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Preface

Although it rightly claims to be the most rigorous of social sciences, economics 
does not progress — as a typical natural science does — in a straight line. Like a 
broad river slowly winding its way across a flat plain, economic thought advances 
in curves and loops. It turns left and right and divides from time to time into 
separate branches, some of which end up in stagnant pools, while others unite 
again into a single stream.

One of the divisions of this kind occurred between the East-European and 
Western theoretical thought. Mathematical economics in the U.S. and western 
Europe began to resemble in its playful elegance the artificial fountains of Ver
sailles, while Marxist thought in the East became under its smooth surface rather 
shallow.

However, in recent years the power of the mathematical method has been 
rapidly gaining recognition in socialist countries; and at the same time the builders
of theoretical growth models in the West become conscious of the fact that their 
approach has more in common with Ricardo, Marx and other classical economists 
than with Marshall or with Keynes.

While the driving and the steering mechanisms of centrally planned socialist 
and quasi-competitive free-enterprise economics are, in principle at least, entirely 
different, the basic structures of both systems can be described in terms of the 
same kind of parameters. Karl Marx, employing esoteric Hegelian terminology, 
distinguished universal “logical” from the transitory “historical” aspect of eco
nomic phenomena. Oscar Lange was the first among the eastern Marxist scholars 
to recognize that it is the first type of relationships that determines the possible 
growth paths of socialist and capitalist economies alike. He also was the first to 
introduce input-output analysis in the East.

Andrâs Brody’s book carries on from where Lange left off. Fie advances in this 
book the solution of theoretical questions discussed in current issues of western 
economic journals, but in doing so he shows how both the questions and the 
answers go back to Karl Marx and other classical economists. He makes effective 
use of powerful tools of formal mathematical reasoning, but also of intuitive con
jecture that, after all, is the ultimate source of all analytical insight. Engaged in 
theoretical inquiry, he is aware — and makes the reader aware — of the peculiar 
problems that arise whenever we have to pass from, the observed facts to mathe
matical formulae and from mathematical formulae back again to observable 
facts.
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A theorist will find in this volume-an.original and interesting..discussion of the 
fundamental problems of economic growth. To a general economist Hot familiar 
with input-output analysis or the modem mathematical theory of economic 
growth, if offers a systematic introduction to both subjects.

Cambridge, Massachusetts 
August 1969 Wassily Leontief Introduction.

Since the publication of Wassily W. Leontief’s first papers on Input-Output 
Analysis, communication among economists around the world has become easier 
and more fruitful. It turned out that his and a number of related methods of mod
em mathematical economics are not only important and useful in application 
but also serve to generalize a very wide set of problems. Mathematics has acted as 
a welcome and friendly translator of diverse verbal theorems and theories into a 
common language that is internationally understood.

With increasing technical penetration of the subject matter of economics we 
begin to realize that its deepest questions have much in common everywhere. 
This unity was obscured for a long time because the different economic schools 
used different approaches and different terminology to answer them. Until very 
recently these differences seemed to be irreconcilable. Yet slowly and laboriously 
we are becoming aware that widely differing views may be crystallized into similar 
mathematical models; that mathematical transformations can carry over one 
method of reasoning into another that at first seemed alien.

My task here is to probe a little further into these interconnections and to try 
to bridge the gap from one side : labor theory of value, or more precisely, Marxian 
economic thought. The purpose of this book is to translate Marx’s original ap
proach into mathematical terms and to indicate the path leading from it to modern 
quantitative economic reasoning. Once this is done it is possible to prove strict 
mathematical equivalence of a whole family of theories and models: the labor 
theory of value, game theory, open and closed static and dynamic Leontief sys
tems, linear programming, the mathematical theory of optimal processes and 
other general equilibrium models. Their common basis becomes all the clearer 
when they are applied to everyday economic tasks: analysis, forecasting, planning 
and control of economic systems.

The scope of the material considered here is restricted. Theories of money and 
rent are not discussed, although a parallel mathematical approach to them is 
much needed and indeed within reach. Neither do we enter deeply into problems 
of technological change. Limited to questions of freely reproducible goods, the 
text may serve as an introduction to a mathematical labor theory of economics.

The methodology will draw heavily on the eigenvalue — eigenvector resolution 
of matrices. This particular mathematical representation is all the more appealing 
that it helps to unify various theoretical approaches. The eigenequation can 
represent deterministic or causal relations of the sort that the classical, economists,
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Smith, Ricardo and Marx, set up. It can also be used in a teleological and opti
mizing approach such as that of the marginalist schools.

The book is divided into three parts. The first sets up the model. Full quotations 
of Marx’s writings are required to provide correct documentation. The second
one elaborates the theoretical implications of the model set up in the first part. 
The third part takes up questions of implementation, application and planning. 
The more complicated mathematical theorems and proofs are relegated to the 
Appendices.

I am indebted to many members of my Institute where I was free and indeed 
stimulated to do my research. I am also grateful to the Ford Foundation for a 
research fellowship at the Harvard Economic Research Project in 1964-65. I am 
particularly thankful to Anne P. Carter who encouraged me to translate and partly 
rewrite the Hungarian text, who understood what I had on my mind and helped 
to express it in English.

A. Brody
Institute of Economics 
Budapest, Hungary

Symbols

aik flow coefficient

A =  {aikj flow matrix

A = A’ C
V, o complete flow matrix

\A\ =  « maximal eigenvalue of matrix A

Leontief-inverse

p mark-up factor

Pik stock coefficient

b stock vector

B = {bik} stock matrix

c consumption vector

9 resources tied up in reproducing manpowei

X average rate of profit, rate of growl h

n rate of interest

P value or price vector

P complete value or price vector

s surplus labor

\BQ\ = q maximal eigenvalue of the matrix BQ



SYMBOLS

turnover time 

labor input vector 

wages

output vector

derivative of the output vector 

complete output vector 

final demand 

variable capital

Part 1

Setting up of the Model.

This first part of the book discusses a mathematical model of value and production 
theory. Three chapters are devoted in turn to Simple Reproduction, Extended 
Reproduction and Related Models.

Value theory and production theory or, to stress the continuous renewal of the 
processes, reproduction theory are dual reflections of society’s great metabolic 
process by which mankind expropriates and assimilates nature’s resources. They 
can be stated mathematically in two systems of equations, two models. But these 
two models will be tied together by a close interdependence and symmetry, usu
ally called duality. This duality stems from the fact that both models or systems 
of equations have the same coefficients. These coefficients represent the structural 
interdependence of the whole economic process. Value theory and reproduction 
theory will be thus developed in parallel as dual interpretations of a single central 
structure.

The models of value and reproduction that we study are similar to a family of 
models now well known in theoretical and applied economic analysis throughout 
the world. Its intellectual roots are traced back to Leontief, Neumann, Walras, 
even Quesnay. It is not generally recognized that many of the central concepts 
originate in Karl Marx. A prime goal of this book is to point out their logical 
roots in Marx and show that his analysis is not only compatible with these 
newer forms but also provides a firm and consistent theoretical basis for their 
development.

In the Marxian tradition we emphasize the historical frame of reference for 
abstractions. Our exposition begins with the definition of Simple Reproduction 
appropriate to prehistoric and ancient forms of production, yielding no surplus, 
or almost none. This idealized model of production plays a crucial role in Marx’s 
system of thoughts, as the following quotation shows:

“It is evident that when the laborer needed his whole day to produce his own 
means of subsistence . . . no surplus value was possible, and therefore no capital
ist production and no wage labor. In order for the latter to exist, the productivity 
of society’s labor must be sufficiently developed to create. . .  surplus labor of 
some am ount. . . [But] the existence of that necessary minimum productivity 
of labor does not in itself make it [surplus work] actual. The laborer must first 
be compelled to work in excess

At a lower stage in the development of the social productive power of labor, 
when therefore the surplus labor is relatively small, the class of those who live on
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the labor of others is in general small in relation to the number of laborers’5,
[T. 308].* .

Thus he considers production without surplus, Simple Reproduction, a logical
prototype of production before the advent of capitalism. It is a state of economic 
stagnation. Engels ties the “law of value” to this phase of history :

“In a word : the Marxian law of value holds generally, as far as economic laws 
are valid at all, for the whole period of simple commodity production, that is, 
up to the time when the latter suffers a modification through the appearance of 
the capitalist form of production. Up to that time prices gravitate towards the 
values fixed according to the Marxian law . . . ” fill. 900].

Or quoting Marx himself :
“The exchange of commodities at their values, or approximately at their values, 

thus requires a much lower stage than their exchange at their prices of production, 
which requires a definite level of capitalist development. . .  it is quite appropriate 
to regard the values of commodities as not only theoretically but also historically 
prim  to the prices of production” [III. 177],

He also stressed the inappropriateness of Simple Reproduction under capital
ism:

“Simple reproduction, reproduction on the same scale, appears as an abstrac
tion, inasmuch as the absence of all accumulation or reproduction on an ex
tended scale is a strange assumption in capitalist conditions . .  . However, as far 
as accumulation does take place, simple reproduction is always a part of it, and 
can therefore be studied by itself. . . ” [II. 399].

Later history brings capitalism and growth, more accurately characterized by 
Extended Reproduction and prices of production. Let us now define all these con
cepts in turn, stressing their historically and logically parallel evolution — a char
acteristic feature of Marx’s explanation — from the very outset.

The brackets refer to Karl Marx’s writings as indicated in the References, p. 187

1.1. Simple Reproduction

The central task of every economy — whatever its specific institutional form — 
is to allocate society’s labor, manpower to particular activities or areas of employ
ment. In the course of history this task has been and will be accomplished under 
many different varieties of social organization. Robinson Crusoe’s economy illus
trates a very clear and simple form of allocation.

This Boy-Scout economy is one of the oldest thought-experiments of our science. 
It abstracts from the perplexing welter of institutional forms and concentrates 
on the theoretical problems of human production and consumption in a one-man 
closed economy. Robinson is technologically sophisticated: his work can create 
diverse products. Nevertheless this thought-experiment studies division of labor 
in a simple, highly idealized social environment. Robinson’s “economy” is divi
sion of one person’s labor, the organization of his diverse functions and capacities. 
But all the many diverse activities are centered around himself. Robinson is the 
manager, the aggregate producer and aggregate consumer of his economy.

Analyzing Robinson’s deceptively simple economy Marx writes :
“Necessity itself compels him to apportion his time accurately between his 

different kinds of work. Whether one kind occupies a greater space in his general 
activity than another, depends on the difficulties, greater or less as the case may 
be, to be overcome in attaining the useful effect aimed at. This our friend Robinson 
soon learns by experience, and having rescued a watch, ledger and pen and ink 
from the wreck, commences, like a trueborn Briton, to keep a set of books. His 
stock-book contains a list of the objects of utility that belong to him, of the opera
tions necessary for their production ; and lastly, of the labor-time that definite 
quantities of those objects have, on an average, cost him. All the relations between 
Robinson and the objects that form his wealth of his own creation, are here . . . 
simple and clear . . . and yet those relations contain all that is essential to the de
termination of value’ ’ [I. 76 -7 ],

This quotation singles out important concepts in Marx. First it states that the 
chief “measurable” in economic science is time. The second is the concept of value. 
In a theoretical sense “those relations contain all that is essential to the determi
nation of value” because, as Marx puts it, “ ... that which determines the magnitude 
of the value of any article is the amount of labor socially necessary, or the labor- 
time socially necessary for its production” [I. 39].

In Marx, the notion of value becomes meaningful the moment there is a choice 
among diverse activities and diverse products. This notion, according to him, may 
remain latent and hidden in history for long periods. It comes to the surface only 
with the advent of commodity-production, that is, when products are produced



explicitly as commodities for exchange or sale, satisfying other people's wants 
and allocated to them in exchange for and in proportion to their respective prod
ucts. He believes that in absence of commodity-production there will be no value- 
in-exchange. Nevertheless, the underlying, deeper notion, value itself will remain
with us as long as there is division of labor, as long as there are different activities 
to compare. As long as we have to economize society’s labor, the notion of value 
is helpful whether there is a market (where values are expressed in prices) or not. 
As Marx puts it:

“Secondly, after the abolition of the capitalist mode of production, but still 
retaining social production, the determination of value continues to prevail in 
the sense that the regulation of labor-time and the distribution of social labor among 
the various production groups, ultimately the book-keeping encompassing all 
this, become more essential than ever” [III. 851].

