words, if you arrive at a

sampling experiment with no knowledge of tl, you can never know moreabout tl than you claim to know about tl c. Of course, you cannot measuremore accurately than your measuring instrument is capable of. More thanthat, the capability of the measuring instrument is not disclosed in theprocess of measuring (since B is fixed before measurement commences).Once the sampling uncertainty o 2N- � becomes small relative to themisspecification uncertainty oaB - �, continued sampling of this process is,essentially, a waste of time. Additional information may be gathered onlyby improved experimentation, that is, by smaller oa or larger B. Larger B isa pure prior concept, whereas reduction in 0 2 is evidenced through smallererror sum of squares; thus the latter, when it is not offset by smaller B,seems to be the only unambiguous method of improving our knowledge of
the process parameters.In the nonexperimental sciences, the possibility of improving an "experi-ment" is, by definition, excluded. Researchers implicitly do what theyregard to be the next best thing: they treat the R 2 as an indicator of thequality of experimental control and discount results when R as are small.The extent to which this discounting is appropriate depends on how it isdone. Since R 2 does map into an estimate of 0 2, R a may give an indicationof the absolute misspecification uncertainty oaB. However, the percentageunderstatement of the uncertainty is a function of sample size (N-t) andnot of o a. In this sense, the R a is not an indicator of experimental control.Independent of R a, the OLS variance oaN -� accurately summarizes theuncertainty for small samples but understates the uncertainty for largesamples. This is simply because it ignores the misspecification uncertainty

Inference with Data-instigated Models 299
o2B - �, which is negligible compared to the sampling uncertainty oaN - l in
small samples, but not in large.

9.4 Inference with Data-instigated Models

In this section we discuss the inferences that are legitimate when new
variables are added to regression equations. As we have suggested previ-
ously, it is not the stopping rule that should cause suspicion. Rather, the
error that is potentially made is that in adding a new variable to the
equation the researcher implicitly changes his priors about various parame-
ters. He left the variable out in the first place because he thought it did not
belong, and to be consistent he must have a prior on the new coefficient
that concentrates the probability in the neighborhood of zero. This auto-
matically "discounts" the evidence implied by the new regression model in
the sense that the posterior distribution of the new regression coefficient is
pushed toward the origin.

Consider the following hypothesis:

YIX, Z= Xl3 + XI3c + z� + z�c + e (9.10)
with s--N (0, o�I) and where X and Z may be matrices. A simpler working
hypothesis may be obtained by marginalizing out Z. Assume a linear
regression function

Z=XR+U (9.11)
with U having a matrix-normal distribution such that if u i is a row of U,
ui--N (0, I�ue ), u� independent of u i and e. The model conditioned on X
would then be

�1X=Xtl+XtlC + XR�+XR�C + U�+U�C + �

=XtI+XF+e (9.12)
which is in the form of the usual contaminated model but with the
constraints

F=i�C+R�+R� c (9.13)

e=U�+U�C+ e, (9.14)
with parameters

o�2 = (�+ �c),Zta0(� + �c) + o�2 (9.15)
where Y-me is a contemporaneous covariance matrix of the (matrix) ran-
dom variable U.

Inferences about the parameters may be made as implied by either (9.10)
or (9.12), depending on whether Z is observed. This is true even when the
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analysis proceeds sequentially with Z observed depending on the least-
squares outcome (X'X)-�X'Y. [There is a tendency to think that the data
evidence is contaminated by the stopping rule. Suppose, for example, we
decide to observe Z if (X'X)-�X'Y has any negative elements. Since this
rule depends only on the data and not at all on the parameters, it is
noninformative. Classically, of course, the resulting estimator is biased,
and the stopping rule would be regarded as a source of contamination.]

If we begin our analysis with the simple model (9.12) and therefore a
probability assignment to (0, F, %2), the fact that the more complex work-
ing hypothesis (9.10) is lurking in the background is quite irrelevant.Within the confines of noninformative stopping rules, we may decide to
observe Z, and to expand to the fuller model at any time. We are not free,
however, to assign any distributions to (0,O�,y, yc, o�2), since we already
have an assignment on ( �, F, %2), functions (9.13) and (9.15) defined on the
expanded parameter space. As long as we satisfy these constraints, we arefree to alter the model as we choose. Thus postdata model construction
becomes fully legitimate.

Although these constraints are conceptually straightforward, they are
not easy to implement. When R is known, however, the implication of
constraint (9.13) is straightforward. Under a normality assumption, only
the first two moments are of interest.

�E(F)= E(i�c ) +RE(y+ y�) (9.16)
V(F)= V(i�)+RV(y+Yc) R' (9.17)

where we have assumed the independence of i� � and (y,y�). We would
typically set E(I'), E( i� c) and E(y c) to zero to indicate expected unbiased
experiments, and (9.16) implies that y must have prior mean zero. Theextent to which we allow y to wander from zero in response to the data
evidence is determined by the variance V(y), which is constrained by
(9.17). The larger V(I') is, the more we discount the evidence derived from
the regression of Y on X (see Section 9.3). But large V(I') also allows us to
assign large V(y), and this allows y to wander from zero when Y is
regressed on both X and Z. Loosely speaking, if we are willing to discountthe evidence collected when we regress Y on X, we may believe the
evidence collected when we regress Y on X and Z. Note, by the way, that
the constraints become inoperative for orthogonal data, R--O, and we are
thus completely free to add in orthogonal variables.

See Learner (1974) for further discussion of the implications of these
constraints.

9.5 An Example: Bode's Law

An interesting example of a data-instigated model is the numerological
relationship discovered by Titius describing the mean distance of a planet
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from the sun as a simple function of the planet order, specifically, by the
simple geometric progression

d, =4+3(2") (9.18)
where d, is the distance from the sun to the nth planet from the sun. For
the first eight planets this implies the mean distances of 4, 7, 10, 16, 28, 52,
100, 196 (using n=-c�,0, 1...). The seven planets known in 1800 had
mean distances of 3.9, 7.2, (10), 15.2, 52, 95, 192, with the earth's distance
arbitrarily set to 10. These numbers fit the numerical sequence remarkably
well, with the exception of a missing planet 28 units from the sun. The very
real decision problem of astronomers at that time was whether this
evidence was compelling enough to warrant a search for the missing planet
in the region suggested by the relationship.

Surprisingly enough, Bode and five other German astronomers, search-
ing the heavens at roughly 28 units from the sun, on January 1, 1801, did
indeed find the small planet, Ceres, and since then dozens of other small
planets have been found and are hypothesized to be the fragments of a
single larger planetfi The "law" was given Bode's name perhaps because
his discovery of the missing planet makes the law ever so much more
believable than it would have been otherwise. The law was instigated by
the observations available up to 1800, and we tend, properly ! think, to
discount the evidence implied by those observations. The single observa-
tion that was not known at the time and that could not have instigated the
model is taken as essentially the only data point relevant for testing. It
intuitively lends considerable believability to the law, and application of
Bayes rule leads to the same conclusion (using as an alternative hypothesis
almost any other plausible hypotheses about the dispersion of the planets
around the sun). 5

But it is not enough to observe that Bode's discovery considerably adds
to the believability of the law. Beliefs prior to the observation of Ceres also
partly determined the posterior belief. In order to determine if Bode's Law
is believable today we must determine what degree of believability it had
prior to 1801. We must assess the uncertainty, allowing for the fact that the
law was instigated by the first seven observations.

It is interesting to observe that the statisticians Good (1969) and Efron
(1971) seem to be concerned primarily with the construction of interesting
alternative hypotheses, with little argument over the appropriateness of
statistical theory in general. Blyth (1971, p. 566) comments on this, "The
Efron and Good tests seem to me invalid because they are based on the
same data that suggested both hypotheses." He takes a pessimistic posi-

4This is Polanyi's (1964) version of the facts. Good (1972) attributes the discovery to Piazzi
and describes Bode as merely a publicist.

5Almost any other hypothesis places low probability on finding a planet in this region. See
Good (1969) or Efron (1971).
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tion, "And it would appear that any real test of this would have to be
based on future observations."

We claim to have a way of characterizing the uncertainty about Bode's
law that allows for the fact that it was data instigated. We may include all
the observations available today, Bode's eight planets plus Neptune and
Pluto. As it turns out, neither of these last two planets obeys Bode's law
very well.

To perform the analyses described in the previous section, we must
phrase the postdata model construction aspect of Bode's law as the
addition of variables to a linear model. There are, apparently, three
"discoveries" from the data set that are candidates for the postdata label:

1. That distance depends on the order
2. That distance depends nonlinearly on order
3. That there are three "outliers"

It seems to me that any model of planetary distance would include order
as an explanatory variable. The significant postdata discovery is that
distance depends nonlinearly on order. The discarding of the three outliers
represents a second step we do not explore here.

Let us phrase the model in terms of our linear regression parameters of
the previous section as

y� --distance from planet n - 1 to planet n (in units of Sun-Earth distance)
x 0-- constant
x� = n, the planet order

Z---�H 2
The first and second phase regressions are

Phase I: y,=�o+�n+Fo+F�n+e,
Phase II: y,--/�o+/�n+/�+/�[n+�n2+�Cn2+e,
with the regression of Z on X being

n2=ro+r�n+u, n= 1,..., 10. (9.19)

Note, of course, that Bode's law is distorted to fit it into our framework. I
do not think that the distortion has important substantive implications,
however. I also substitute sample estimates for Oe2 and o�2.

In this case, it is possible to calculate r 0 and r� with certainty, and the
linear system (9.13) becomes

F, ]3� + r,(y+y�)
where r 0-- - 22, r� -- 1 1.
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I choose to ignore the constraint on the variances, Equation (9.15), on

the basis that the assumed vagueness of the prior distribution of o�2effectively eliminates the constraint. If we take all prior means to be
zeroes, the constraints (9.20) under a normality and an independenceassumption are satisfied when

V(F0) = V(fl� ) + %2 (V(�) + V(��))
V(F�)= V ( fl� )+ r�( V(�)+ V(�C)). (9.21)

We require that the researcher who employs the phase I regression must
at that time select VF 0 and VF�, where F 0 and F� are the first-phaseexperimental-bias coefficients. Relatively small values of these variances
imply relatively small discounting of the first phase result but also implythrough (9.21) relatively tight distributions of � and �c, or equivalently,relatively large "discounting" of the second-phase regression.

To begin, let us take a look at the unadorned regressions (with standarderrors in parentheses)
y.= -32.01 + 13.0n

(13.5) (2.18)
R 2= .82 �2 =.80 d.f.=8 D.W.=.91
y� = 3.25 -4.63n + 1.6n 2

(18.7) (7.8) (.7)

(9.22)

(9.23)
R 2 = .90 /�2 = .87 d.f. -- 7 D.W. = 1.6

where D.W. indicates the Durbin-Watson statistic.
We assume that the researcher first runs (9.22) and then notes peculiari-ties in the residual pattern, indicated especially by the Durbin-Watson

statistic of .91. To rid his model of those peculiarities, he adds the n 2 term
and refits. It is pretty clear from (9.23) that he obtains a substantiallyimproved fit. The variable n 2 effectively wipes out any apparent influence
of the variable n. Is this, however, real or manufactured evidence?

I claim that before the regression equation (9.22) is estimated, one must
decide how much he will believe the result. He does this by selectingV(/�0), V(/�0, V(F0), V(F0. Consider the following three cases:

Case I 104 104 104 104
Case 2 104 104 102 102
Case 3 104 104 10 10

In all cases the researcher is very uncertain about the theoretical
coefficients fl�. As we proceed from case I to case 3, he is increasinglyconfident about the quality of the experiment.
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The phase ! posterior means and standard errors implied by these priors
may be found in Table 9.2. One is expected at this stage to choose one of
these cases. If you wish to believe the sample result you must select Case 3.
At the other extreme, you may select Case 1 and discount the sample very
significantly.

Having committed oneself during phase I to one of the three cases, one
has a restricted menu of things he can believe following phase II. These are
given for the three cases in Table 9.3. The constraints (9.20) imply

( VF� VF�)V(�,)+V(�,*)<m=min r� , rl2 �
The small letters in Table 9.3 indicate

(a) V(�) q- V(�*) = .01 m
(b) V(y) + V(7*) = .Sm
(c) V(y) + V(y*) = .99m.

That is, for distribution (c), the coefficient (� + �*) has the largest variance
and therefore the greatest freedom to vary from zero. In all cases we have
set V(�)=99 V(�*), that is, we are allocating almost all the evidence to the
theoretical coefficient �. (More on this point shortly.)

Notice in Table 9.3 that the phase I! posterior distributions for case 1
are effectively the phase II sample regression function, whereas the distrib-
utions for case 3 are effectively the phase I sample regression function. In
words, if you were willing to completely discount the evidence generated in
phase I (case 1) you may now believe in the nonlinearity of the function.
If, on the other hand, you thought you were getting evidence about the
linear term in the first phase, no significant evidence about the nonlinear-
ity of the function was generated during the second phase. The reason for

Table 9.2

Posterior Means and Standard Errors
(Standard errors in parentheses)

r0 fl� F0 F�
Sample - 32.01 13.0

(13.5) (2.18)
Case I - 15.8 6.4 - 15.8 6.4

(71) (71) (71) (71)
Case 2 -31.1 12.8 -.31 .13

(16.6) (10.2) (10.0) (10.0)
Case 3 - 31.4 12.9 - .03 .013

(13.7) (3.8) (3.16) (3.16)

Table 9.3

Phase II Posterior Means and Standard Errors
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Sample 3.25 - 4.63 1.6
(18.7) (7.8) (.7)

Case I a - 1.7 -.67 1.3 - 1.6 -.64 .013
(69) (71) (.63) (69) (71) (. 14)

� b 1.1 -2.1 1.5 .54 - 1.79 .015
(58) (69) (.74) (58) (69) (.32)

c 2.3 -2.4 1.55 0 - 1.77 .016
(18.3) (66.8) (.81) (.089) (66) (.045)

Case 2 a - 29 12.1 .067 -.27 .12 0
(15) (10) (.14) (9.4) (9.8) .014

b - 25 9.7 .29 -.13 .085 .003
(14) (9.9) (.29) (7.1) (9.3) (.003)

c - 21 7.5 .48 0 .06 .005
(13) (9.7) (.38) (.006) (8.6) (.05)

Case 3 a -31 12.9 .007 -.03 .01 0
(11) (3.6) (.045) (2.99) (3.12) (.005)

b -31 12.5 .03 -.015 .011 0
(! 1.2) (3.6) (.10) (2.2) (2.96) (.01)

c - 30 12.2 .07 0 .009 0
(! 1) (3.6) (.14) (.0009) (2.7) (.014)

this seems clear. Since n and n 2 are highly correlated, the only way a
regression ofy on n alone could give us evidence about how n affectsy is if
n 2 simply does not belong in the equation. The sample evidence that n 2
does belong simply is not enough to overcome that prejudice.

Let us now suppose that you did discount the evidence in phase I, that
is, that you selected case 1. As I have indicated, the phase II posteriors
assign almost all of the evidence to � rather than �*. Thus although it is
possible to believe in the nonlinearity of the function you may instead
decide to discount this evidence by reallocating the prior variance from
V(�) to V(�*). The advantage of doing this is clear: it greatly increases
your flexibility in phase III. In the absence of a "deep" model that
encourages me to commit myself to this peculiar nonlinearity, it seems wise
to maintain as much flexibility as possible.

9.6 Conclusion

It is possible to construct a formal decision-theoretic solution to the
problem of choice of variables' that allows for reconsideration of that
choice after data have been observed. Such a solution requires us first to
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identify all the potential variables. We then must provide subjective
probability distributions for both the parameters that govern the genera-
tion of these variables and also for the parameters that link these variables
to the dependent variable under study. For many problems, unfortunately,
the identification and assessment problems jointly constitute the most
significant costs of dealing with other variables. The observation costs are
trivial in comparison, and once we bear the former costs, we almost
certainly want to observe and process the complete data set.

I am proposing, therefore, that we behave only as if we were formally
solving this decision problem. We identify through economic theory
and/or introspection certain variables that are potentially important. This
is, essentially, the first phase in the formal decision problem. The left-out
variables are not, however, formally identified. Instead, we summarize
their influence in a contamination parameter i� c, the prior on which
essentially determines the extent to which we are committed to "believe"
the regression result.

Just as if we were solving the formal decision problem, we may decide to
observe other variables because of either low R 2, peculiar residuals, or
peculiar coefficient estimates. At the very least, the probability distribution
over the new parameters must imply the original on/3 �.

This constraint prejudices the coefficients on the new variables to zero;
that is, by leaving the variable out of the equation to begin with, thereby
expressing interest in a "false" model, we have revealed that we think the
variable will not significantly distort inferences on the other parameters.
This is the case if the regression coefficients are negligible or if the added
variables are orthogonal to the original set (or a combination).

This analysis can obviously be carried on to additional stages. At each
stage the constraints on the new variables become more severe. Inciden-
tally, the order in which variables are added to the equation influences the
interpretation of the evidence. For example, two researchers may end up
with the same set of explanatory variables. If these variables have been
added to the equations in different orders, then the researchers have
revealed different priors and must also make different interpretations of
the data evidence.
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A theme of this book is that judgment is the critical
input into the analysis of nonexperimental data. Sys-tematic errors in the formation of judgment may leadto significant systematic errors in the interpretation of
evidence. The elimination of systematic judgmental
errors is thus highly desirable. As a first step in thatdirection, we may identify in this chapter what seem to
be the more consequential systematic errors.

10.1 "Explaining Your Resnits" as Access-Biased
Memory

QUESTION. What do the following quotations have incommon?

The stock market reacted today to the favorable news re-leased by the Commerce Department that our fourth-quartertrade surplus established a new record.
Casey Stengel demonstrated again his lack of managerialtalent by replacing pitcher Whitey Ford by a wild RyneDuren, who proceeded to walk in the winning run.
The negative estimated effect of the price of butter on the
consumption of wheat is fully consistent with the fact thatbread and butter are .jointly consumed.

Answer. (a) All three statements are "explanations"
of certain events. In the terminology of probability,where A and B are events, an explanation of an event

307
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A is another event B such that P(B) is large and P(A[B) is significantly
greater than P (A).� (b) All four explanations were offered after the events
occurred. More formally, the statement "P(A lB) is close to one" is made
only after both A and B are known to occur.

Suspicion is cast upon ex post explanations by the popular English
phrases "20-20 hindsight" and "Monday-morning quarterbacking." These
phrases allude to the tendency to think in retrospect that events were
perfectly predictable, whereas, in fact, the events could not have been
foreseen. When probabilities are computed incorrectly, inferential errors
are certain to occur. In commenting on the "silly certainty of hindsight,"
Fischhoff (1975) observes that "if we believe, because of creeping de-
terminism, that the past holds few surprises for us, then we fail to realize
that we have anything to learn from it .... A surprise-free past is prologue
to a surprise-full future."

It may be useful to construct explicit statistical models to illustrate the
inferential errors. Actually, one has already been constructed. The data-in-
stigated models discussed in the previous chapter tend to over-explain the
data, and the inferences implied by such models should be discounted. In
contraposition to the Fischhoff quotation, the potential error is excessive
learning from the given experiment, not insufficient learning.

Another model of hindsight--"access-biased" memory--is now dis-
cussed. According to this model a great wealth of prior information is
available to aid in the interpretation of current observations. Unfor-
tunately, prior information is not accessed costlessly. As a result, the
information that is remembered may bear only a fuzzy relationship to the
actual past. The recalled information may even be a version of the past
that is distorted to suit the present purposes. If the present purposes are
explaining some event A, it is possible that events B, favorable to the
outcome A, will be remembered; whereas events C, which are also stored
in memory but are unfavorable to A, will be forgotten. It is then asserted
that A was inevitable since B is true, and the fact that C is also true is
ignored. This we call access-biased memory.