The whole process of production and allocation can be described, analyzed 
and even solved in principle without open recourse to the notion of value. Let us 
see how Marx pictured this to himself. Continuing his analysis he speaks of eco
nomic problems of the future “community of free individuals” :

“All the characteristics of Robinson’s labor are here repeated, but with the 
difference, that they are social, instead of individual. . . The total product of 
our community is a social product. One portion serves as fresh means of production 
and remains social. But another portion is consumed by the members as means of 
subsistence . . . Labor-time . . . apportionment, in accordance with a definite 
social plan maintains the proper proportion between the different kinds of work to 
be done and the various wants of the community” [I. 78 — 9],

This second quotation makes it clear that for Marx it is not enough to measure 
direct labor expended on particular products. One has to take into account the 
quantity of products expended on production of the final, consumable products, 
too. One has therefore to account for those parts which remain “social” as means 
of production. In principle Robinson ought to do this too, because it matters 
whether he uses up few or many tools and other means of production in the course 
of his “goat taming, fishing and hunting” .

Marx makes this even more clear and explicit when setting up his tables of re
production. He writes about the exchange going on inside the so-called “depart
ment I” , responsible for producing means of production:

“Products which do not serve directly as means of production in their own sphere 
are transferred from their place of production to another and thus mutually 
replace one another . . . If production were socialized instead of capitalistic, 
these products of department I would evidently just as regularly be redistributed 
as means of production to the various branches of this department, for purposes 
of reproduction, one portion remaining directly in that sphere of production from 
which it emerged as a product, another passing over to other places of production, 
thereby giving rise to a constant to-and-fro movement between the various places 
of production in this department” [II. 428 — 9].

And here we arrive at a crucial and tricky question. It concerns not only Marx’s 
thoughts and the mathematical model to be built on them but also the general
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problem of planning and conscious management of human activity. Can those 
expenditures, those “to-and-fro movements” , be measured? Are they a stable 
enough basis for anticipations ? Are they reliable at all — and how can one rely 
on them?

1.1.1. Input coefficients

I believe these basic questions can only be answered in a historical perspective. 
The proportionate expenditures of labor and of means of production “that defi
nite quantities of objects cost on an average” take shape very slowly in the course 
of history. Gradually they do evolve to more or less stable proportions. This does 
not mean they become rigid or unchangeable. To suppose their constancy under 
the conditions of rapid technical change so characteristic of our age would be 
flagrant nonsense.

However, one can observe average proportions for any given historical moment. 
This average has a certain stability and is considered “normal”. The actual spread 
around tins “norm” may well be shrinking all the time. The lower limit of expen
diture is fairly strictly given by technical possibilities existing at every given date — 
and the upper limit is determined by considerations of efficiency. The upper limit 
will be the closer to the lower one the more efficiently and economically the society 
is organized. Thus average proportions of expenditure, average “input coeffi
cients” , will be fixed technically and institutionally at a given time and place not only 
as to their order of magnitude but also as to their possible “elbow room” around 
their “normal” magnitude.

Marx himself had a lot to say about the historical process shaping these norms 
and gradually making them stricter. First he stresses the historical role of division 
of labor in the “ Manufacture” — the historical forerunner of the modern factory.

“The labor-time necessary in each partial process for attaining the desired effect, 
is learnt by experience, and the mechanisms of Manufacture, as a whole, is based 
on the assumption that a given result will be obtained in a given time . . . Thus a 
continuity, uniformity, regularity, order, and even intensity of labor, of quite a 
different kind, is begotten than is to be found in an independent handicraft or 
even in simple cooperation” [I. 345]. And: “In Manufacture . . .  the turning out 
of a given quantum of product in a given time is a technical law of the process of 
production itself. . . The division of labor, as carried out in Manufacture, not 
only simplifies and multiplies the qualitatively different parts of the social collective 
laborer, but also creates a fixed mathematical relation or ratio which regulates 
the quantitative extent of those parts — i.e. the relative number of laborers, or the 
relative size of the group of laborers, for each detail operation. It develops, along 
with the qualitative subdivision of the social labor-process, a quantitative rule and 
proportionality for that process” [I. 345 — 6].'

He must add in footnote: “Nevertheless, the manufacturing system, in many 
branches of industry, attains this result but very imperfectly because it knows 
not how to control with certainty the general chemical and physical conditions of 
the process of production.”

2 p’i'o portions, prices and planning
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The situation develops further with, the advent of machinery and modern in
dustry:

“Just as in Manufacture the direct co-operation of the detail laborers establishes 
a numerical proportion between the special groups, so in an organized system of
machinery, where one detail machine is constantly kept employed by another, a 
fixed relation is established between their numbers, their size, and their speed”
[I. 380].

And nowadays, a century after Marx, we see this process in bolder relief. These
“fixed mathematical relations or ratios of production” prevail on a far broader 
scale. Newer developments : large-scale production, interchange of parts, industry
wide standardization, “scientific management”, assembly-line-balancing, contin
uous fabrication and finally automation, operations research, and systems en
gineering have imposed greater and greater limits on the flexibility of proportions 
for any given process. The fabrication process of a modern enterprise once deter
mined, it will enforce rigorous proportions among the expenditures for different 
sorts of manpower, raw and auxiliary materials, machine speeds and temperatures. 
It even requires the exact measurement and control of chance deviations from 
mean values.

Nowadays the sociologist mourns already over the uniformity and standardi
zation of the most individual social product : human life. And sometimes even this 
mourning and complaint seem to be prefabricated.

How much expenditure is necessary “on an average” under given circumstances 
to produce “definite quantities of those objects” needed by Robinson or the com
munity is only one question. How much expenditure would be necessary to pro
duce more or less of those objects, and how much expenditure will be necessary 
to produce the same amount (or more or less) tomorrow or ten years hence, are 
separate questions. We do not have to answer these additional questions here, 
since we are concerned with the model of Simple Reproduction. Simple Repro
duction in its strict and rigorous sense precludes the possibility of technical change. 
It excludes per definitionem change of proportions, alterations in the scale of pro
duction. Thus it requires no simplification beyond what is already implicit in the 
notion of simple, that is, not expanding reproduction. This abstraction of Simple 
Reproduction is analogous to concepts in other sciences as, say, “frictionless free 
fall” or “ideal gas”. In reality these do not exist but they help to understand the 
interdependencies and regularities of real gases, or real gravitational phenomena.

Even in the case of Extended Reproduction we circumvent the question of 
changing input coefficients and we set up and solve the model neglecting technical 
change. Thus in both the first and the second part of this book fixed proportions 
are assumed. They are real under given circumstances and at the given moment, 
and may be measured with more or less accuracy. Thus they can be treated with 
known tools of economic statistics and expressed with the necessary precision for 
present purposes.

By assuming approximate measurability we do not assume that input coeffi
cients are stable. By assuming the existence and measurability of the speed of a 
car we do not deny acceleration. We are concerned only in the interdependence
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and regularities among the coefficients themselves, emerging in the context of a
given moment. The problem of change will not be considered until the third part 
where problems of historical description and experiments in explaining and plan
ning this very change are our subject.

In Parts 1 and 2 we are not yet considering whole processes of economic growth, 
but only given states of a system. Thus the usual objections against linear models 
of production — that they assume constant returns to scale etc. — are not really
relevant.

1.1.2. Output proportions

The notion of value, the emergence of exchange and value in exchange, is a recent 
phenomenon in the history of mankind. Let us begin by analyzing proportions of 
production, volumes or scales of outputs.

First, we consider the “quantitative rules and proportionalities” of a very sim
ple fictitious economy. In our example we simplify even Robinson’s economy and 
imagine that he produces only two products. To name them somehow we call them 
“Tools” and “Materials” .

In choosing these names we do not mean to distinguish between means of pro
duction and consumption, or between consumers’ and producers’ goods, or be
tween the Marxian “department I” and “department II” . Our distinction is only 
superficial. Later we shall extend it to the general case of n products, that is, 
to deal with an optional but finite number of different products. Under modern 
production conditions we are not generally able to distinguish ex ante between 
producers’ and consumers’ goods. Distinction is made ex post: an article of con
sumption is that which is already consumed. A great variety of important new 
developments and products (electricity, electronic devices, oil and its byproducts, 
chemicals and synthetics, cars and motors, etc.) can either enter personal con
sumption or lend themselves to productive (that is, reproductive) use as interme
diate goods. Their quality, form and appearance do not determine their economic 
role.

Let us now assume we measure “Tools” by number and “Materials” in kilo
grams. The free disposition over units of measurement is more apparent than real, 
because “To discover the various uses of things is the work of history. So also is 
the establishment of socially recognized standards of measure for the quantities 
of these useful objects” [I. 35-6],

Robinson now, as thoughtful accountant and diligent economic statistician, 
observes that the expenditures necessary on the average to produce

1 kilogram o f Material
are the following :

0.7 Tools
0.2 kilograms of Material 
1 hour work.

1 Tool 

0.2 Tools
0.2 kilograms of Material 
1 hour work

2*
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If he knows Ms consumption needs from experience he now is ready to allocate 
yearly labor power (the manpower of his society) among competing activities. This 
allocation problem might be solved without recourse to any notion of value, yet 
value is already implicit in the measurement of the necessary labor-time.

Let us assume further that for keeping body and soul together Robinson needs 
100 Tools and 600 kilograms of Material for himself each year. The question now 
is: How much ought he to produce to satisfy his needs and to reproduce all the 
means of production used up in the yearly production of his needs ? We state his 
problem in the language of matrix-calculus.

Let the n by n matrix A designate the input coefficients. Each element aik stands 
for the amount of product i used to produce one unit of product k.

In our example 0.2 0.7"
0.2 0.2 '

Let y  — (ys, . , . ,y„) be the vector of Robinson’s needs, i.e., the personal 
consumption necessary to reproduce the manpower of society. In. our example 
y  =  (100, 600). Finally let x  =  (xq,. . . ,x„) stand for gross outputs, volumes of 
production in the different branches of economic activity. We will speak about 
this vector as the output or gross output vector whenever its absolute magnitude 
concerns us and, interchangeably, as output proportions when we are interested 
only in the proportions of economic activities.

Now Robinson’s problem will be solved if he determines the output that, after 
covering the inputs necessary to this output (in Marxist terminology “replacement 
fund” , in Keynesian, “user cost”), yields the necessary final bill of goods, the ne
cessities of life :

x  -  Ax  = y. ( l)

Given y, this equation may be solved for x  if the matrix (1 —A) is regular. Here 
1 stands for the « by » unit matrix. We provisionally assume (and later prove) 
this regularity and thus the existence of the inverse Q =  (1 — A )"1. In this way we 
are ready to solve equation (1).

x  = Qy. ( 2 )

In our numerical example Q = 1.6 1.4 
0.4 1.6 and

therefore x  — Qy — ' 1.6 1.4 ‘ 100 ‘ ' 1000 '
0.4 1.6 600 _ 1000

Robinson has to produce one thousand Tools and one thousand kilograms, of 
Material and expend on this production 1000 + 1000 == 2000 manhours each 
year. Thus he must allocate his labor-time in equal proportions between its two 
functions, tool- and material-making.
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By this ingenious method — simple equation solving — Robinson, and every 
closed community, can allocate the different .kinds of labor available, provided 
that they can make their wants or needs explicit. Although the notion of value 
remains implicit, the knowledge of the input coefficients reflecting the structure of 
production is sufficient to determine “in accordance with a definite social plan” 
“the proper proportions between the different kinds of work” . Depending on its 
data processing and computing facilities — clay tablet, rune, quipu, abacus or 
electronic equipment .. society may solve allocation problems of increasing com
plexity.