A formal model of access-biased memory consists of the following
elements: 2

a. An uncertain parameter p, 0 �< p < 1.
b. A beta prior distribution with parameters r and n.

I Good (1975) proposes as a measure of the degree of explanation the number log P (AIB)-
log P (A)+ �'log P (B) where 0 < �, < 1. The first two terms measure the increase in probability,
and the last measures the plausibility of B.

2This material is from Leamer (1975).
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T independent random variables X� .... , X r each distributed binomiallywith parameters N and p.
An observation consisting of the random variable Sk where Sk is the
number of the random variables X� that assume the value k. (So+ S�+.-. +S N= T).

The parameters of the prior, r and n, are considered to be the outcome
of a current binomial experiment. The random variables X� .... ,X r areconsidered to be the outcomes of T previous independent sampling experi-ments. These are assumed to be stored in memory that consists of N+2
counters: one that counts the total number of experiments and N+ 1 that
count the number of experiments involving exactly k successes, k---O, 1.... ,N. Memory is accessed by observing the total number of experi-ments T and also one Of the other counters, S k.
This is intended primarily to model the phenomenon that may be called

"explaining your results." It is common practice first to estimate parame-ters from sample information and then to give reasons why these estimates
are correct. The sample information is thereby supported by nonsampleinformation in a way qualitatively in agreement with formal Bayesiananalysis, and the "posterior distribution" that informally pools the quanti-tative sample information with the qualitative no�sample information is
implicitly suggested to be more concentrated than the likelihood functionalone.

Examples of this sort of thing are abundant; one suffices to illustrate the
phenomenon. In a study of the effects of ability on earnings and schooling,Griliches (1974) obtains the "wrong" sign for a coefficient and 'reports,"This is an unexpected and strange result, which leads us to reexamine our
model. Before we do that however, it is worth noting that the results maynot be all that foolish (The human facility for rationalization is bound-
less)..." He then proceeds to explain why this wrong sign might, in fact, becorrect.

The essential feature of this example is that Griliches' access to qualita-tive nonsample information is selective. We may assume, as does Griliches,that any result can be explained. But reasons why a coefficient can assume
a "wrong" sign are constructed (remembered) only given the data signal ofan estimated coefficient with the wrong sign. The signal of the wrong signtriggers not a general reaccess of memory but a selective one, aimed at
remembering previous (qualitative) "experiments" that favor the "wrongsign."

The analogous situation in our formal model is that instead of remem-
bering a random selection of the previous binomial experiments, only thoseexperiments that led to exactly k successes are remembered. Each of these
experiments necessarily favors the value p = k/N, just as reasons why a
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sign may be "wrong" necessarily support the hypothesis of wrong signs.But as we shall see, this is information that should be discounted, depend-
ing especially on T, the total number of previous experiments. It may turnout that the remembered previous experiments that apparently support the
value p = k/N, in fact should be taken as evidence against this value.

Attention should also be drawn to the fact that Griliches' access to at
least some of the qualitative nonsample information occurs after a current
data set is observed. If this access to memory were random, we may
justifiably ask why it did not occur before the data were observed. The only
apparent answer is no answer at all--an accident of no importanceoccurred. The hypothesis of selective access to memory, on the other hand,
has as a consequence the fact that it is optimal to search memory after the
data are observed. We may, therefore, conclude that when we observe
memory access after data analysis we have evidence in favor of the
hypothesis of selective access relative to the hypothesis of random access.The selective access model can itself be explained in terms of the library
or computer storage models of memory used by psychologists (Howe,
1970). Experiments rather than sufficient statistics are stored in memory,because the computation of a sufficient statistic requires retrieval, com-
putation, and storage operations each time a new experiment is observed.Storage is conceptually limited only by retrieval costs, and the decision tostore experiments rather than sufficient statistics can be interpreted as the
economic decision to save computation and some retrieval costs at the
expense of greater retrieval costs when the information is actually to beused. In other words, there is a configuration of retrieval costs, computa-
tion costs, and information use patterns that discourages the computation
and storage of sufficient statistics.

The other feature of our model--selective retrieval--has been the im-
plicit study of numerous psychologists under the headings of secondaryorganization and associationism (Howe, 1970, p. 60). Events are clustered
or categorized for later retrieval on the basis of some contentful categoriza-
tibn. For example, events contiguous in time may be accessed in blocks by
retrieval questions such as "what happened after that?" It is here assumed
that the relevant previous experiments were not conducted seriatim and
that categorization by time would not aid retrieval. Instead, experiments
are categorized by their meaning or implications for inference: those that
favor one hypothesis are stored in one file, those that favor another are
stored in another file.

To summarize, we are suggesting the two-part hypothesis: (1) events, not
sufficient statistics or their qualitative equivalent, are stored in memory;
(2) events are categorized in memory for later retrieval depending on theirimplications for inference. The intent of this section is not to test this
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hypothesis but only to explore its implications. We have, however, already
offered some qualitative evidence--the Griliches quotation. We may add
to this the author's (and perhaps the readers') casual reading of numerous
papers in econometrics and casual observation of economics seminars too
numerous and too dull to recount in detail here.

The principal implication of this model is that the information attained
from memory ought to be discounted. When it is not, and when a
researcher retrieves from memory only those experiments similar in con-
tent to his current experiment, he greatly understates his uncertainty and
places excessive faith in the validity of the current evidence.

This leads to the second question addressed in this section: given this
form of memory, which of the categories is it optimal to access? Which is
better: to retrieve experiments that tend to support the current experiment
or ones that tend to cast doubt on it? In terms of the formal model, given
some loss function for estimating p, which value of k is optimal? For
example, a value of k = N (r/n) necessarily accesses experiments that favor
the same values ofp as the current experiment, that is, p = r/n. It turns out
that with squared error loss it is better in the sense of minimizing Bayes
risk to access experiments that slightly contradict the current experiment.

Parenthetically, it may be observed that this model applies not only to
personal memory but also to social information processes. The complaint
that journals publish only extreme results is quite common. Newspapers
publish "bad" news. My friends transmit to me only their most titillating
stories. Casual observation thus suggests that information is categorized by
its implications for inference and that social information transmission
tends to emphasize the extremes. It is easy to construct a model of
information transfer that makes this desirable, if it is understood by the
participants that the information is selectively transmitted. Failure to
understand the selective nature of the transmission results in erroneous
inferences--the conclusion that the newspaper's man-bites-dog story ac-
curately portrays the average relationship between men and dogs.

The structure of the formal model is the following:

1. An infinite population having a proportion, p, of its elements that
possess a given attribute.

2. An "experience-free" prior for p in the beta family, which for con-
venience we take to be the diffuse prior

fo(p)ecp-l(l _�)- i. (10.1)
3. A binomial sample consisting of r successes in n independent trials

with likelihood function

f (r, nlp) ocp r(1 --p)�--r. (10.2)
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4. A set of T experiences stored in memory, each of which consists of a
binomial sample of size N with r t successes, t = 1 ..... T.

5. A rule for accessing memory, which we take to be the following: select
an integer k and memory reports the number of experiences Sk for
which r t -- k.

It is assumed for simplicity that the cost function for accessing memory
allows for one choice of k essentially for free but disallows any further
interrogation of memory. 3

In principle, memory could be interrogated before the sample values
(r,n) are observed. The strategy of letting k be a function of r and n
includes as a 'special case k independent of r and n. It cannot, therefore,
increase expected loss, and does, in fact, decrease it, except in unusual
circumstances. We therefore search memory after observing r and n.
Combining the experience-free prior with the likelihood function to form a
prememory distribution, we obtain

f(plr, n)crpr-�(l_p) �-r-� crf�(plr, n ) (10.3)
where f/� indicates a beta distribution

f�(ptr, n)=B_,(r,n_r)pr-,(l_p) �-r-', O�<p�<l,O<r<n
where

(r- 1)!(n- r- 1)!
B(r'n-r)= (n- 1)!

A postmemory distribution is formed by multiplying the prememory
distribution (10.3) times the likelihood function of p depending on s, the
memory output. This function can be derived by some straightforward
probability manipulations. The number of successes in each of the experi-
ences is assumed to be binomially distributed with parameter p

*r (k,p) = P(rt=k[P)=( N)pk(1-p)�V-�.k

Conditional on p each experience is independent and contains k successes
with probability �r(k,p). The number of experiences with k successes is,
therefore, binomially distributed with parameter �r

p(Sk=slp,k)= ( sT)�rs (1 _ �r) r-s (10.4)

3An alternative reasonable assumption is that extreme events are the most memorable, i.e.,
accessed at least cost.
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which, given s, is the likelihood function of p. Note that the first term in
the brackets in this expression is the likelihood function that we would
usually use to characterize the information in our s-remembered experi-
ences, each of which consists of a sample of size N with k successes. The
second term is a discount factor that should apply to this information
because of the way it was accessed.

If we let the discount factor be

d= d(N,k, T,s,p)-- [1-( N �p�i l -p)�V-�Jr-s,k/ '

the postmemory distribution of p formed by multiplying the prememorydistribution (10.3) times the memory likelihood function (10.4) is
f(p Jr, n, k, T, s, N) cr fl � (p Ir + sk, n + Ns).d (10.5)

which is the usual beta distribution times the discount factor d. The
discount factor can be written as

= [1-(N+ l)f/� (pJk+ 1,N+2)] r-'
which assumes a minimum value at p=k/N, thereby discounting the
memory evidence that would otherwise necessarily favor the value of
p=k/N.

To illustrate the effect of the discount factor, let us consider the case
when k--0, that is, when memory is accessed by the question "are there
any previous experiences that involved no successes?" The factor thenbecomes

d=[l-(1-p)�V] r-�
which assumes a minimum of zero at p = 0 and a maximum of one at p = 1.
This has the effect of pushing the posterior distribution away from p--0,depending positively on the number of forgotten experiences, T-s. Of
course, any experiences that are remembered necessarily favor p =0. The
net effect on the distribution thus depends on both the remembered
experiences and the forgotten experiences. There is an informal lesson to
be drawn from this. Old men with many experiences must tell more stories
in support of their theories if they expect to generate the same amount of
believability as a young man. Or to put it differently, the wisdom of age isgreatly exaggerated if memory failures are ignored.

We now turn to the problem of optimal memory interrogation. Consider
a researcher who has current experimental support for some proposition x
against an alternative y. If he searches memory for further evidence in
favor of x, he expects to find it but "hopes" he doesn't, since the absence
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of previous similar results will informatively cast doubt on the proposition
while the presence of previous similar results is unsurprising and relatively
uninformative. Similarly, if he searches memory for evidence in favor of
the alternative y, he expects not to find it but "hopes" that he does. In both
cases he anticipates obtaining relatively uninformative information. This
symmetry makes ambiguous the decision whether to search memory for
experiments in favor of x or in favor of y, an ambiguity that can be
resolved only in the context of specific problems.

For our problem, optimal choice of k, the memory-accessed value, is not
obvious but depends on a conceptually straightforward preposterior analy-
sis. Let us take the variance of p as the measure of uncertainty and seek to
find the value of k that minimizes the expected posterior variance.

The expected posterior moments can be written as
F

E ( Epls)= EP = n

E ( v (pls)) -- E (p21s)) - { [ (pls) 32 }

r(r� 1)
- n(n + 1)

That is, the expected mean is just the prior mean (r/n), and the expected
variance depends on k only through the factor E {[E (p[s)]2}. These can be
computed by appropriately defining the joint distributions ofp and s, as in
Leamer (1975).

The expected posterior variance as a function of k is illustrated for one
case in Figure 10.1. It is assumed that the current sample size n is equal to
10, that this sample involves five successes, that there are T--5 previous
experiments stored in memory, and that each of these five previous
experiments involve N= 10 trials. Note that although N=10, the least
desirable (EV(ps) maximum) memory accessed value is k=5. Past experi-
ences that involve k successes favor the value p=k/N. Thus the least
desirable way to interrogate memory is to ask if there are any previous
experiences that favor the value p= k/N--.5, the very value that is most
favored by the current sample, r/n--.5. It is almost as undesirable to
search memory for extreme experiences, k = 0 or k-- 10. The best thing to
do is to ask for experiences that slightly contradict the current sample in
the sense of favoring the valuesp = .8 orp = .2.

This resolves the ambiguity referred to previously. Since the value r/n is
currently the most favored value of p, the researcher regards it to be highly

Biases in Personal Probabilities 315

� o2

.0/

Fig. 10.1
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Expected posterior variance; n = 10, r = 5, N = 10, T= 5.

likely that there will be previous experiments that favor this same value.
Counterbalancing this influence is the fact that these experiments when
remembered are not particularly informative. Slightly contradictory experi-
ments, however, are much more informative and also are reasonably likelyto be in memory. Greatly contradictory experiments, although especiallyinformative, are highly unlikely to be in memory and therefore should notbe searched out.

With the caveat that our inferences do not necessarily generalize to other
situations, especially those free of memory failures, we conclude with thefollowing homilies:

A young man with one good story may merit your attention more thanan old man with several.

Spend your time thinking of reasons why you are slightly wrong.Waste not your time thinking why you are greatly wrong--you arelikely to go home with an empty basket. Least of all think of reasons
why you are right--though you are likely to fill your basket, the fruits
you bring home will contain little knowledge.

10.2 Biases in Personal Probabilities

We have discussed in the previous section an error that is potentially madewhen prior probabilities are formed after the data are observed. This is the
error of failing appropriately to discount prior information that otherwise
necessarily is supportive of the current sample. There are other interesting
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"errors" that are often made and that have important implications for our
study of inference with nonexperimental data. Many such errors arediscussed by Tversky and Kahneman (1974) and by Slovic (1972), and
Hogarth (1975). In this section we briefly discuss some of the more
interesting of these phenomena.

Memory Failures

According to the model of the previous section, events are memorable
because they have implications for inference, or to put it differently,
storage is arranged in anticipation of a well-defined inferential problem.As an illustration of a similar memory error without an anticipated
inferential problem, glance over the following list of names without read-
ing further the textual materials:

Gerald Ford
Betty Jackson
Maria Muldaur
Ralph Nader
Ronald Reagan
Barbara Wilson
William Shakespeare
Katherine Burgoyne
Al Jolson
Deborah Hirsch

Now cover up the list of names and answer the question, "Are there more
men or more women on this list?"

Tversky and Kahneman (1974) report that in such experiments there is a
tendency to overstate the proportion of men, when the listed men are
relatively more famous (as above), and to overstate the proportion of
women, when the listed women are relatively more famous. The important
point of the example is that the more memorable events are most likelyused to form conscious opinions. The resulting opinions may significantly
distort the past when the ease of memory is related in some way to the
evidential content of the event. Somewhat the same point has been made
in our discussion of access-biased memory: the current instance of an
event makes more memorable similar past instances.
OPTIMISM/PESSIMISM
Another error in forming opinions is the confusion of a utility function
with prior information. Optimists are people who think desirable events
will likely happen; pessimists think they won't. Although it does not
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involve a logical contradiction to condition opinions on utilities, most
thoughtful observers would argue against such a practice. The existence of
optimists and pessimists has a firm foundation in folklore and has been
more scientifically established by Slovic (1966).

The confusion between prior information and utility functions leads, in
the language of this book, to a confusion between interpretive searches,
which require prior information, and simplification searches, which require
utility functions. As an example, consider the (constant elasticity of sub-stitution) function

y (x,,x2) = a[ x�-" + (�x2)-"] -a/, (10.6)
In the limit, as j� goes to zero, this function goes to

y*(x,,x:)-- ax�,x�2 (10.7)I 2 ,

which, conveniently, is linear in the logarithms. A common practice in
economics is to test the restriction j�--0, hoping that the restriction is
accepted. We may ask if this is an interpretive search or a simplification
search. My own opinion is that the restriction derives originally from a
utility function--it is ever so much neater to work with the second function
than the first. With the passage of time, however, what was first a
simplification search has now become--inappropriately, I think--an inter-
pretive search. The many studies that failed to reject the restriction j�--0
generate a feeling among economists that the restriction is an hypothesis
that is favored by prior information. Although these studies do, indeed,
contain information about the parameter j�, the fact that many of them fail
to reject j� = 0 is only remotely connected to the accumulated probability in
a region around j� = 0. It is important, as we have argued, to distinguish the
output of a simplification search from the'interpretation of the data.
EGOCENTRISM

In formulating opinions, about other human beings especially, you are
necessarily forced to use yourself and your experiences as a norm. In so
doing there is a clear tendency to regard yourself to be overly representa-
tive, that is, to fail to realize appropriately the diversity of humanity. An
experiment I have done in my own classes is to have students estimate the
weight of a relatively heavy person and a relatively light person. Not only
do light people consistently underestimate the weight of the heavy subject,
moreover, they fail to allow for their increased uncertainty in their choice
of confidence intervals. Not only do light people have no concept of what
it means to be heavy, but also they fail to realize that they have no suchknowledge.
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The importance of this phenomenon in social research could be over-
stated as follows: judgment is critically important in the analysis of
nonexperimental' data, and the diversity of judgments of academics is
limited by the sameness of their lives. Thus the interpretation of evidence
by academics is a class phenomenon: relative unanimity within the class
and potentially sharp disagreements with other classes.
LAW OF SMALL mYSmERS

Tversky and Kahneman (1971a) in a study of psychologists observe that
even people with some formal training in statistical inference have a deep
belief in the "law of small numbers," according to which a sample is
necessarily representative of the population as a whole. As an example of
the law, the probability of a tail after five heads in a row is quite a bit
larger than one-half because a tail is "due" or, if you like, because the
sequence of six coin flips is strongly thought to be representative of the
universe of coin flips consisting of 50% heads and 50% tails. A more
important example is the unwarranted belief in the estimates generated by
a relatively small sample, as demonstrated, first, by the researcher's willing-
ness to go to great lengths to "explain" the sample result and, second, by
the researcher's surprise at the extent to which estimates can change as
evidence accumulates.

OVERCONFIDENCE

Heretofore we have been concerned largely with the location of prior
distributions. A few things may also be said about the dispersions of these
distributions. One phenomenon is overconfidence. In a study of students at
the Harvard Business School, Alpert and Raiffa (1969) found that 426 out
of 1000 98%-confidence intervals failed to capture the true value of the
item being estimated. You might have expected approximately 20 misses,
and the fact that as many as 426 intervals were "wrong" has to be
considered strong evidence of overconfidence. However, the extent to
which this can be considered to be a general phenomenon is subject to
considerable doubt. In particular, it may be very sensitive to the method of
eliciting the interval (Hogarth, 1975, provides many references).
CONSERVATISM

The counterpart of overconfidence with respect to prior information is
undervaluation of current information (Edwards, 1968). To give a simple
example, a coin is flipped to decide from which of two urns to select a ball.
The first urn contains 80% red balls and the second contains 20%. If a red
ball is selected, the conditional probability that it came from the first urn is
"objectively" .8. Subjects consistently underestimate this probability, that
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is, they fail to revise their prior (.5) as much as would be suggested by
Bayes' rule. There is a considerable literature in psychology, referenced by
Hogarth (1975), that explores the circumstances in which this phenomenon
Occurs.

TRIVIALITY

Another error that is made is the confusion of the mass of information
with the value of the information. A researcher sometimes attempts to
convince his reader of the validity of his study by inundating the reader
with great masses of information. Although it is obvious that the "informa-
tional weight" of a study is not equal to its physical weight, there is a
tendency to unduly correlate the two.