Accounting in kind — with “ use values” as classical economists called them — 
is characteristic of division, of labor in primitive communities, inside tribes or 
families, in ancient Greek, Mexican or Asian societies, even in feudal economies 
before money entered to blur the original setup. All these examples have social 
organizations and technologies best characterized by Simple Reproduction. Pro
duction yields no significant surplus. When anything does remain after providing 
for the everyday needs of society it is not accumulated and invested in produc
tion for economic growth. Simple Reproduction will usually entail a certain 
traditional rigidity of wants and needs. This makes “planning” and “anticipating” 
relatively easy, as it was for the biblical Joseph in the years of the seven fat and 
seven lean cows.

Allocation of labor requires some organizational skill, which seems, to develop 
simultaneously with, mathematical knowledge and the art of writing and account
ing. I suspect the prehistoric forms of mathematics — counting, measuring, 
cardinal numbers, the four operations of arithmetic — came into being and 
developed as natural notions of “mathematical economics” for primitive and 
rough economic formations. See, e.g., Chadwick [1958], particularly chapter 7, 
where economic data reminding of fixed proportions emerge for Mycenaean 
Greece.

Our rough and ready allocation model can do more than simply allocate. 
It can also establish rigorous conditions for the feasibility of Simple Reproduction 
in terms of the input coefficients. With our model’s help we can define the criterion 
of Simple Reproduction in exact mathematical terms. We can state the quantita
tive relations among the input coefficients necessary for a qualitative condition, 
Simple Reproduction.

Robinson’s economy will be in a state of Simple Reproduction if and only if 
his net product, those 100 Tools and 600 kilograms of Material, suffice to restore 
his labor power for a year, keeping him healthy and sane enough to carry on with 
his usual work. Thus performing the same functions each year he is rendered able 
to continue the same tedious and boring process the next year.

If, at the given consumption level, he could only work less than the necessary 
2000 hours, his economy would deteriorate. In that case only Diminishing, Re
stricted Reproduction could be carried on and he would eventually starve. But if 
this consumption gives him strength enough, to toil more than 2000 hours, then, he 
can accumulate some surplus and may even enlarge his economy. Extended, 
Expanded Reproduction is now possible and economic growth may take place.
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We may then define Simple Reproduction as the condition where the final bill 
of goods, the net product, is just sufficient to reproduce the primary factor, labor 
power, on a constant scale.

Simple Reproduction is not just unaltered reproduction of productive activity
on a constant scale, nor simply conservation of the same rates of output. It also 
implies the unaltered maintenance of the prime mover of production, manpower, 
in the same, never-changing routine.

“Labor created the human being itself”, said Engels. Human labor and produc
tion remain the means of creating and maintaining humanity. We should thus 
specify a third product with the two products of Robinson’s economy already 
enumerated. The most important product, purpose and reason of production, 
its prime mover and ultimate beneficiary, is Robinson himself.

This peculiar and perishable product requires certain inputs for its production. 
We assumed maintenance of his 2000 hours per year of labor power required 100 
Tools and 600 kilograms of Materials. Now he may pass the remaining 6000 hours 
of the year relaxing, digesting and performing other cultural activities. On the 
average the expenditure needed to maintain him will be 0.05 Tools and 0.3 kilo
grams of Material per manhour. These inputs are necessary costs of this partic
ular product, as are the respective inputs for the other products.

Now Robinson, when in danger of his life, might temporarily subsist on less. 
He may work even when hungry and cold — for some time. Thus his usual in
put structure might be temporarily distorted. But even a small change in accus
tomed proportions has been known to cause great political waves in modern socie
ties where the consumer is more delicate and susceptible. This causes a certain 
stability in input coefficients that may well exceed the stability of industrial in
put coefficients — making change in the structure of consumption slower and 
smoother. We will return to this question later. Meanwhile we suppose that Rob
inson takes his own input data from his stockbook as he does for other products.

We also assume that he can and will exert his labor power in full and without 
obstacles. Unemployment seems to be a gift of Extended Reproduction and there 
is no need to raise the question here.

Let us denote these input coefficients by the vector c = (c1;. . . ,  c„). This vec
tor expresses personal consumption per manhour expended, and is in Robinson’s 
case 1/2000 y  = (0.05, 0.3). Let us also specify direct manhour coefficients into 
production as the vector v = (zq,. . . ,  vn). In our example v = (1, 1).

With these symbols we are ready to spell out conditions of Simple Reproduction 
as a mathematical equation :

vQc = 1 . (3)

Under Simple Reproduction the consumption expenditure necessary to main
tain 1 hour of labor power (c), needs a gross output (Qc), which can be produced 
in exactly one hour (vQc).

If vQc < 1, Expanded Reproduction is possible because reproduction of one hour 
of labor power costs less than one hour. Part of the product can be removed from
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■ the great carousel of reproduction in each round without jeopardizing Simple 
Reproduction. It can be invested anew in production to make it grow. But the 
potential for Extended Reproduction might alternatively be dissipated in con
sumption by others or massed into monuments, pyramids or cathedrals.

If vQc > 1, then the scale of production can by no means be maintained. The net 
product is inadequate to reproduce labor power unimpaired. The system needs 
outside help. Without it, it will deteriorate to Restricted Reproduction.

Mathematically we may define Simple Reproduction even more concisely. 
This definition will introduce the central mathematical tools used in this book : 
eigenvectors and eigenvalues of matrices. We begin with a brief characterization 
of these concepts.

The (right hand) eigenvectors of the matrix A are those vectors, x, which satisfy 
equations of the form Ax  =  ax, where a is a scalar. The respective scalar quanti
ties are called eigenvalues. We can transcribe the definitional equation to 
(del —A) x  — 0. This shows that the eigenvalues are those values, a, that make 
the determinant of the matrix (ocl —A) singular. But expanding the determinant 
we get an equation of degree n in a. This equation then will have n, not necessa
rily distinct, roots. (Here n is the order of the matrix A.) We can compute the 
respective eigenvectors with the aid of the different singular matrices.

Here we are interested only in the maximal eigenvalue which, in our case, is 
positive and has a totally positive eigenvector associated with it. The most impor
tant theorems about all this are relegated to Appendix I, For present purposes 
we need only to know that such a maximal eigenvalue always exists for non-nega
tive and irreducible matrices and that it can be determined unequivocally.

We single out the special case where the maximal eigenvalue equals one and 
thus the eigenequation is Ax = x. The vector, x, remains unaltered after multi
plication with A. The vector, x, is then called the fixed-point of the transformation 
A. It is a right-hand eigenvector and we will later define the lefthand eigenvec
tor pA = p analogously.

Our matrix A contained only the input coefficients for intermediate products. 
To describe the total, closed system we needed the information supplied by the 
vectors v and c, representing inputs of and consumption needs of manpower. 
It is straightforward to complement the matrix A by these vectors, adding the last 
sector, manpower, to the picture. Our new “complete” or “full” matrix will con
tain all the input coefficients, thus subsuming all the information characteristic of 
our production system. Let us designate this complete matrix

A =
A,
v,

c
o

(4)

The inner proportions given by the coefficients, aik, determine whether there is 
Simple Reproduction in this closed system, Simple Reproduction is thus an in
trinsic feature of the matrix A. In effect the following theorem may be stated : 

The condition of Simple Reproduction is that the maximal eigenvalue of the 
complete matrix, A, be equal to one, | A | = 1. If | A |<1 it is possible to extend
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the production process. If 1 A ]>1 reproduction ceases to be complete, only Re
stricted Reproduction is possible.

This theorem is fundamental to the mathematical treatment that follows. It' 
can be proved in the following way :

From theorems of Perron and Frobenius (see Appendix I) we know that a non- 
negative irreducible matrix has only one positive eigenvector and this must be
long to the maximal and positive eigenvalue. Thus if we find a positive eigenvector 
to our matrix, the eigenvalue belonging to it must be the maximal one. We can 
prove now that the vector, given by the prescription x =  (Qc, 1), is such a right- 
hand eigenvector. It is a positive vector and from equations (4) and (3) and from 
the identity AQ e  Q -  1 it follows that*

A, c 'Qc AQc +  c ' (Q -  l )c  + c ■ Qc
V ,  o _ 1 _ vQc 1 . 1

The vector x, given by the prescription above, must be a right-hand eigenvector 
of the matrix A, its elements being unchanged by multiplication with the matrix. 
At the same time it was shown that the maximal eigenvalue is equal to one.

Numerical example

In our case A =

thus

0.2 0.7 0.05
0.2 0.2 0.3
1 1 1

' 0.2 0.7
0.2 0.2
1 1

Qc =
0.5
0.5

0.05 ' 0.5 0.5 '
0.3 0.5 0.5
0 1 .1

The fundamental theorem distinguishing quality of reproduction can also be 
formulated in the following way:

Given the non-negative and irreducible matrix, A, comprising the input coeffi
cients of a closed and complete system of production

(a) if there is a positive output vector, x, for which Ax = x, then Simple Repro
duction is possible in this system;

(b) if there is a positive output vector, x, for which Ax <  x, then Extended Re
production is possible. In this case, the surplus product is non-negative, x —Ax> 0, 
and may be used to increase production, or it may be withdrawn from the system 
without jeopardizing Simple Reproduction ;

* (1.-A )-1 =  Q, thus 1 =  (1 -A )  Q =  Q -AQ .
This identity is a special case of the resolvent equation discussed in Appendix II.
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.(c) if finally neither (a) nor (b) is fulfilled, then only Restricted Reproduction 
is possible. Simple Reproduction would be possible only if the “negative surplus” , 
x — Ax<0, were supplemented from outside sources.

This already proves that equation (1) has a solution in our two cases of Simple or 
Extended Reproduction. In these two cases the maximal eigenvalue of À is equal 
to or less than one. The matrix A being a minor of the matrix À (with one row and 
one column, manpower, deleted) will have a maximal eigenvalue strictly less than 
one. Now the eigenvalues of the matrix (1— A) will be the identical rational func
tions of the matrix A (see Bodewig, 1962). If  therefore the matrix A has the eigen
values eq, . . . ,  the matrix (1 —A) will have the eigenvalues 1 — a l5 . . ,  1 —an. 
As | a.1 1 < 1, l —at A 0 for all i. Thus no eigenvalue of (1—A) can be equal to 
zero ; the determinant of the matrix (1— A), being the product of these eigen
values, cannot be equal to zero; hence the matrix (1-A ) must be regular and 
have an inverse.
, But the important fact that the matrix A  is irreducible, besides being per defini- 
tionem non-negative, still awaits proof. If, now, the matrix were reducible then there 
would be a part ~  certain branches — of the economy that forms a closed and 
complete system in itself and does not need inputs from other branches of the 
economy. But the existence of such a closed and complete subsystem is impossible. 
This closed subsystem would necessarily contain the manpower sector since every 
branch requires labor input. On the other hand the manpower sector cannot be 
separated from the other sectors because, directly or indirectly, it needs the out
puts of all the productive branches of the economy.* Since the economy cannot 
be separated into two independent parts, one of them not needing inputs from 
the other, it forms an irreducible system.

The irreducibility of matrix A is a consequence of the fact observed by the clas
sical economists: the purpose of production is to satisfy human wants directly 
or indirectly : “directly as means of subsistence, or indirectly as means of produc
tion” [I. 35],

On the other side, the fact that every product needs direct or indirect input con
nects these branches into an interdependent whole. This fundamental observation 
leading to the labor theories of value is expressed very clearly by Marx :

“This common, ‘something’ cannot be either a geometrical, a chemical, or any 
other natural property of commodities . . , the exchange of commodities is evi
dently an act characterized by a total abstraction from use-value. Then one use- 
value is just as good as another, pro vided only it be present in sufficient quantity. . .  
If then we leave out of consideration the use-value of commodities, they have only 
one common property left, that of being products of labor” [I. 37 — 8].

Finally, note that in determining the gross output, x, as an eigenvector, we de
termined only the proportions of outputs. Every scalar multiple of x, say px, 
will be an eigenvector. Thus, for example, the vector (1, 1, 2) or (24, 24, 48) will

* Here we disregard certain blessings of Extended Reproduction, such as military and 
government expenditures that might be separable from the rest of the system.
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solve the same eigenequation equally well as the former vector (0.5, 0.5, 1). This 
can be verified by multiplication by the matrix Â. ■

It is only output proportions and not the absolute scale of production that are 
determined by the matrix A of the closed system. The system has one degree of 
freedom — one product’s gross output can be chosen arbitrarily. Once this is 
done, for instance if the amount of labor hours at our disposal is given, all the 
other gross outputs become definite.

Thus Simple Reproduction is possible if total (personal and productive) con
sumption, Ax, is equal to total production, x. Total consumption now means all 
demand whether personal or not. Thus total production is severely double- 
counted. It counts not only the total turnover, (all the supply coming to the 
market), but the supply of reproduced manpower, too. This notion is to be 
distinguished from both the Western “total product” and the Eastern “social 
without its product” . It is doubly double-counted.

1.1.3. Values

Why do we need the notion of value, (or its more specific variants, value-in- 
exchange and price) if the production process can be balanced in principle 
without its help?

As division of labor progresses the diverse functions of labor become separated 
from each other and attain an apparent independence. The original clarity of the 
production process becomes blurred. Some means of making partial processes 
comparable without knowledge of the whole process, without requiring the whole 
jig-saw puzzle be put together every time, becomes necessary. This means is mon
ey, and the common something it represents is value. Money, once introduced, 
will enhance and accelerate the progressive division of labor, the diversification 
and apparent self-sufficiency of the different forms of labor.

As division of labor and commodity production (that is, production for an im
personal market) makes direct and conscious regulation of production more 
difficult, the labor of society will be dominated increasingly by prices, that is by 
exchange-value.

The labor process that creates use-values is at the same time the process that 
creates exchange-values. Therefore the notion of value should be developed from 
the interdependencies already discussed. Let us examine the production process 
with this view in mind. We resume the line of thought taken by Marx :

“The various factors of the labor process play different parts in forming the 
value of the product.

The laborer adds fresh value to the subject of his labor by expending upon it a 
given amount of additional labor, no matter what the specific character and 
utility of that labor may be. On the other hand, the values of the means of pro
duction used up in the process are preserved, and present themselves afresh as 
constituent parts of the value of the product. . . The value of the means of pro
duction is therefore preserved, by being transferred to the product” [I. 199].
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And to determine-more exactly the value transferred by the means of production : 
“If the time socially necessary for the production of any commodity alters. . . 

all previously existing commodities of the same class are affected, because they 
are, as it were, only.individuals of the species, and their value at any given time is
measured by the labor socially necessary, i.e., by the labor necessary for their 
production under the then existing social conditions” [I. 210].

Thus the value transferred by the means of production should be reckoned in 
terms of the present value of the expenditure without taking into consideration 
the fact that at the times of their actual production they might have cost more or 
less. It is not the expenses of actual production but costs of potential reproduction, 
replacement costs, that settle the accounts.

If we supplement our symbols with the vector p  =  (j>}, . . . ,p n) standing for 
the values of the respective products, then we may determine their magnitudes in 
the following way:

p = v + pA . (5)

Value = new value added by the laborer + value of the means of production 
used up in the process.

Our input coefficients play a new role in this equation. Formerly the coefficient 
aik measured the amount of product i, necessary to produce one unit of product k. 
The total amount of product i used up in the production process k  was given by 
aikxk. Now we deduce from the same coefficient how much of the value of product 
k  can be ascribed to the product i, what is the original value, pfiik, preserved in 
the process.

If equation (1 ) shows the flow of use-values in the metabolic process of production, 
then the new equation (5) presents the flow of exchange-values in the process of 
value creation. Equation (5) depicts the flow of “money” paid for the products used 
up in the processes. These money-flows go in the opposite direction to the product 
flows, and represent a dual view of the process. While the magnitudes x k, measuring 
outputs of use-values, were not comparable among each other (because their units 
of measurement usually differ), the magnitudesph measuring values of the products, 
all have the same unit for measurement. Hence, they are directly comparable.

Equation (5) can be solved in the same way and under the same conditions as 
equation (1). Its solution, using the inverse ( l —A ) -1 =  Q, can be written

p =  vQ-

Numerical example

P vQ =  (1, 1)
1.6
0.4

1.4
1.6

= (2,3).

(6)

In Robinson’s economy 2 kilograms of Material are worth 3 Tools. The value 
of the products exists and is computable in Robinson’s economy even though
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there is no value in exchange, because there is no exchange. This fact is indepen
dent of whether or not Robinson luxuriates in computations.

From the definition of value, given above, and from the mathematical equation ' 
(5), it follows that value is nothing but the total amount for labor, present and 
past, direct and indirect, used up in the production of the product.

It is well known that the inverse of the matrix (1 — A) can be written as an in
finite series. If we use this form for equation (6) :

p  = v +  vA +  vA2 + . . . + vA" + . . .

it becomes clear that value is direct labor expended on the products, v, plus labor 
expended on means of production used up in this process, vA, plus labor expended 
on means of production used up in the process of producing these latter means of 
production, vA2, and so forth to infinity — collecting all the labor expended at all 
the past stages of production leading to the present output. The series is infinite 
but convergent and its sum is finite because from \ A | =  a <  1 it follows that

This was, then, the original definition of values as given by Marx. Let us deduce 
an equivalent definition based again on eigenvectors and eigenvalues of the re
spective matrices. We proceed analogously to the dual exposition given for out
puts.

The essence of the former procedure was to augment the matrix A to arrive at 
the complete matrix A. Is this legitimate ? Can manpower be handled as any other 
product even from this dual viewpoint, with value creation in mind? Certainly 
this conception is not alien to the classical economists and Marx :

“The value of labor power is determined, as in the case of every other commodi
ty, by the labor time necessary for the production, and consequently also the re
production, of this special article. So far it has value, it represents no more than a 
definite quantity of the average labor of society incorporated in i t . . . The labor 
time requisite for the production of labor power reduces itself to that necessary 
for the production o f . . . means of subsistence ; in other words, the value of labor 
power is the value of the means of subsistence necessary for the maintenance of 
the laborer” [I. 170—1].

In the general case the value of manpower is certainly less than the new value 
it is apt to create. At advanced stages of technological development labor can 
produce more than it needs to consume. But our special assumptions concerning 
Simple Reproduction entail equality of the value of labor and the value created 
by it. Therefore we may compute the value of labor in the same way as the value 
of any other product. Symbolically the yearly value of manpower (the value of 
manpower exerted during a year) is py, the value of the means of subsistence 
consumed per year. The hourly value will be pc, the consumption necessary to 
maintain labor power to be exerted in 1 hour.
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Numerical example

Considering the input coefficients of Simple Reproduction in Robinson’s econ
omy

py = (2, 3)
100
600

2000. This is the yearly value of Robinson’s manpower.

Its hourly value is pc =  (2, 3) 0.05’
0.3

1.

The example now illustrates the conditions of Simple Reproduction already 
pointed out, but in a new form. Formerly equation (3) vQc = 1, proved to be a 
necessary condition for Simple Reproduction. Now, taking into account equation
(6), the hourly value of manpower can be computed, by the same formula, as pc =  
— vQc. Thus the criterion of Simple Reproduction, from the viewpoint of value 
creation is equally

vQc =  1. (7)

The interpretation of this latter equation, constructed from the dual, value, 
side, is slightly different from that of the former. Formerly we interpreted the form 
as v(Qc); now it is interpreted as (vQ)c. Surely the difference is only in. the order 
of performing the mathematical operations, and the value of such a so-called 
bilinear form is insensitive to the order of the operations. In a strict economic 
sense, however, there is a difference — because we are computing the magnitudes 
of different economic variables in the two cases.

Formerly we computed total production (Qc) necessary for supplying consump
tion with adequate net product. This was a vector of use-values and its elements 
were measured in different units. Now we compute (vQ), value of products, and all. 
elements are measured in value units.

Formerly we defined Simple Reproduction as a state where the total labor in
put into production necessary to maintain the labor power is equal to the labor
power maintained. Now we define it as the case where the value of the means of 
subsistence is equal to the value the labor power built up on those means. If labor 
creates more value than its means of subsistence are worth, then Extended Re
production is possible. If it creates less, the process deteriorates and we have 
Diminishing Reproduction.

We continue the parallel, dual development of the output analysis, and show 
that under conditions of Simple Reproduction the vector p = (p, 1) is the left- 
hand eigenvector of the complete matrix, Â. The last element, 1, is now the value 
of the “last product”, manpower. In accordance with our earlier proof, consider
ing equations (5), (6) and (7):

A, c
v,

pA = (/;, 1)
o

= (pA + v, pc) = (p, I) = p.
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Numerical example ■

Again with data of Robinson’s economy :

[ 0.2 
(2, 3, 1) 0.2

0.7 0.05 ~
0.2 0.3
1 0

(2, 3, 1).

A Tool is worth 2, a kilogram of Material, 3, hours of labor. The value 
vector, under conditions of Simple Reproduction, is the left-hand eigenvector 
belonging to the maximal eigenvalue of the complete input coefficient matrix, 
A. The maximal eigenvalue equals 1. This eigenvector always exists and is unique, 
the matrix Â having no other positive left-hand eigenvector. The existence and 
uniqueness of the solution are guaranteed in both cases by the non-negativity 
and irreducibility of matrix Â.

It is easy to transform our fundamental theorem to its dual form:
Given the non-negative and irreducible matrix, A, comprising input coefficients 

of a closed and complete system of production
(a) if there is a positive value vector, p, for which pA = p, then Simple Repro

duction is possible in this system;
(b) if there is a positive value vector, p, for which pA < p, then Extended Re

production is possible. In this case, the surplus value is non-negative, p — pA > 0, 
and may be used to increase production ; or it may be withdrawn from the system 
without jeopardizing Simple Reproduction ;

(c) if neither (a) nor (b) is fulfilled, then only Restricted Reproduction is possible. 
Simple Reproduction would be possible only if the “negative surplus” , p — pA< 
<  0, were supplemented from outside sources.

Finally, note that in determining the value vector, p, as an eigenvector, we de
termined only the proportions of values. Every scalar multiple, of p, say gp, will 
be an eigenvector. Thus, for example, the vector (2/3, 1, 1/3) or (10, 15, 5) will 
solve the same eigenequation equally well, as the former vector (2, 3, 1). This can 
be verified by multiplication by the matrix À.

It is only value proportions and not their absolute magnitude that are deter
mined by the matrix A of the closed system. The system has one degree of freedom 
— one product’s value can be chosen arbitrarily. Once this is done, for instance 
the gold or silver content of money is given, all other values will become definite.

Economists traditionally circumvent this difficulty by fixing the value of labor 
power, choosing it as the “numeraire” . If labor power is the n-th product, we 
reckon with the values p-Jp„, Pzlp,»- ■ ■ ;p jp n == 1- This is really the reason we set 
the last element of our value vector equal to 1.

Thus Simple Reproduction is possible if the value of the product, p, equals the 
value of its constituent parts, pA.
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1.1.4. Surplus

If the increased productivity of labor allows the creation of surplus, then the new 
value added by the laborer — according to Ricardo and Marx — will be greater 
than the value of his labor power. Although this is a necessary condition for Ex
tended Reproduction, it is by no means sufficient. The surplus may be wasted or 
consumed unproductively, without any feed-back to production. In practice it is 
difficult to draw the line between productive and unproductive consumption. In 
theory we will take the distinction as given.

Let us see whether the possibility of surplus alters anything said thus far. First 
assume that there is unproductive consumption, for instance the consumption of 
the feudal landlords, constraining a production system, otherwise ready for growth, 
to carry on Simple Reproduction. In this case we view our complete system as 
having two different consumption vectors. One is the consumption of the laborer, 
ce, the other the unproductive consumption of the landlords, c,-. These two con
sumptions taken together, ce +  ch absorb the total net product.