For example, Oskamp (1965) provided psychological clinicians with
written descriptions of the personalities of some subjects and then asked
the clinicians to answer 25 questions about the subjects. He found that
although the ability of the clinicians to answer the questions correctly was
little affected by increases in the length of the written description, the
confidence ascribed to the answers rose dramatically.
METHODOLOGICAL PATTERNING

Without comment, I would like to describe (with some literary license)
Skinner's (1948) experiment of randomly induced behavior. Hungry birds
fed at random intervals are observed to adopt the peculiar behavior of odd
head movements, hopping from side to side, and the like. The apparent
explanation is that on receipt of the seed, the bird hypothesizes that the
seed is a reward for the most recently antecedent trick. If the bird
happened to have twitched his head just before the seed arrived, the bird
naturally tries twitching his head again. The increased frequency of head
twitching makes more likely the event that a twitch will precede a seed,
and eventually the bird is twitching frequently with seeds always following
twitching. The belief in this relationship is so strong that even after the
seed stops arriving altogether the bird may twitch as many as 10,000 times.
Slovic (1972) sees parallels between pigeons and stockbrokers. I certainlywould not want to draw parallels between pigeons and social scientists.

10.3 Social Learning Processes
The opinions and decisions of an individual are only partly dependent on
his own observations. The advice and comments of other individuals is
another highly important source of information and decision rules. It is
embarrassing, on almost the last page of a book dealing with learning, to
make the observation that the personal learning heretofore discussed
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constitutes only a small part of the learning process. The space allocated to
social-learning processes reflects my knowledge, not my assessment of their
importance.

IMPROPER POOLING OF INFORMATION ACROSS INDIVIDUALS
Two or more individuals who have opinions based on the same informa-
tion should not change their opinions when confronted by the (necessarily
coincident.'?) opinions of others. In practice, people are unduly affected by
the opinions of others, to the point where unanimity is sometimes confused
with certainty.

An experiment, first performed by Asch (1952), demonstrates the re-
markable tendency of conformity of opinion in groups. Seven individuals
are asked to identify which of three lines is the same length as some
standard line. The first six individuals are, in fact, collaborators of the
experimenter, and they deliberately and uniformly select (aloud) a line that
is not the right one. The subject, who is unaware of the collusion, is then
forced to choose between either giving what he feels is the right answer or
conforming with the group. Faced with this decision, in 33.2% of the cases
the subjects conformed to the group and gave the incorrect response. This
contrasts with subjects not exposed to group pressure, who answered
incorrectly only 7.4% of the time.

It may be argued, of course, that this is not improper pooling of
information. Subjects may legitimately be influenced by the information
revealed by others. What the experiment fails to distinguish is conformity
due to information transfer from conformity merely to please the other
members of the group. If a correct answer were sufficiently well rewarded,
would the subject continue to conform? Yes, if he gets information from
the group. No, if he is merely trying to please his colleagues.
ADVOCACY ABILITY

Under the heading of triviality we observed the confusion of the physical
mass of information with its real content. Other features of the reporting
style are also likely to greatly influence our willingness to believe results
and arguments. Especially when the data evidence is relatively weak, it is
possible to end up with a uniform professional opinion about some
empirical issue, merely because one scholar has unusually fine advocacy
abilities. We may even think that our judgment in his favor is heavily
influenced by observed phenomena.

In a study designed to score advocates to eliminate ability bias, Warner
(1975) had two teams of advocates each write pro and con briefs about a
proposed expressway in Toronto. One pro and one con case was mailed to
1360 randomly selected electors. Warner found that the proportion of
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electors who favored the expressway after having received the briefs varied
from .53 to .85, depending on which pro and which con case they received.
The empirical facts are the same in all cases. The variability of the
proportion in favor of the expressway is partly attributable to sampling
error but mostly to advocacy ability.
CONSENSUS PRECEDES CERTAINTY

Divergent opinions when confronted with observations tend to converge to
each other as well as to the "truth." Dickey and Fischer (1975) observe
that for a broad class of sampling contexts, the posterior mean converges
to the true value at the rate of T- �2, but the dispersion of posterior means
across individuals goes to zero at the rate T- l (T is the sample size).
OTHER

A consensus model is given by DeGroot (1974). See also Pruitt (1971) andStone (1961).



APPENDIX I
PROPERTIES OF MA TRICES

Properties of matrices are reported in this appendix.
Familiarity with the elementary algebra of matrices is
assumed, and properties are stated but not proved. For
proofs of most of the propositions, consult Graybill
(1969).

Definitions

A matrix is a two-dimensional array of numbers de-
noted by capital boldface letters such as A. If the array
has only one column, it is called a vector and is
indicated (usually) by lowercase boldface letters such
as a. The/jth element of A is indicated by Ao., and the
symbol (A�} stands for a matrix with elements Ao.. An
m X n matrix has m rows and n columns.

(D1) If A and B are m X n matrices, the sum of A and
B is defined by

(D2) If A is m X n and B is n x k, then the product of
A and B is defined by

(D3) Multiplication of a matrix A by a scalar a is
defined by

,A= { aA/j }.

(D4)
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The transpose of a matrix (Ao. } is the matrix
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(DS) A matrix is symmetric if it is equal to its transpose A= A'.

(D6) A diagonal matrix is a square matrix with zeroes off the main
diagonal, A�/--0, for i�=j. It is indicated by A=diag(d�,d2,...,dn} where
Nil=4.

(D7) An identity matrix of order p is the p xp diagonal matrix
I v = diag( 1, 1 .... ,1 }.

If the order is obvious, the notation I suffices.

(D8) The notation I n indicates an n x 1 vector of ones. Where convenient,
the subscript n is suppressed.

(D9) The trace of a square n X n matrix A is the sum of its diagonal
elements

trA= � Aii

(DI0) Matrices A and B are said to commute if AB = BA.

(DI 1) A real symmetric matrix A is said to be positive definite if for any
vector x � 0, x'Ax > 0, and is said to be positive semi-definite if x'Ax = 0 for
at least one x�0 and x'Ax>0 otherwise. (Negative definite and negative
semi-definite are defined analogously.)

(DI2) A square matrix A is said to be orthogonal if AA'--I. (As a
consequence, A' = A- � and A'A -- I.)

(D13) A square symmetric matrix A is said to be idempotent if AA--A.
(Sometimes symmetry is not included in the definition.)
(DI4) The determinant of an n x n matrix A is

IAI--- � ('+ )AlilA2i2 ' ' ' Ani n
where (i�,i2 .... ,in is a permutation of the first n integers, the summation
extends over all n! permutations, and the sign is + if the permutation is
even or - if the permutation is odd.

(DIS) The inverse of a square matrix A is a matrix A -� such that
AA-�=A-�A=i.
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of a matrix is the number of linearly independent
number .of linearly independent rows).

natrix A is said to be nonsingular if and only if the rank

X n) and B is (p x q) the Kronecker product of A and B is
rix

I ...A�B1
AltB At2B
A21B A22 B A2n B

A�B =

AmlB Am2B ... A,,,BJ

>perties are easily verifiable, assuming that the operations

trAB --- trBA

tr(A + B) = trA + trB

IABl=IAIIBI

laA[= a"lAI (Ais (nXn))
(A')- l = (A- b'

(AB)' = B'A'

(AB)-l _-B-IA -I

BCB,)-� =A -I _ A- IB(B'A- lB + C - �)- IB'A -I
(A+B) -I = A- l(A -I + B- l)- lB -�

ratic form x'Ax be indicated by Q (x,A); then assuming H
>le

�b), H) + Q((/1 - b*), U*)
�( tt-b**.H+H*) + Q (b- b*,H*( H +H*)- IH)

where
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b** = (H + H*)- l(Hb + H'b*).

Theorems concerning the rank of a matrix are
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(TI 1) rank(AB) < minirank(A), rank(B)]
(T12) rank(A) = rank(A') = rank(AA').

The existence of an inverse is implied by the following theorem.
(TI3) If A is an nXn matrix, its inverse exists if and only if IAl�=0.

A square matrix may be partitioned as
E F

where E and H are themselves square. Then

G H _C-�GE-1 C_ I
where C = H- GE- iF.

(T15, I[ G H
An implication of (TIS) is IE+xx' I = IEl(1 +xE - Ix) for E a matrix and x a
vector.

The following theorems apply to positive definite (p.d.)'and positivesemi-definite (p.s.d.) matrices

(TI6) If A is n X n p.d., P is n x rn with rank rn < n, then P'AP is p.d.
(TI7) If A is p.d., then A-� is p.d.

(TI8) IfA is p.d., then IA[>0.

(T19) If A is p.d., and B p.s.d., then A + B is p.d.
The following results apply to idempotent matrices.

(T20) If A is idempotent, the values of 2� satisfying IA-M I --0 are eitherone or zero.

(T21) If A is idempotent, tr(A)--rank(A).

On the assumption that the operations are well defined. the
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11owing properties:

A�(B+C)=A�B+A�C

(A&B)&C =A�(B& C )

(A�B)' =A'�B'

(A�B)(C�D) =AC�BD

(A�B)-I =A-I�B -�

)al=lAImIa[- (Ais(n�n),ais(m�m))
tr IA � a I � tr(A) �try)

iation

a scalar function of the vector x, and let the vector of
with respect to x be denoted by

a vector function of the vector x, and let the matrix of
with respect to x be

0x 0x� )'
r function of the matrix A, and let the matrix of derivatives
:t to A be

lix function of the scalar t, and let the matrix of derivatives
ect to t be

0-7-- -�-F J'
�g formulas taken from Dwyer (]96?), are straightfo�ardlyA and B are matrices, x is a vector, and t is a scalar.
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0Ax
0x

030) Ox'Ax
Ox (with A--A')

030 0trA
--�--'I

0A

032)
OA = rlAI�(A- ')'

033)
0A = (A-

034) 0x'AI
(A symmetric)

035) 0xA- Ix
0A

__ _-- _ A- �xx,A- � (A symmetric)

(T36) 0 trAB
0A

037) 0A� =AOB0t 0t + 0t

038) 0A- l 0A A-0t -A-� �------ -�-

Gradients, Normals, and Tangent Hyperplanes

Let f(x) be a scalar valued function of the vector x. The differential off is

df= �i '�xi dxi
[Of'l,,

ax.
Setting this differential to zero and solving for dx determines a direction in
which there is no differential change in the function f. Geometrically, the
equation 0--(X-Xo)'(0f/Oxid=no) thus defines a hyperplane tangent to the
surface f(x)=f(Xo) at x o. The direction Of/0x is orthogonal to this hyper-
plane and is called the gradient vector of the function or the (inward or
outward) normal of the surface. The quadratic form f(x)= x'Ax has the
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e at Xo given by y4Axo = x'Axo, and Ax is the normal of

Ellipsoids

f this section is illustrated in Figure A l: If A is a real
ve definite matrix, the equation x'Ax---r: defines an
irections of tangency between a unit sphere and an
:: in the figure, are the eigenvectors of the matrix A, and
r axes of the ellipsoid. The corresponding eigenvalues are
eeded to produce a tangency between the unit sphere and
--r 2. The relative eigenvalues are just the relative lengths
ces of the ellipse, the longer axis having the smaller

square (k x k) matrix, x is a (k x I) vector of variables,
ealar, then x'Ax-- r: is the equation of a quadratic surface.
A=Ik, then x'Ax=x'x= r 2 is the equation of a sphere
igin with radius r. A family of concentric quadratic surfaces
tces x'Ax = r 2 for a given A and for any r >� 0.
of tangencies between a family of concentric quadratic
e unit sphere x'x= 1 can be found by maximizing or

X2

x'Ax;A�

xl

Fig. A.I Eigenvectors and eigenvalues.
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minimizing the quadratic form x'Ax subject to the constraint x'x- 1. This
is a simple Lagrangian problem:

0 (x'Ax-�[x'x- 1 ])
0 = 0 x -- 2Ax - 2kx,

where }� is the Lagrange multiplier. A tangency direction is thus a direction
x satisfying Ax=;kx, or

(A - Xlk)x =
If the matrix (A-Mk) were invertible, the only solution to this set of
equations would be X-----(A--2�lk)-�0k=0k. ThUS a condition for a nontri-
vial solution is that this matrix is not invertible and hence that the
determinant is zero:

k

i=O

This polynomial in }� of degree k is known as the characteristic equation of
the matrix A, and the roots of the polynomial are known as the characteris-
tic (or eigen, or latent) values of the matrix A. If �,. is a root of the
polynomial JA- ;�[kl = 0, the tangency direction c i satisfying (A- �,.Ik)c i =
0 k and normalized such that c�ci-- 1, is known as a characteristic (or eigen,or latent) vector of the matrix A.

Example. Let

The characteristic polynomial is ]A-M:J=(4-�):-4, with roots �1=2,
2�2 = 6. The characteristic vector corresponding to 2h =2 is a solution to

[4�2 2 l[c� 0
�us c� =(1, 1)/�, and si�larly c2-(1 , 1)/�

If a matra B is not sy�etric, there is a sy�etfic mat� A such that
x'Bx=x'� for all x. Merely set Ao.=Ay�=(Bo.+Byi)/2. �us for' the
analysis of quadratic surfaces we need consider o�y sy�etfic matrices.

THEO�M 30. Given a �mmetric �trix A, the characteristic �ctors
corresponding to unequal characteristic �lues are orthogoal.

Proof' 0 = c�Acj - c�Ac� = c�Ac� ..... =- c)A c i = tiao/- c)Aci = cicy� - cjc i(X/-Xi�c/. �us �&. implies cjc/=0.



ssociated with multiple roots occurs, for example, when
on x is a direction of tangency between the unit sphere
mily of concentric spheres x'x = r 2. Thus any vector x is atot. [The characteristic polynomial in this case is (2�- 1)kroots all equal to one.] Since any vector is a characteristic
�le to select a set of k orthogonal characteristic vectors. In
ence of multiple roots implies some freedom in choosing
ctors, but it is always possible to choose them to be�ere are no multiple roots, then the set of characteristic

The characteristic values of a real symmetric matrix are

�,that the characteristic polynomial has the complex root
'.with characteristic vector c=x+y(-I) �/2. Equating the
ex parts of A(x+y(- l)�/2)=(x+Y( - l)�/2)(a+b(- 1)�2)
- yb and Ay = ya + xb. Premultiplying these two expres-x' and then subtracting yields 0 = y'xa - y'yb- x'ya - x'xb
, which implies b = 0; thus X is real.of the equation Ac�=cih/, we have h/---cjAci/cjci=c� Aci'

' If A is positive definite, all of its characteristic roots are
'� is positive semi-definite, all its characteristic roots are

can be written as a linear combination of the k characteris-
�ieizl-_Cz , where C is a (k x k) matrix whose columns arers of A. The quadratic form x'Ax can then be written as

x'Ax -- z'C'ACz = z'Az,
liagonal matrix with the eigenvalues � on the diagonal. TheC---A follows from the fact that c)Aci--c)ci�. It is also easy
C,C=Ik. Collecting these results together, we have the

�rem:

.3. For any k x k real symmetric matrix A there exists a k x kC such that C'AC--A where A is a diagonal matrix and C is
C'C = lk-

�ms of C are used as basis vectors then the quadratic surface
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x'Ax--r 2 can be expressed in its canonical form

= = r
i

where x = Cz. If the eigenvalues �,. are all positive, this is the equation of an
ellipsoid centered at the origin with axes of length r/�. �/2. An axis is taken
by the transformation x = Cz into a column of C, that is, into an eigenvec-
tot.

The principal geometric result of this section can now be restated. If A is
a square symmetric positive definite matrix, the quadratic surface x'Ax-� r 2
is an ellipsoid located at the origin with axes equal to cir/(�.) �/2 where c i is
a characteristic vector of A and }�i is the corresponding characteristic value.

The following result describes the projection of an ellipsoid onto an axis:

THEOREM 34 The extreme values of the function �b'x evaluated over the
surface x'Ax---r 2 (where A is invertible) occur at the points
x = __. A- i�b�/r2/�b'A - i�b . The function at these points takes on the values
� i�b. (A corollary is that the orthogonal projection of the surface

1 �x'Ax-- r 2 onto the ith axis is the interval ]x,I < [A- ]]/r.)

Proof.' Maximization of �b'x subject to the constraint x'Ax---r 2 leads to
the Lagrangian derivatives 0 = �b + }tAx where }� is the Lagrange multiplier.
Solving for x yields x=-h-lA-�b, which can be used to determine h:
r2=x'Ax=�'A-i�bh-2. Thus h2=�b'A-l�b/r2, and the two x vectors are

x = _+A- l�br�/(�b'A- l�b)- I.
Conjugate Axes

The coordinate system of the eigenvectors of a symmetric positive definite
matrix A is not necessarily the only coordinate system in which x'Ax--r 2
assumes the canonical form of an ellipsoid. The transformation z=P-�x
takes x'Ax into z'P'APz, which is the canonical form of an ellipsoid. if
P'AP is a positive-diagonal matrix. Indicating a column of P by P�, the
matrix P'AP is a positive-diagonal matrix if �AP� = 0 for i�j. Such a P
can be constructed in the following way. Choose any vector P� to be the
first column. For P2 choose any vector satisfying P�AP�--0, which from
the discussion above requires that P: be in the hyperplane tangent to the
ellipsoid at P�. Next find a P3 in the intersection of the tangent hyper-
planes at P� and P2, etc. Such a sequence of P� vectors is called a set of
conjugate axes of the ellipsoid x'Ax -- r 2, and is illustrated in Figure A2.



f Inward

normal
Fig. A.2 Conjugate axes.

te Axes

ds, xfAx -- r� and x'Bx = r�2 where A and B are positiveof common conjugate axes, illustrated in Figure A3. This
t algebraically in Theorem 35.

Properties o! Matrices 333

Proof.' Using Theorem 33, find a matrix C such that C'AC is a diagonal
matrix A with any zero diagonal elements in the lower-right corner,

A� 0

Let E be C'BC, partition so that Fa2 corresponds to the full block of zeroes
of C'AC. Let (E2�E20be a matrix such that 0= E:�- E2:(E�E:0, and let

I 0F-- _E�E2 � I
and note that F'AF=A and

F'EF-- [ E�-E�2E�E2�0

Then find a matrix R� such that R�A i- V2(E�-EuE�Fm)Ai-�/2 R� = D�, a
diagonal matrix, and R'�R� =I; also find a matrix R 2 such that R�E22R2=
D 2, a diagonal matrix, and R�R 2 = I. Then let

P=cFIAi-'/2R , 0 ].0 R 2

If A is invertible the diagonal elements of D can be shown to be the
roots of the polynomial IB--XA[ =0, the columns of P satisfy the eigenvec-
tor equation (B-d�A)Pi=O, and the matrix P is unique if there are no
multiple roots d� �: d�, for i �j.

Fig. A.3 Common conjugate axes.

Given a pair of real (m x m) symmetric matrices A and B,
(mx m) nonsingular matrix P such that P'BP is a diagonalP'AP is a diagonal matrix with ones and zeroes on the



APPENDIX2
PROBABILITY DISTRIBUTIONS

The probability distributions used in this book are
reported in this appendix. Relevant properties arelisted. Johnson and Kotz (1972) and Raiffa and
Schlaifer (1961) are useful sources of additional details
and proofs.

Definitions

A multivariate random variable x is said to have the
probability density function (p.d.f.)f(x) if the probabil-
ity that x is in any region R is

P (x � R ) -- fRf(t) dt
where the symbols stand for the integral of f over the
region R. If the symbol R is suppressed, the integral byconvention extends over the whole domain of defini-
tion of f. Thus, for example ff(x)dx= 1 indicates that
the integral of a p.d.f. over its domain is equal to one.