In this case pce <  1. The value of labor power must be less than the new value 
added by it; otherwise there could be no surplus. Hence we may separate the hours 
of work into two parts. The first part is necessary to reproduce the value of man
power. The second part is devoted to producing surplus. As Marx writes:

“That portion of the working day, then, during which this reproduction takes 
place I call ‘necessary’ labor time, and the labor expended during that time I call 
‘necessary’ labor. Necessary, as regards the laborer, because independent of the 
particular social form of his labor. . . During the second period of the labor proc
ess, that in which his labor is no longer necessary labor, the workman, it is true, 
labors, expends labor power; but Ms labor, being no longer necessary labor, he 
creates no value for himself. He creates surplus value . .. This portion of the work
ing day I name surplus labor time, and to the labor expended during that 
time, I give the name of surplus lab o r. . . The essential difference between 
the various economic forms of society, between, for (instance, a society based 
on slave labor, and one based on wage labor, lies only in the mode in which this 
surplus labor is in each case extracted from the actual producer, the laborer” 
[I. 216 — 7],

Let us separate labor time into necessary labor, w, and surplus labor, s. Again 
w +  s — v, the two parts amounting to the total hours of work, the new value 
added to the product. Under conditions of capitalism w takes the form of wages 
and s is the well-known surplus value of Marx.

Since we partitioned only the vectors v and c, the form of the matrix A  is not 
changed. What changes is only the interpretation to be given to our theorems.

First, it is clear that | A | — 1 is the necessary criterion for Simple Reproduc
tion whether there is unproductive consumption or not. In the present example 
Simple Reproduction reproduces unproductive consumption, too.

The right-hand eigenvector, x, in this case gives outputs, that may include great 
luxury. The left-hand eigenvector, p, still gives the value proportions. These value 
proportions will not be affected at all by the allocation of net product between
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productive and unproductive consumption. The value of the products is insensi
tive to whether the laborer is paid in full for the value created by him or not.

The last element of the value vector, 1, which formerly designated the value of 
manpower as equivalent to the value created by it, will now represent only the 
value created, the value of manpower being less than 1. If we want to determine 
the exact value of manpower, we have to disaggregate the manpower sector ex
plicitly :

A’ =
A,
w,
s,

C, ft 
o, o . 
o, o

Later, in connection with error and sensitivity analysis, we shall prove that this 
disaggregation does not change any characteristics of the matrix, at least not those 
essential for us. Its maximal eigenvalue remains the same and the eigenvectors 
belonging to it will be the similarly disaggregated eigenvectors of the matrix A.

Numerical example

Let us change Robinson’s economy to make surplus possible. We suppose a 
twofold increase of labor productivity and unproductive consumption eating up
half of Robinson’s net produce. Our matrix A’ becomes :

Tools Mate
rials

Robinson’s
Consumption

Unproductive
Consumption

Tools 0.2 0.7 0.05 0.05
Materials 0.2 0.2 0.3 0.3
Necessary labor 0.5 0.5 0 0
Surplus labor 0.5 0.5 0 0

We may easily verify that the left-hand eigenvector (2, 3, 0.5, 0.5) is unchanged 
by multiplication by this matrix and still yields the eigenvalue 1.

Our numeraire here is still the new value added by one hour of work. The last 
two elements of the eigenvector stand for the value of manhour and the amount 
of surplus produced per hour. Their sum is the unit of new value added to the 
product. Thus these two magnitudes express the rates of “paid” and of “unpaid” 
labor.

If we return to wages as the numeraire, our vector will now be (4, 6, 1, 1). In 
this case the last element is Marx’s “rate of exploitation”, the quotient of 
necessary labor/surplus labor [I. 218].

Thus far, all of our concepts, starting points, benchmarks and interdependen
cies are borrowed from Marx’s writings. One might still ask: Is this model, cod- 3
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stmcted from his elements and concepts, still to be viewed as his? How much of 
this model did he himself perceive ?

Much of the mathematical symbolism used here is new ; the application of ma
trix calculus to macroeconomic problems stems mainly from Neumann and 
Leontief. But the underlying quantitative interdependencies, the dual viewpoint, 
the array-like conception of the process was well within Marx’s grasp.

The following table from one of his lesser-known manuscripts is reproduced 
here in its original form and language to substantiate this claim:

fur Arbeit Rohstoff Maschinerie Surplus-produce

À) Rohstoff-Fabrikanten 20 40 20 20 = 100
B) Ditto 20 40 20 20 = 100
C) Maschinist 20 40 20 20 = 100
D) Arbeiter-necessaries 20 40 20 20 = 100
E) Surplusproduzent 20 40 20 20 = 100

This may well be the first (fictive) input-output tabulation in economic science. 
It is interesting to note that he starts from input coefficients in constructing his
table :

“According to the supposed proportions -  2/5 raw material, 1/5 machines, 1/5 
necessities of labor, and 1/5 surplus product from which Mr. Capitalist lives and 
realizes the surplus -  we need (letting total product in each case of A, B, C, D 
E =  100) one producer, E, for necessities for laborers, two capitalists, A and B, 
to produce raw materials for everybody else, one C, producing machines, one D, 
producing the surplus product. The accounts are the following (the machine-pro
ducer, etc. has to produce one part of his commodities for himself) : . . [G. 345] 
(then comes the table quoted above).

The table (giving coefficients as percentages) surely adds up to 1 in every row, 
giving a maximal eigenvalue equal to one, and is very similar to our former ma
trix A.

Marx now uses this table to analyze product flows on one hand and value flows 
from the dual viewpoint (for instance he inquires into the situation when one of 
the capitalists sells his products for less than their value) and even takes steps to 
carry the inquiry further into problems of Extended Reproduction (he discusses 
the modifications of output proportions if the surplus is spent on additional means 
of production instead of luxuries).

From the quantitative point of view his analysis certainly falls short of that 
made possible by modern matrix methods. This is probably one of the main rea
sons he fell back on an aggregated, two-sector, model in his main treatise, Capital. 
Nevertheless we may view the model as a system of interdependencies, seen, and 
even spelled out by Marx. My task simply consisted in modernizing its mathe
matical form, using the shorthand of matrix algebra developed and applied to 
economics after Marx’s time.

3 Proportions* prices and planning
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Does the model, as stated, adequately represent the general case of Simple 
Reproduction ? Perhaps not only landlords and capitalists but also land and
capital, that is, stocks, should be included somehow ? From the following it will 
be clear that this is not necessary. It is enough to assume that the input coeffi
cients cover wear and tear of stocks. Those parts which must be reproduced in 
kind are therefore already taken into consideration in the matrix A itself. As 
long as there is no real growth we do not need to deal with stocks. No matter 
how much we economize on stocks, Simple Reproduction will continue to be 
Simple. It can be made Extended Reproduction only if we economize on flows. 
Only in the latter case, with the decrease of one or more flow coefficients, aik, can 
the maximal eigenvalue of the matrix A be made less than one -  which is the 
necessary criterion of Extended Reproduction.

1.2. Extended Reproduction

We begin to discuss growth by analyzing turnover time, connecting flows and 
stocks. Matrix A has already been defined as a flow matrix. Now our problem is to 
find a satisfactory definition of the stock matrix B, as well. The problem of stocks 
is analyzed in detail in the second volume of Capital. We will follow the lines 
established there although a certain departure from the classical viewpoint, 
apparently at variance with, but in fact broadening or complementing it, will be 
stressed.

On the basis of these concepts the dual aspects of Extended Reproduction are 
developed: prices of production, yielding an average rate of profit; and output 
proportions, yielding an average rate of growth.

The price side of this dual model was developed by economists much earlier 
and with more care than the side dealing with output proportions and use-values. 
The monetary and market relations of Extended Reproduction concealed the hard 
inner core of society’s production process for a long time. The market phenome
na — the tendency toward the equalization of profit, the balancing of supply and 
demand, competition, etc. — attracted the attention of economists relatively early. 
After Adam Smith described and analyzed this mechanism of competition, the 
main line of economic thinking continued to be preoccupied with market rela
tions. Apart from the exceptional works of Quesnay, Marx and Walras, only 
the deep depression of the thirties and the first successful results of Soviet planning 
drew economists’ attention toward macroeconomic production processes. Along 
with this came implicit and explicit revival of both Walras and Marx.

Thus it happened, that only after two centuries of economists’ concern with 
the average rate of profit did Neumann first recognize its theoretical duality with 
the average rate of growth. The subsequent development will follow the historical 
evolution of these ideas.

1.2.1. Turnover time

Formally we can define the stock coefficient matrix B to correspond with the flow 
coefficient matrix A. While atk stands for the amount of product i used up to pro
duce one unit of product k, let bik stand fo r the amount of product / tied up in the 
same process. Essentially this is how Marx defines the technical requirements of
the amount of means of production tied up in production (“constant capital” 
in his terminology).

“ So far as its material elements are concerned . . . the constant capital consists 
of the material requisites — the means of labor and materials of labor — needed

3*
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to materialize labor. It is necessary to have a certain quantity of means and ma
terials of labor for a specific quantity of labor to materialize in commodities and 
thereby to produce value. A definite technical relation depending on the special 
nature of the labor applied is established between the quantity of labor and the 
quantity of means of production to which this labor is to be applied . . . value is 
here altogether immaterial ; it is only a matter of the technically required quantity. 
It does not matter whether the raw materials or means of labor are cheap or dear, 
as long as they have the required use-value and are available in technically pre
scribed proportion to the labor to be applied” [III. 45 — 6].

In spite of the apparent independence of their respective elements the flow 
coefficient matrix, A, and the stock coefficient matrix, B, are implicitly connected. 
Product flows, represented by matrix À, and product stocks, represented by ma
trix B, do not come into being independently. Flows and stocks are only two as
pects of the same economic transaction. These two notions express on the one hand 
motion, on the other hand the state of the same phenomenon.

The phenomenon observed is that some “buyer”, say, sector k, buys a certain 
amount of product from the “seller” , say, sector i. This exchange is motion be
cause the product moves from one sector to the other. It is described by the flow 
coefficient, aik. But the same transaction also changes the state of the product. 
It will stay in the new sector until its use-value is used up entirely in the production 
process, until its value is transferred to the product of the process. As long as it 
stays it is fixed, tied up in the process. The ratio of the product i required as stock 
per unit of output per year of product k  is the stock coefficient, bik.

This stock-flow distinction in economics first appeared in the “avances annuel
les” and “avances primitives” of the physiocrats. The former expressed the flow, 
the latter the stock aspect. The notion became more polished in the writings of 
Smith and Ricardo, and Marx devoted most of the second volume of Capital 
to clearing up related questions : fixed and circulating capital, different types of 
capital, capital and income, total product, replacement fund and accumulation, 
turnover time, etc. The central link connecting the flow and stock concepts is 
turnover time. He defines it as follows:

“From the point of view of the capitalist, the time of turnover of his capital 
is the time for which he must advance his capital in order to create surplus value 
with it and receive it back in its original shape” [II. 159]. .Further: “The aggre
gate turnover [time] of an advanced capital is the average turnover [time] of its 
various constituent parts . . . ” [II. 186].

In these passages, turnover time is specified as characteristic of capitalist pro
duction or, at least, of commodity production only. But the more general character 
of the concept will be apparent from the following quotation :

“On the basis of socialized production the scale must be ascertained on which 
those operations — which withdraw labor power and means of production for a 
long time without supplying any product as a useful effect in the interim — can 
be carried on without injuring branches of production which not only withdraw 
labor power and means of production continually, or several times a year, but also 
supply means of subsistence and of production. Under socialized as well as capi
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talist production, the laborers in branches of business with shorter working periods 
will as before withdraw products only for a short time without giving any products 
in return, while branches of business with long working periods continually with
draw products for longer time before they return anything. This circumstance, 
then, arises from the material character of the particular labor process, not from 
its social form” [II. 362],

As soon as society enters the stage of Extended Reproduction it must econo
mize not only labor time but time as such. This economy of time might be achieved 
through the market mechanism or by conscious regulation of production. In 
either case time becomes valuable in itself as an essential ingredient of growth. 
This is just another way of expressing the fact that growth takes time.

Since the notion of turnover time connects the notions of flow and stock, mo
tion and state, it establishes a mathematical relation between the matrices Â and 
B. If the amount aik is tied up in sector k  for a given turnover time tlk, then we can 
express the stock coefficient kk  by

{ bik } =  { aiktik } . (8)

This interdependence has a very important consequence. Turnover time is 
always positive. It may be very short as in the case of electric energy or services. 
Still, for a shorter or longer period every purchase will tie up resources. Therefore, 
aik > 0 entails bik >  0. This implies that the structural patterns of the two ma
trices must be analogous. Both are non-negative and the irreducibility of A carries 
over to the irreducibility of B.