The marginal p.d.f. of the subvector x 1, where x'=
(x;x)) is

g(x,) = f?(x)dxj
where the symbols stand for integration over the
domain of xj. The conditional p.d.f. of the subvector xl
given x� is

f(x)
h(x,lxb-- g(xb-

Whereas here we have selected the symbols f, g, and h
to distinguish three different densities, henceforth we,
without confusion, writef (x), f(x�), and f(x�lx�).

The mean or expectation of an element x i is
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E (xi)= fxif(x)dx. The mean vector of a multivariate random variable is
Ex-- { E (%) } = fxf(x) dx. The variance-covariance matrix of the random
vector x is

�' (x)= E (x- E (x))(x- � (x))'.
Beta Distribution

The beta p.d.f. is

ft�(Plr, n)=[B(r,n-r)]-'Pr-'(l-P) n-r-', 0<p<l
where B(r,n-r)=(r- 1)!(n-r- 1)!/(n- 1)!, and r,n>O. The first two
moments of a beta random variable are

�(p)-- �
n

v(p)--
n2(n+ 1)

Multivariate Normal Distributions

The nondegenerate r-variate normal p.d.f. is

f� (xl., Z)= (2�t)-r/21�2] - '/2 exp[ -- �(x-- la)'�2-'(x-- la) ]
where x and � are r x I vectors and � is an r x r sy�etric positive
definite matrix. �e mean and variance are

E(x)=u
V(x) =X

Partition x, g, and Z co�o�ably:
x'= (x;x)),g = (g}g�) and

with x 1 having q elements and x� having r- q elements. �e mar�al andconditional distributions are

f(�,lx,) =f� (x,[ m +z,,z3' (x,- m), Z,,-
Nomfion. x�N(g,Z) stands for "x is no�ally distributed with mean gand variance Z."
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:� N ( p, �2) with � r x r positive definite and if A is rn X r
then

A'z = (a+Ax)�N (a+ AIa, AE ).

�rmal distribution is an r-dimensional distribution that
robability on a subspace of dimension q < r. The covari-
a degenerate normal is singular� The density function is
� conditionally on the subspace in which the random
must lie.
rmal distribution has a density in the form of a normal
>es not integrate to one because �-� is singular. After a
necessary, an improper normal can be written as the
r dimensional proper normal times an improper uniform
e other variables:

f(x,, X j) cCf/v
�e marginal and conditional distributions of x� are taken
Jistribution fN (x�).

� is

,v) [(� 1)!l-'[vs2]�/2h�-'exp[-� vs2h]
'-> 0. The moments of the gamma distribution are

E(h)=s -2

[s2, v) stands for "h is gamma distributed with parameters

tent Distribution

;rate r-variate Student p.d.f. is the marginal of a normal-
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where H= Ns-2, v >0, and H is symmetric positive definite. The first two
moments are

E(t)=la �>1

V(t)=H-� v v>2

Note that the Student distribution and also the normal distribution are
written most conveniently in terms of the precision matrices H--V -�
instead of the variance matrices. More importantly, prior to posterior
analysis of location parameters involves formulas that are additive in the
precision matrices. Bayesians such as Raiffa and Schlaifer (1961) for these
reasons often express densities in terms of the precision parameters. In
consideration of students who are more comfortable working with vari-
ances, I have adopted the schizophrenic notation above.

Partitioning as in the case of the normal distribution and letting H-i- -
V, the marginal Student distribution is

f(t�) =fs q (t�l I%, (H-
where

(H- '),, = (H,, - H�j H3'Hs,) -' = V,,
and the conditional p.d.f. is

f (t, lt2) =f.� (t,I �a?, (H,,)-'s 2, ,, + r - q)
where

(H.)- �= V. - V�j V37 V:�
m)S2�

v+r-q

Notation. t�S(la, V,v) stands for "t has a Student distribution with
parameters la, V, and v."

Wishart Distribution

A k x k symmetric positive definite matrix fl is said to have a Wishart
distribution if its density function is

f�w (�lS, t')= cl�[ (�-a- ')/2exp[ - �tr ItS]
where

�--I_l�lv/2'�vk/2_k�k--1�/4�rk �,[ v+ 1-i 1
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a (k)< k) symmetric positive-definite matrix. Properties of a
ation are discussed in Zellner (1971, pp. 389-394). The one
in this .book is the following relationship between the
udent distributions.

If conditional on It, the random vector t is normally distrib-
an tt and covariance matrix (TIt)- � and if the matrix It has
stribution with parameters S and v, then marginally t has a
Student distribution with parameters It, S/T and v + 1 - k.
int distribution of t and � can be written as

I�[(v-k- O/2exp[ - � tr� S

- T(t-It)(t-It)'. The last line in this expression has the formdistribution, and the matrix � can be integrated from the
rely by inserting the appropriate normalizing constant:
f(t) cclWl -(p+�)/2

=(ISl(l + T(t-it)'S-'(t-it)) -(�+')/2
coif (tl It, sir, v+ 1- k).

APPENDIX 3
PROOF OF THEOREMS

5.5 AND 5.81

Proof of Theorem 5.5

The variables are first scaled so that the prior precision
is D*= dI. We let C n be the set of all combinations of
the first k integers taken n at a time. Define H(I,J) as
the minor of H formed by deleting the rows i � I and
columns jGJ with I, J E Cn for some n < k. Further-
more, let H(Im,Jn) be the minor formed by deleting
the rows I and m, and the columns J and n.

Expanding the characteristic polynomial as in
Gantmacher (1959, p. 70) yields

k

IH+dIl= Y. pjd: with py= � H(I,I)-- � IH, I,
j=o ��

where IHzI--H(i,i) and where we let IH, I--1 for I--
G.

We can derive a similar expansion for the adjoint,
which takes the form

k-I

II+dIl(I+dO-': Z Bjda.
j=O

We derive a formula for B a by collecting all terms that
involve d y. In our notation, the cofactor of the (m, n)th
element of H+ dl is

(-1)m+"(n+dI)(m,n).
In the expansion of this determinant, d � occurs in any
term that contains exactly j diagonal elements:

II (h,i + d),

IThis material is taken from Leamer and Chamberlain (1976).
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- 1, and I contains neither rn nor n. This product of j
s multiplied by (H + dI)(Irn, In), which can be written
n, In) plus terms that contain d. The latter are thereby
fideration, since they would create higher powers of d.
rrn, In)=O for rn or neI, the (rn, n)th element of B� is

(-1)'"+"E, eqH(lm, In).
"deleted" inverse H) -� to be the k x k matrix whose

-(im, in)/IH, I, wehave B:= Z lU, lU$ -"

;It i �Hb is the restricted least-squares point with fii = 0
can write the conditional posterior mean as

(H+dl)-�H�=wk dj � iH, Ib,/IH+dl I (1)�j=o

-ZS=oa Z lu, I. (2)
Iec�

tnvolves a straightforward transformation of H in these
for the arbitrary diagonal matrix D in the place of dl.

5.8

rem involves a slight rewriting of equations (1) and (2).

Problems.

1.

APPENDIX 4
ASSOR TED PROBLEMS

Chapter 2, Sections 2.1-2.2

Determine a probability for each of the following
events, and explain what is meant by probability ineach case.

(a) A one in the next roll of a die.
(b) R is the first letter of the first name of the

168th entry in the Los Angeles phone book.
(c) R is the first letter of the last name of the

eighth president of the United States.
(d) R is the first letter of the last name of the

president of the United States in the year
2000.

A coin is to be flipped. If it lands heads up, the
following statement is made: "Nixon's weight is
negative." Otherwise, the statement is made:
"Nixon's weight is positive." Which of the follow-
ing statements are true?

(a) The probability that a true statement will be
made is one half.

(b) The probability that a true statement will be
made is either one or zero, depending on
which statement is made.

(c) If we get a head and say "Nixon's weight is
positive," the probability that this is true is
one-half.

3. What is the probability of an event A if the odds
against A are (a) 2 to 1 (b) 3 to 1 (c) 3 to 2

4. In a three-horse race the odds against the favorite
are even (one to one); against the second horse,
two. to one; and against the "sleeper," three to one.
Find stakes that make you a sure winner.
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�wn that coherence implies the conditional probability
�(B)-- P(A N B) when A is a proper subset of B. Prove
rots A and B.

ed. If it lands heads up a ball is drawn from an urn
red and three black balls. Otherwise, a ball is drawn

ntaining three red and one black balls. Given that a red
rn this experiment, what is the probability that it came
trn?

s even odds that the Yankees will win the World Series.
nces that the Yankees are two-to-one favorites to have
ms. Given that they have more home runs, they are
orites to win the series. Construct a set of bets that make
ire loser.

�r 2, Sections 2.3-2.5

[lowing table where r� and n� are beta prior parameters
fie consists of one success in five trials.
95% interval E (p �) r2 n2 95% interval E (p �)

proximate prior distributions on the binomial parameter
om variable X takes on the value one for the event: a
�.cted United States citizen

than 48 chromosomes.
teeth.

, than 82,496 hairs on his body.

these events we observe 1 success (X-- 1) in a sample of
�are the probability of a one on the first trial with the
�f a one on the sixth trial. Give explanations for your

e
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Using a beta prior on p, give an example when the posterior variance
exceeds the prior variance.

(a) If your opinions about p are described by a beta distribution
with parameters r and n, what is the probability of getting asuccess on the next trial?

(b) Starting with a beta prior with parameters r� and n� and observ-
ing. r successes in n trials, what is the probability of anothersuccess?

(c) Suppose you have observed n successes in n trials, with the
"noninformative" prior n�=r�=O. What is the probability ofanother success, or is it defined?

(d) Formulate a beta prior for p--proportion of coins that land
heads up. What is the probability of another head if no heads
are observed, n--1, 10, 100, 10007

5. (a) Suppose that X and Y are both Bernoulli random variables (r.v.)with the same parameterp. (i) Given thatp is a random variable
in the sense that it has a prior distribution, can X and Y be
independent? (ii) What do we mean when we say that the
number of successes in n independent Bernoulli trials has a
binomial distribution? (Call this conditional independence.)

(b) If X is a Bernoulli r.v. with parameterp�, and Y is a Bernoulli r.v.
with parameter py, what restriction on the joint prior on (Px,Py)implies X and Y (marginally) independent?

6. A sample of size 10 with mean 50 was taken from a normal popula-
tion with unknown mean/i and variance 100. A normal prior for/iwas formed with mean m� and variance v�. Fill in the following table.

Prior Posterior
rn� v� 95%interval P(/2>48) rn 2 v 2 95%interval P(/2>48)
50 1000
50 1
40 1000
40 1

o Consider a population of size N consisting of pN ones and (1 -p)N
twos. How does one make inferences based on a sample of size n
about the mean # =p + 2(1 -p)--2-p when the sample (with replace-ment) results in s two's and f one's?
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proximate prior distributions for the following means:
IQ of Harvard students.
weight in pounds of Harvard students.
length in tenths of an inch of wooden foot-long rulers.
weight in marspounds of Martians.

�mple these populations, and in a random sample of size
e a mean of m-- 121 and a standard deviation of s=5.
posterior probabilities that you assign to the events

< 122.

12.

13.

Assorted Problems 345

(a) One thousand measurements with a ruler of the width of a finger
yielded a mean of 1.9682 and a standard deviation s=.06
centimeters. What is a 95% interval for the width of the finger,
assuming a diffuse prior where relevant?

(b) A single measurement with a micrometer yielded a value of
1.96105. Reconcile (a) and (b).

A random sample of size n is to be taken from a normal population
with known mean and the unknown variance 02. Beginning with a
prior for h = 0 -2 in the gamma family, compute the posterior distrib-
ution for h.

:her it is more appropriate when reporting results of a
�eriment to provide the data, the sufficient statistics, or
p.d.f.

I we begin with a normal prior for/� with mean rn� and
Two samples from a normal distribution are taken with
nd rn o and with the sample sizes n a and n 0. Given 02,

osterior" distribution for/� given rna alone.
�sterior distribution for/x given r% and rn 0 by using the

part (a) as a prior for sample b.
,sterior for/� given a sample mean m- (r%% + mono)/(n�
lith sample size % + no. Compare your answers to (b) and

�g are given: a normal population with uncertain mean/�variance a 2, a random sample of size n, and a normal prior
for /� with mean rn� and variance v�. Let rn2=E(l�l rn)

the sample mean.

down the posterior mean rn 2 given the sample mean, m.
ate the expected value of rn2 given/� but not m; given m
ute the expected value of rn 2 given neither m nor/�.
ute the posterior variance v2 of/� given the sample mean
.ute the expected variance given/� but not m; given rn but
,ute the distribution of rn2 given neither rn nor/�.

Problems. Chapter 3

Find the mean and variance of the constrained estimator (3.15).
Show that the F statistic for testing RlB=r is

(Rb- r)'(R(X'X)- 'R')-'(Rb- r)F=
ps 2

where p is the rank of R.

3. Find the posterior distribution of the residual vector u, f(u[Y,X),
given a conjugate prior for/3,02.

Given the regression equation Y = XlB + u, with u normally distributed
with mean vector 0 and covariance matrix o2V, with V�I, show that
the generalized least-squares estimator

b(V) = (X'V- 'X)- 'X'V- 'V
is the maximum likelihood estimator, given V. Show also that it is the
best linear unbiased estimator of lB.

e Let a regression equation be Y=XIB+Zy+u, where X and Z are
observable matrices, u is unobservable and distributed normally with
mean 0r, and variance is 02Ir . Let M z =I T-- Z(Z'Z)-IZ'.

(a) Show that MzM: =M:
(b) Show that the least-squares estimate of iB is (X'M:X)-�X'M:Y
(c) If y has a prior distribution with mean 0 and variance vl, what is

the variance of e--Zy+u? Find the generalized least-squares
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of 0 given the regression equation Y=XO + e. Show
estimator converges to the least-squares estimator of 0
in part (b) as v goes to infinity.

f=XO+n, u�N (O, o2Ir), and

1

0 2= 1

: the least-squares estimate of .fl.
�' a 95% confidence interval for
hypothesis fl� =0 versus the alternative fl�:0.
e a 95% confidence interval for fl� +
hypothesis fl� + r2 =0 versus the alternative
e the least-squares estimate of fl�, and

t assume that o 2 is unknown and that Y'Y=8 and T-- 12.

Lta in problem 6 and a normal prior for 0 with mean 0
I, determine the posterior distribution of 0- What are
intervals for fl�, f12, and fl�

ta in problem 6 and the prior in problem 8 with variance
to a scale factor h, find the equation for the curve

2 is unknown as in problem 7, compute a posterior
using a normal-gamma prior for (0, o2) with parameters

b* = (o, o)

N*=(O
v*=10

S '2= 1.

5% posterior intervals for fi�, fi2, and fi� +
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Problems. Chapter 4

1. It is known that x is normally distributed with unknown mean/� and
variance 0 2 = 1.

(a) Construct a .05 level test of Ho:/� =0 versus H l :/�-- 1.
(b) Write down the function P(Holx)/P(Hdx ).
(c) If P(Ho)/P(HO= 1, what is the significance level of the follow-

ing test: accept H o if P(Ho[x)/P(H�Ix)> 1; otherwise reject H 0.

2. Suppose that :�N(l�,o2/n) where o2= I and n is the sample size.

(a) Construct a .05 level test of Ho:/�=0 versus H�:I�O, given
n = 1, 10, and 100. For each value of n, draw approximately the
error characteristic curve, P (error I t�)-

(b) Construct a .05 level test of H6: I < .l versus Hi: I >,l, for
n = 1, 10, 100. For each value of n, draw approximately the error
characteristic curve, P (error[

(c) Suppose that you meant to test H 6 against H� but instead
constructed a .05 level test for H o versus H I. What is the error
characteristic curve for n = 1, 10, 100. What is the actual signifi-
cance level of the test?

3. Make use of the data reported in problem 6, Chapter 3 to do the
following problem.

(a) Let the prior allocate positive probability to the hypothesis
fl� =0, and let it otherwise be (appropriately) diffuse. Compute
for T=10, T= 100, and T=1000, P(/3�=O[Y)/p(/3� �=OIY ).

(b) Compute the classical t value for testing fi�=0 for T=10,
T=100, and T=1000. Is the hypothesis fi�=0 accepted or
rejected?

(c) Compute P(/3� =OlY)/P(/32=O{Y), using as a prior the uniform
distribution over the lines fi� = 0 and/92= 0.

(d) Suppose in testing fi�=0 versus /92=0 the first hypothesis is
accepted if it yields an equation with the higher R 2. Let g(fi�, rio
be the probability of making error of accepting the wrong
model. Write down an expression for g(fi�,/92) and explain why
it depends on fi� and /92. What is the maximum value of
g(/3�,/32)? What is the type I error probability d fi� =0 is the null
hypothesis and/92 = 0 is the alternative.



' constrained least-squares points given constraints of
[= Mr, where R is a given p x k matrix with rank p,
a givenp x I vector, and where M is an arbitrary p xp

ttion of this chapter, let the least-squares estimator of
�d let a constrained least-squares estimator be �b'� (R)
a row vector and where �(R)--b-(X'X) -�

�R')-�R')-�Rb. Show that �'� 01) has a smaller mean-
than �b'b if and only if the "true" squared t is less than
z/o2ROA,X)- �R'.

rnal linear regression model with known variance and a
normal prior distribution for the coefficient vector,
gencies between a posterior elhpsoid and either a prior
I ellipsoid lie on the information contract curve.

ely on the following statements that have been made
ar regression model Y=xfl+z�+u.

mexperimental sciences the explanatory variables x and
t subject to control, and they may be highly collinear.
es the variables are collinear because they are drawn
�'collinear" population; alternatively, x and z may be
lently distributed, but by chance are correlated in this
.r sample. It is important to distinguish these two possi-
\ useful test of the "collinearity problem" is a test of the
fis that x and z are distributed independently.
rity between the explanatory variables is less of a prob-
he variables are negatively correlated than if they are
y correlated.

lowing data, find the (four) principal component regres-
� and comment on the desirability of estimation subject
omponent restrictions.

X'X= -1 3 0 X'Y=
0 0 1

o

e

Assorted Problems

Making use of the data given in problem 6, Chapter 3,
(a)
(b)
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Draw the ellipsoid of constrained estimates.
Assuming the number of observations T is equal to 10, compute
the pretest estimator (5.10) of fl�, with a test level of .05 and the
hypothesis f12 -- 0.

(c) Can a Stein-James estimate of /3 be computed? Is the least-
squares estimate admissible?

(d) Making use of a spherical prior, graph the information contract
curve, and find the rotation invariant average regressions.

(e) Find the principal component regression estimates of/3.
(f) Compute the conditional 95% confidence interval for fl� given

f12.

(g) If the prior distribution is spherical, is there a collinearity
problem?

(h) For each coefficient, compute the measures of collinearity %
and c 2.

T observations of a two-variable regression model yielded the follow-
ing moments

Y'Y--2 T= 12
1 -1

Assume that the matrix X is fixed.

(a) Find a 2 x 1 vector 2� such that X� = 0.
(b) Find a vector fl that is observationally equivalent to the vector

(3,2).
(c) Is the function fl� + r2 identified?
(d) Draw a graph indicating the likelihood contours.
(e) Find an identifying restriction.
(f) If the prior is spherical, find a linear combination of fl� and r2

about which the experiment is personally uninformative.
(g) Find a linear combination about which the experiment is pub-

licly informative.
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