Equation (8) (which in essence — but not in mathematical symbols — can be 
found in the second volume of Capital) was first explicitly written out by Lange 
[1952].* His definition being not quite precise, we have to quote him verbatim and 
comment. Lange’s definition for tl} is:

“Let the durability of the part of the output of the i-th sector allocated to the 
j-th sector as additional means of production be Ty units of time. Ty is taken as 
a parameter given by the technological conditions of production and may be 
called the ‘turnover period’ of the particular type of productive equipment.”

Lange does not distinguish between durability, a physical characteristic of 
capital goods, and turnover period, the length of time it takes to recover money 
capital advanced. He also neglects inventory investment.

It is tempting to substitute life span for turnover time. The former is more 
easily measurable and independent of the current price system. But unfortunately 
the two notions are not directly equivalent and their exact relation needs further 
elaboration. This relation assumes different forms for particular parts of the capi
tal stock. Let us therefore first subdivide the total capital employed, following

* Be referred to D. Hawkins [1948] who analyzed a closely related model and noted that 
the quotient of the respective elements of the two matrices, biklaik, “is of the dimensionality 
of time, and is simply the time required for capital from i to turn over in the productive pro
cesses k”.
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Table 1

Marx's Terminology for Stocks

Primai Objects Dual Definitions
Items as displayed on the 
Balance Sheet

For Capital in 
Production 
Productive Capital

For Capital in 
Circulation 
Commodity Capital

Plant
Equipment Fixed Capital

Raw materials
Auxiliary materials
Semifinished goods ' 
Finished goods
Accounts receivable
Cash

Constant Capital

also
“means of
production”

Circulating
Capital

Labor Variable Capital

Marx’s original terminology. Since his categories overlap, it helps, to display
them in tabular form. (See Table 1.)

Let us now look into the matter more closely. Capital consists of fixed and cir
culating portions. Circulating capital in turn consists of variable capital (the cap
ital invested in buying labor) and circulating capital proper (the capital invested in 
materials, semifinished goods, etc.).

Variable capital and other funds tied up in reproducing manpower (they may 
be funds of the capitalists or of the family and of society) will be analyzed later, 
in Section 2.1.3. It will be shown that life span does play a certain role there, too.

Circulating capital proper consists of raw materials, semifinished and finished 
goods. Together they are called production inventory :

. . the magnitude of this productive supply depends on the greater or lesser 
difficulties of its renewal, the relative nearness of markets of supply, the develop
ment of transportation and communication facilities, etc. All these circumstances 
affect the minimum of capital which must be available in the form of a productive 
supply, hence affect the length of time for which the capital must be advanced and 
the amount of capital to be advanced at one time. This amount, which affects also 
the turnover [time], is determined by the longer or shorter time during which a 
circulating capital is tied up in the form of a productive supply . . [II. 249 — 50].

For this inventory it is reasonable to speak about “life span” instead of turn
over time. As long as a product “lives” somewhere (as an inventory item), as long 
as it exists at all, it will tie down some funds: its embodied value. This value will 
most often be recouped in one lump sum at the end of its life span. The inventory’s 
life span ends when its value is transferred to a new product for which it is an 
input.
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Yet this point of view blurs the financial details of the process. We do not know 
how much capital a given sector will fix into a particular product. For a given sector 
turnover time ranges from buying to selling and not from process to process. From 
society’s point of view, funds will be tied down somewhere, but the life span might 
be spent in two or more sectors in the course of the product’s circulation. When 
we speak of life span we are looking at the process from society’s point of view. 
When we speak of turnover time we look at the process from a particular produ
cer’s point of view. Thus aiktik == bik will measure capital intensity not of a given 
sector but of society. This solution may be reasonable on an economy-wide scale 
but sectoral capital intensities might be biased.

To include that part of circulating capital which usually exists in the form of cash, 
banking and other receivable accounts, etc., would further complicate the question. 
We can neglect this problem for a socialist economy. “In the case of socialized 
production the money-capital is eliminated” [II. 362] — paper-money and bank- 
accounts do not absorb any real resources, and we do not analyze monetary prob
lems here. Although the more precise measure of capital intensity in a sectoral or 
enterprise detail will still be turnover time, from an economy-wide standpoint, say 
for purposes of planning, we can use the concept of life span for inventories.

Life span has a characteristic relation to turnover time in the case of plant and 
equipment, that is, fixed capital. The classical standpoint, reflected in old-fashioned 
bookkeeping practice, assumes that fixed assets transfer their value gradually in 
proportion of wear and tear. Depreciation, then, caused by physical attrition, is 
added drop by drop to the cost or value of the goods produced. This entails a 
different relation between life span and turnover time, depending on accounting 
practice.

Marx, analyzing the replacement of fixed capital, writes :
“ Money plays a specific role in it which finds expression particularly in the 

manner in which the value of the fixed capital is reproduced. (How different
the matter would present itself if production were collective and no longer possessed 
the form of commodity production is left to later analysis)” [II. 455].

Marx did not finish the analysis to which he refers parenthetically. Yet some 
clues can be found in later dated passages of the text.

How much capital is embodied in plant and equipment of a given life span? Un
der circumstances of classical capitalism the value transferred by the fixed assets 
was accumulated in money-form. Funds were literally tied up.

. . the money proceeds realized from the sale of commodities, so far as they 
turn into money that part of the commodity value which, is equal to the wear 
and tear of fixed capital, are not reconverted into that component part of the 
productive capital whose diminution in value they cover. They settle down beside 
the productive capital and persist in the form of money. This precipitation of 
money is repeated, until the period of reproduction consisting of great or small 
numbers of years has elapsed, during which the fixed element of constant capital, 
continues to function in the process of production in its old bodily form. As soon, 
as the fixed element, such as buildings, machinery, etc., lias been worn out, and 
can no longer function, in the process of production, its value exists alongside if
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fully replaced by money, by the sum. of money precipitations, the values which 
had been gradually transferred from the fixed capital to the commodities, in whose 
production it participated and which had assumed the form of money as a result 
of the sale of these commodities. This money then serves to replace the fixed capi
tal (or its elements, since its various elements have different durabilities) in kind 
and thus really to renew this component part of the productive capital. This mon
ey is therefore the money-form of a part of the constant capital-value, namely of 
its fixed part” [II. 454—5].

Under the above circumstances one part of the value of the fixed capital is the 
residual value of the working machine and the other part is accumulated to replace 
it. The sum of the two parts must be equal to the original value of equipment. In 
this special case, turnover time equals life span. In this sense:

. .  the different constituents of the fixed capital of a business have different 
periods of turnover, depending on their different durabilities and therefore on 
their different times of reproduction” [II. 186],

Nowadays we do not generally accumulate sinking funds in this rigid way. Thus 
value recouped can be invested anew.

Marx foresaw the possibili ty of more flexible financial management :
“This part of the value of the fixed capital transformed into money may serve 

to extend the business or to make improvements in the machinery which will 
increase the efficiency of the latter. Thus reproduction takes place . .  . reproduc
tion on an extended scale . . . This reproduction on an extended scale does not 
result from accumulation — transformation of surplus value into capital — but 
from reconversion of the value which has branched of!', detached itself in the form 
of money from the body of the fixed capital into new additional or at least more 
effective fixed capital of the same kind” [II. 175],

Thus, part of the capital necessary to increase production can be borrowed from 
the sinking fund. Domar [1957] presented the first rigorous .model of this more 
flexible business behaviour. He shows that depreciation can be a source of growth, 
the more so the longer the life span and the higher the growth rate. This changes 
the relation of life span to turnover time.

With straight line depreciation and immediate reinvestment of depreciation 
turnover time is one-half of life span. Under circumstances of growth the age dis
tribution of assets will not be uniform. With rapid growth, then, turnover time 
will approach life span as its maximal upper limit. (See Appendix HI.)

Appendix III replaces Domar’s fixed life span with a probabilistic one using 
an exponential density function for its representation. With this latter assumption 
turnover time is always equal to expected life span. Therefore, for the economy as 
a whole, we can consider fixed capital as transferring its value in one lump sum at 
the end of its life. Hence circulating capital and fixed capital can be combined and 
represented by the same capital matrix.

Since the probabilistic treatment is at variance with the classical standpoint, we 
will speak only about turnover time -- and not consider its relation to life span. 
Following classical theory, we shall say that the elements of matrix B are given 
by the elements of matrix Â multiplied by the proper turnover times. As in the
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case of À we do not assume constancy of the elements of matrix B. We only postu
late that such proportions exist at a given time and place, and that they are sta
tistically measurable with the precision required for practical purposes.

1.2.2. Production prices

“The price of a commodity, which is equal to its cost-price plus the share of the 
annual average profit on the total capital invested (not merely consumed) in its 
production . . .  is called its price of production” [III. 158].

This concise and exact definition suggests, by its very wording, a mathematical 
equation.. This equation, however, cannot be found in the published text of Capi
tal. The equation appearing in the text following the definition contradicts the 
formulation given above in a peculiar fashion :

“The formula that the price of production of a commodity = k  + p, i.e. equals 
its cost-price plus profit, is now more precisely defined with p  = kp' (p" being the 
general rate of profit)” [III. 165], Or: . . cost-price plus the average rate of
profit multiplied by the cost-price . . . ” [III. 173].

Thus, the mathematical formula given multiplies rate of profit with cost-price, 
that is, with capital consumed, and not with capital invested — in clear contra
diction to the definition given at the outset. Naturally, this contradiction has led 
to confusion in the development of a theory of production prices. *

It became all the more severe because in Volumes II and III of Capital, Marx 
sometimes assumed a turnover time of one year. This assumption was warranted 
only for theoretical speculation. It makes consumed and invested capital equal 
and thus indistinguishable. We begin afresh with the mathematical formulation 
of Marx’s correct definition of production prices, as quoted at the outset.

We may speak about production prices in the case of Extended Reproduction 
only.

Production price can exist only if there is surplus value to distribute among 
prices. This distribution must be in proportion to the capital tied down in pro
duction. Therefore the flow coefficient, matrix must have a maximum eigenvalue 
less than one, | A | < 1.

The surplus realized in the branches of production, given a price system, p,
will be p -.pA = p (1 -  A). If | A | <  1, there will be a positive price system, p,
yielding a positive surplus, p (1 ~ A) >  0, in every branch.

We might for instance find a price system distributing surplus in proportion 
to cost of production

p -  pA =  ppA .

* Marx’s original manuscript contained . a series of uncompleted mathematical calcu
lations . . .  as well as a whole, almost complete note-hook . . . which presents the relation 
of the rate of surplus value to the rate of profit in the form of equations”. These unedited parts 
may contain the correct formula. This seems likely because there are quite a few correct nu
merical examples in the text where Marx does distinguish invested and consumed capital.
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This is the equation giving the price system of the second, incorrect, definition.
1 1 — a

If \ A \ =  a < 1, then from p = (1 + g) pA, a = - —.— and g = ------- follows.
1 + g a

This points to the futility of a price system (as established in the fifties in most 
socialist countries) that attempts to prescribe a rate of “profit” after cost-price 
externally. This rate cannot be prescribed from outside — it must stay in the re
lation with the maximal eigenvalue indicated above. Otherwise no consistent price 
system may be found.* And it is equally important to stress that this price system 
(advocated as being close to the value proportions) has nothing to do with value 
proportions. In a value price system, surplus (or “mark-up”) is in proportion to 
labor (the vector v or wages, w) and in the former price system, the so-called cost- 
price system, mark-up is on cost (that is, in proportion to pA).

We are now looking for a price system where surplus is proportional to capital 
invested. For the time being let us designate the capital invested per unit of pro
duction in sector i by bt. Thus the vector b = (b1;. . . ,  b„, O) will be total capital 
invested per unit, better known as the capital output ratio. The last element of 
this vector is zero because in the last sector, manpower or “households”, we do 
not reckon with “capital” . Of course there are resources invested in reproducing 
manpower. But the classical notion of production prices did not consider them. 
The production of manpower did not follow the usual rules of the capitalist game. 
There were no business firms investing in the production of this particular product 
and the laborer was not a capitalist, expecting a profit on funds tied up in his win
ter coat and other consumer durables. The resources tied up in reproducing man
power do not shape the average rate of profit according to the classical view.

Let us designate average rate of profit by X. Then the equation for Marx’s 
correct definition will be

p -- pA + Xb. (9)

Production price =  cost price +  average rate of profit on capital invested.
If (1 — A) is regular and has an inverse (1 — A)"1 == Q, the solution of equation

(9) will be

p =  AbQ. . (10)

But in the state of Extended Reproduction | A \ <  1, and thus (1 — A) must be 
regular. The inverse, Q, is of course not equal to the former inverse Q, because 
now the matrix A is bordered by the row and column of the manpower sector. It 
will have much larger elements — but its economic significance, its meaning and

* The Hungarian price reform of 1959, aimed at setting a uniform 5 per cent “net gain”, 
was frustrated for this reason. Computation had to be stopped without satisfactory conver
gence — and the actual spread of “profits” thereafter proved to be enormous: from net loss 
to 2 0 -2 5  per cent gain.
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interpretation, remains the same. It sums expenditures incurred in different phases 
of production. Thus matrix Q, multiplied by any direct input vector, yields total 
(direct plus indirect) expenditure levels in every sector, including households.

The product bQ therefore can be interpreted as total capital invested in the re
spective production' processes. For the time being we neglect the scalar factor X 
and formulate the system of production prices. It is a valuation system that weighs 
each product in proportion to total capital directly and indirectly tied up in 
its production process.

This characterization of production prices is not easy to grasp without mathe
matics. However Marx did have a fairly clear picture of it :

“The whole difficulty arises from, the fact that commodities are not exchanged 
simply as commodities but as products o f  capitals” [III. 175 j.

Thus it may be reasonable to summarize Marx’s point of view as follows : As 
long as there is simple commodity production (Simple Reproduction) the “ law 
of value” states that there is a tendency of commodities to be exchanged on the 
market according to their “labor content” . Exchange is then regulated by the pro
portions of total labor necessary to produce the diverse commodities.

This law changes under capitalism (Extended Reproduction). Here the “law” 
states that there is a tendency for commodities to be exchanged on the market 
according to their “capital content” as products not of labor but of capital. Un
der Extended Reproduction exchange is regulated by the proportions of total 
capital tied up in the production of the diverse commodities.

But how do we measure “capital” ? This question was a headache for both 
Ricardo and Marx. They tried to reduce capital to labor in several ways, some of 
which later proved ambiguous and incorrect. This was the famous problem of the 
“ unchanging standard of value” or the “transformation problem of values into 
prices” to which we shall return in Part 2.

The existence and uniqueness of production prices has to be proven first. 
Then we can ask whether there is a “transformation” of values, an algorithm for 
the correct computation of those prices.

Equation (10), p = 2bQ, does not help much in solving the problem because we 
assumed b to be given. It is specified not only as a bundle of goods (which it is 
legitimate to assume) but as funds already measured by some price system. Now 
production prices and. the magnitude of X can be determined rigorously only if we 
determine the capital output ratio as a value ratio at the same time. It would be 
illegitimate to assume any ex ante valuation of the resources tied up. If commodi
ties are all measured in production prices then the fixed capital, consisting, as it 
does, of commodities, must be measured by the very price system to be determined.

Here the matrix B == { bik } =  { aihi;ik } plays an important role. Its elements, 
at least in theory, can be measured as physical proportions without the interven
tion of any price system at all, then the capital output ratio in this very price sys
tem can be expressed as b =  pB.

Substituting this expression in equation (9) we get

p =  pA + XpB = p(A + IB). ( 1. 1)
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This equation is analogous to the equation p = pA that defines value propor
tions under Simple Reproduction. It is the same sort of eigenequatiOn. But under 
Simple Reproduction J A | had to be equal to 1 ; now under Extended Repro
duction | À + X B | has to be equal to 1.

Because we are considering Extended Reproduction, A must be non-negative 
and irreducible, with a maximum eigenvalue less than 1. B will also be non-neg
ative and irreducible. Thus equation (11) will have one and only one positive solu
tion for X andp. Equation (11) can be transformed to p [1 — AB (1 -  A)"1] =  0. 
The matrix B (1 — A)""1 = BQ is a Frobenius matrix (it is positive). Thus it has 
a positive eigenvector and a positive maximal eigenvalue equal to the reciprocal 
of A. Thus X must be positive.*

Therefore, given the two non-negative and irreducible matrices A and B, with 
| A | < 1, there is one and only one positive price system, p, and average rate of 
profit, X, determined by equation (11).

This shows that production prices can be determined unambiguously in terms 
of an eigenequation.

Numerical example

In our old Robinsonian economy let us suppose that unproductive consumption 
is discontinued. Then Extended Reproduction is possible according to the matrix :

' 0.2 0.7 0.05
0.2 0.2 0.3
0.5 0.5 0

Let us assume a stock coefficient matrix

0.2 0.7 0
1 1 0
1.6 0.6 0

B depends on matrix A and turnover times as follows: Turnover time for Ma
terials (first row) is 1 year. Thus the first rows of the two matrices are equal. Turn
over time for Tools is 5 years, that is, fivefold yearly production is always held 
in stock. Thus, in row 2, coefficients of B are five times those of A. Finally the labor 
tied up in semi-finished products (this is the “variable capital” of Marx) is as
sumed to be 3.2 years’ labor in the first and 1.2 years’ labor in the second sector. 
All these values are of course entirely fictitious and chosen to make the example 
easy to solve.

Proofs of the theorems are to be found in Appendix I.
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The solution tells us that a 10 per cent per year profit is secured in both sectors

p = p(A + 0.1-B) = (2, 3, 1)
0.22 0.77
0.3 0.3
0.66 0.56

0.05
0.3
0

(2, 3,1).

It happens that in this example production prices equal value prices. This is by 
no means necessary, but it may happen under special circumstances.

Of course it does not make any difference whether there is any unproductive 
consumption left. It does not alter production prices if the surplus is spent entirely 
or mostly on luxuries and not on growth.

1.2.3. Output proportions

Now we write the equation for the dual of the production price system

(1 — A)x = ABx or x = Ax +  2Bx (12)

and set ourselves a double task. First, we must give an economic interpretation 
to this equation, just arrived at by purely formal reasoning. Second, we set out to 
show its close resemblance to the famous table of reproduction in the second vol
ume of Capital.

To interpret the equation we start from already defined relationships. (1 — A)x 
is surplus product created in the respective sectors, expressed as a bundle of goods 
and measured in diverse physical units of measurement. This is the net product, 
the final bill of goods of the system. If Extended Reproduction is possible, that 
is, if | A | < 1, we always can have (1 — A)x > 0, a positive surplus in every 
sector.

Yet we are interested in distributing the surplus in special proportions. They 
should be proportional to Bx, that is, total resources tied up in production. Again 
Bx is a bundle of goods measured in physical units. Net product should be so 
structured as to make possible a balanced growth in all sectors’ stocks. X is the 
rate of increase in productive capacity. The solution of equation (12) for x therefore 
gives output proportions that, after covering the necessary flows, Ax, for Simple 
Reproduction, allow for growth in every sector at the same rate, X. The growth 
rate, X, is a dual expression for the average rate of profit. Like the rate of profit, 
the growth rate is determined in terms of a certain unit of time — the same unit 
used to measure turnover time, and hence the unit implicit in the coefficients of 
the stock matrix B.

Numerical example

Returning to the example of Robinson, we may compute the right-hand eigen
vector. X will be 0.1 as formerly, making yearly 10 per cent growth attainable.
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Here we can no longer confine ourselves to round numbers. Computation must 
be truncated somewhere and rounding errors emerge.

x = (A + 0.1 B)x =
0.22 0.77 0.05" " 1000 999.92 "
0.3 0.3 0.3 936 = 936

. 0.66 0.56 o _ 1184 _ _ 1184.16 ,

These output proportions secure a surplus

1000 ~ 0.2 0.7 0.05 ' 1000 "
(1 -  A)x = 936 - 0.2 0.2 0.3 936

1184 _ ,0.5 0.5 0 . 1184,

' 1000" ‘ 914.4 ' 85.6'
936 - 742.4 193.6

. 1184 , 968 216

which is approximately equal to the investment needed for a 10 per cent growth:

0.2 0.7 0" "100 85.52
0.1 Bx = 1 1 0 93.6 = 193.6

1.6 0.6 o.. ,118.4 ,216.16

(Differences in the last digits are because of rounding.)
The numerical example brings out some essential assumptions in equation (12):
1. Output can be increased only by investing — that is, by building up new 

capacities. The economy pictured in the model always works at full capacity or, 
at least, there is no way to change the proportion of reserve capacity.

2. New investment is made according to the same coefficients as the old tech
nology. There are no technological improvements. Thus growth is purely extensive, 
to use Marx’s term (“extensive if the field of production is extended; intensive if 
the means of production is made more effective” [II. 175]). Only scale of pro
duction is increased, its inner proportions remaining unchanged.

3. Every branch of production, every sector, every product is augmented by 
the same factor, the universal growth rate.

These assumptions contradict actual growth experience in particular countries. 
In practice, stand-by capacity is exploited to a greater or lesser degree, in accord
ance with the everyday market situation and the business cycle. In real life new 
investment usually brings new technology, new inner relations of production. 
Investment is often a means of improving production processes. Finally the vari
ous sectors usually develop at different rates — there are characteristically slow-, 
fast-growing and even declining sectors, depending on historical circumstances.

Here, then, we have modeled a very special and not a really general case of eco
nomic growth. It is almost as special as the model of Simple Reproduction. Be
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fore we turn to possible generalizations we examine Marx’s own version of this 
abstract model of Extended Reproduction.

Numerical examples of Extended Reproduction set out in the second volume of 
Capital are based on the same assumptions as those implicit in equation (12). His 
schemata can easily be described in the form developed as the dual of production 
prices.

Marx uses the following symbols in his tableau économique 
c constant capital 
v variable capital 
s surplus value, divided among 

Ac increase of constant capital 
Âv increase of variable capital 
and consumption of capitalists which we denote by e.

Subscripts 1 and 2 denote departments I (means of production) and II (articles 
of consumption). Marx assumes turnover time equal to one year, thus capital 
advanced (invested) and capital consumed (cost-price) are equal. Hence constant 
capital, c, equals the means of production used up in the process, and variable 
capital, v, equals annual wages.

Marx’s schemata are not given in coefficients — but for our purposes it does not 
matter whether we deal with coefficients or annual flows. The flows can now be 
written in a 4-sector input-output table.

The flows for the matrix A will be

I. dept. II. dept. Laborers Capitalists

I. dept. Cl —
II. dept. - ...... ffi+.ffi e i + ez
Laborers —
Capitalists — — ~

This table contains 10 zeros — which made a computation very easy for Marx’s
purposes. The row fo r cap ita lists is empty: they do not increase the value of the 
product or add anything to the process, according to the labor theory of value. 
Thus we could reduce our table to  3 sectors, handling capitalists’ consumption 
as the final bill of goods. The remaining 3 sectors form, an irreducible, self-main-
ta in ing  system.

The flows for annual increase of stocks will be

■ T. dept. II. dept. Laborers Capitalists

I. dept. Ac j A c2 —
II. dept. - — ......

Laborers Avj A v2 ' —
Capitalists - — -

If we implement this scheme with numerical values given for Extended Repro
duction [II. 514 — 7] we arrive at Table 2.
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Table 2

Tableau Economique of Marx

A B

4000 1500 400 100
1st year — — 1750 1100 — — - —

1000 750
- -

100 50
- -

4400 1600 ... — 440 160
2nd year — — 1900 1110 — — —

1100 800
- -

110 80
- -

4840 1760 _ — 484 176
3rd year — — 2090 1221 — — — —

1210 880
- -

121 88
.. -

5324 1936 — 532 193 — —
4th year — — 2299 1344 — — . .. . . —

1331 968
- -

133 97
. . . -

5856 2129 — — 586 213 _
5th year — 2529 1477 -- — ......

1464 1065 - - 146 107 . . . . -

From the second year on, every magnitude increases uniformly 10 per cent each 
period. The same increase takes place for output of all the sectors, surplus, invest
ment, wages, etc, hence the numerical example shows the same implications 
we analyzed in connection with equation ( 12).

Because of the uniform one-year turnover time the flo ws of matrix B are exactly 
one-tenth of the corresponding flow elements of matrix A. (Only the first year 
shows a little computational lapse of Marx.)

To avoid misunderstanding : this parallel of equation (12) and the schemata and 
tables of Marx for Extended Reproduction are not meant to substantiate any claim 
for the model’s being valid or realistic or useful. It only serves to show that the 
conception underlying equation (12) and that expressed in Marx’s schemata and 
numerical example are the same. In short our model is really an «-sectoral gener
alization of Extended Reproduction with Organic Composition of Capital Remain
ing the Same.* 4

Equation (12) does not figure as explicitly in Marx’s writings as the model of pro_

* See [I.] Chapter XXV, Section 1, where Marx elaborates accumulation without technical 
change.
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duction prices or the model of values or Simple Reproduction. Nevertheless, 
what Marx has to say about this particular form of Extended Reproduction can 
be brought into agreement with the model.

This model of Extended Reproduction surely is not sufficiently general for ap
plied work. Some practical suggestions for generalization are discussed in Part 3 
in the context of applications of the model. The main problems to be solved for 
this generalization are the following.

In. the course of real growth the matrices A and B do change. For the time being 
we even lack adequate description of the changes, experienced historically. Only 
after gathering data enough will it be possible to set up and test any theory con
cerning regularity of changes. Marx himself stressed the rising composition of 
capital caused by technical change. This might have been entirely appropriate 
to his age — transition from manufactures to large-scale enterprise and mass pro
duction. But it is no longer true in the age of capital-saving inventions. After all 
the rate of profit could not decrease indefinitely, and the remedy was found in new 
technology where more could be produced with less investment.

For the time being let us think about the constant matrices Â and B as giving 
only momentary values of matrices A, and Bt which are actually changing through 
time. We draw a momentary tangent to a more or less curved and twisted evolu
tionary path. If change in the coefficients is not too fast — and generally it is not — 
our approximation will be good enough.

The second problem is that we do not fully understand: what happens when real 
output proportions and real prices do not correspond to their theoretical magni
tudes, when they deviate from the eigenvectors defined above. We can anticipate 
some inventory and profit changes. But we still have no model that explains the 
size and direction of price changes under specific conditions. Here again we 
clearly lack factual information with which to test theories.

To sum up: the model as expressed in equations (11) and (12) is only a step 
in the direction of developing a more general theory of Extended Reproduction. 
It represents not the whole process but a momentary state of growth. This is the 
reason we did not need to assume constancy of coefficients. In a given state given 
intrinsic proportions exist — and this is all that is needed to set up the model.

On this level of abstraction, average rate of profit and growth rate are equal. 
But what happens if there is unproductive consumption out of those profits? 
Naturally this has to be subtracted from the funds to be fed back into production. 
The accumulated surplus will be less than the surplus produced and expressed in 
the profit rate and thus the growth rate will be less, too. Growth rate can equal 
profit rate only in the absence of unproductive consumption. (Hence the 
classical crusades against unproductive classes.)

But there is a much more important factor to be taken into account. In the 
classical theory of production prices, resources invested in reproducing manpower 
will have no effect on the rate of profit. But if we want growth we have to increase 
those inputs also. This can severely limit the growth rate. These differences will 
be emphasized in Part 2, where we discuss further implications of the labor 
theory of value.

4  Proportions, prices and planning



1.3. Related Models

The model, based on Marx and transcribed into matrix algebra in the previous 
sections, has various close relatives. Some of them are explicitly built on the same 
theoretical foundation — for instance the growth models of Feldmann. Yet, these 
are heavily aggregated models, based directly on Volume II of Capital and not 
displaying any duality. We return to aggregated models in Part 3 in connection 
with the analysis of historical trends of growth.

Here we review models that are superficially alien but actually very close, in 
their essential logic, to the one we have been discussing. These are detailed linear 
models of production, disaggregated, multi-sectoral linear models of the economy. 
The individual models represent widely differing schools of economic thought 
that ignored or opposed each other for some time. However, insofar as they reflect 
reality, they cannot avoid its unifying force and their common basis is becoming 
clearer in the recent theoretical and empirical literature. In the following I should 
like to show how despite their very different backgrounds and interpretations they 
can still be brought to a common mathematical form.

That apparently contradictory views may lead to a common mathematical 
model is not without precedent in the history of science. To quote Neumann, 
whose models we discuss later: “Indeed, in classical mechanics there are two 
absolutely equivalent ways to state the same theory, and one of them is causal 
and the other one is teleological. Both describe the same thing . . . Newton’s 
description is causal and d’Alembert’s description is teleological. . . All the 
difference between the two is a purely mathematical transformation . . . This is 
very important, since it proves that if one has really technically penetrated 
a subject, things that previously seemed in complete contrast, might be purely 
mathematical transformations of each other. Things which appear to represent 
deep differences of principle and of interpretation, in this way may turn out not 
to affect any significant statements and any predictions. They mean nothing to 
the content of the theory” [1963, 496].

Several types of models will be presented briefly in their historical order. Then 
they will be expressed in a common, fundamental form and their formal similari
ties and differences analyzed. Finally we review the economic purport and usability 
of the individual models and their common feature : duality.

1.3.1. Description o f the models 
a) Theory of games

The fundamental model of the theory of games constructed by Neumann in 1926, 
the so-called two-person, zero-sum game, seems to lie far from our subject and
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can hardly be called a production model. It is presented here for two reasons. 
First, because its usefulness for the solution of production problems has been 
proved.* Second, as will be shown below, its mathematical equivalence with two 
important production models was recognized very early. The inspiration of this 
model was not economic at all, but abstract mathematical speculation.

The mathematical problem can be stated briefly as follows. There are two 
“players” , J } and / 2, who are free to choose among various “strategies” ; J x may 
choose strategies i =  1 , 2 , . .  ,,n and Jz the strategies j  — 1, 2 ,. . .,m. Now, if 
A has chosen strategy i and / 2 strategy j, then in this game, J t has to “pay” the 
sum ctj to / 2. If Cjj is positive, it will be a loss to J x; if it is negative, it will be 
a gain.

The question is whether, given matrix C = {c,7}, consisting of n rows and m 
columns, the “value” of the game can be unequivocally determined, i.e. whether 
there is a “mix” of strategies for / ,  and J2 from which they have no logical reason 
to deviate and whether, if they adhere to the strategy mix, the gains and losses 
paid will converge to a constant sum: the “value” of the game.

Let Jx choose the strategies 1, 2,. . ,,n with frequencies %, % ,. . un («,->0,
n

J] Ui ™ 1), and J% the strategies 1, 2,. . .;m with frequencies vlf . . v̂m
/=!

m

(vj> 0, Yj vj =  !)• The sum of gains and losses to be paid in the course of the 
7=1

game can be given by a bilinear form :

uCv — y(u, v). (13)

One of the players will endeavour to minimize the value of y by properly choosing 
u, while the other one will try to maximize it by the proper choice of v. Now, 
Neumann has proven that minju max/uRw, v) =  minjv max/uy(u, v) and thus an 
“equilibrium” situation exists. Since then, several proofs and convergent computa
tion methods have been found for the solution of this basic model.

It was known to Neumann (and elaborated in fuller detail later in collaboration 
with Morgenstern) that this model represents the rational choice or decision
making process of the homo oeconomicus. Still, the general model for produc
tion decisions was developed some years later.

b),The Neumann model

This model undoubtedly has roots in marginal analysis, and particularly in the 
theory of general economic equilibrium of Walras. In the 1930’s an econometric 
seminar led by Karl Monger suggested that the proof of Walras was naive and

* Suffice it to mention here that the first method of solution for the Hungarian model of 
two-level planning was arrived at by T. Liptâk on the basis of ideas from the theory of games. 
(See Kornai [1967].)

4*
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nsufficient.* The existence of a unique solution to a dynamic system of inequalities, 
based on the static system of Walras, but substantially modified, was rigorously 
proven by Neumann. This work of Neumann, though for a long time barely 
noticed, meant a turning point in the history of mathematical economics. There 
were two important reasons.

On the one hand, this opened the way for the application of more up-to-date 
mathematical methods in economics. Neumann found a felicitous mathematical 
form for economic problems. His language, the formulation in terms of a system 
of linear inequalities, proved to be decisive in promoting further development, 
particularly with the advent of computers. On the other hand, the model has a 
decisive feature for economic theory. For Neumann, as opposed to Walras, the 
production relations become the hub of the model and he deduces market relations 
from them. It is not clear whether this “concession” to Marxian political economy 
was conscious on the part of Neumann. Reviewing his assumptions, he laconically 
remarks : “It is obvious to what kind of theoretical models the above assumptions 
correspond.” Had the Marxian influence been conscious, however, he very likely 
would not have wondered at the remarkable “dual symmetry” of his model with 
regard to money variables and technical variables. Marx had already belaboured 
the point that value relations are only dual reflections of the social division of 
labor. In any case, Neumann’s model has become one of the meeting points of 
economists trained in marginal analysis and in the labor theory of value, allowing 
and indeed demanding interpretation in both schools.

In his model we have n products (i = 1, 2, . . ., ri) to be made by means of m 
production processes (/ =  1 , 2 , . .  ., m). The processes all take place during a unit 
of time; if they take longer in reality, they may be subdivided into several parts 
in the model. Unit level performance of the yth process turns out ttj quantities of 
the products i = 1, 2 and uses up the quantities f j ,  i =  1,2, . .  ., n.

The model is flexible enough to embrace joint production. This assumption 
was really indispensable for treating stocks : in different phases of their life span 
they are considered different products. Thus the process of spinning consumes 
machines and cotton at the beginning of the process and turns out a joint product 
at the end of the process: yarn and machines one period older.

The question is whether, given matrices F = { ftJ} and T  =  {ttJ}, the following 
unknowns can be determined :

x = (xt, x2, . . xm) production levels x; > 0 
P =  (Pi, Pi, ■ ■ ;  Pn) prices _ Pi Si 0

a expansion coefficient 
P interest factor

with the following constraints:
I. aFx < Tx

and if for some i, the relation < holds, then pt = 0

* Walras thought that he had proved the existence of a unique solution by simply counting 
the equations : he found as many equations as unknowns.
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IL P pF > pT  ■ ■■
and if for some j, the relation > holds, then x,- — 0.

These two constraints can be interpreted as follows:
I. In a given period we cannot consume or use more of a product than was 

produced in the previous period. Should a surplus of product i arise, even with a 
maximum rate of growth, its price will fall to zero, i.e., it becomes a “free good”, 
Pi =  ri

ll. In an equilibrium situation there can be no profit above the average rate 
of interest /?; if that were possible, either prices or the rate of interest itself would 
grow. If, however, some process j  is characterized by losses, that process will 
be abandoned and thus Xj — 0.

With some special restrictions,* Neumann proved the existence of a solution 
for the system of inequalities and also showed that a = p.

After the solution of the model we eliminate the abandoned processes and free 
goods from the system of inequalities. Making use of the equality a =  p, we obtain 
the following dual equality (the elimination can take place without upsetting 
the interrelations since for the processes and goods to be eliminated x- =  0 and 
Pi =  0):

(T -  aF)x =  0 and p(T  -  aF) = 0. (14)

Note that, apart from the above-mentioned restriction, which can be dropped, 
Neumann’s proof makes use of the positiveness of the matrices F  and T  only in a 
single place where he does not permit the fraction on the right-hand side of the

pTx  0
expression a(p, x) < — to take the undefined form —(fornon-negative p and x).

If we exclude this last problem, his theorems will be valid for matrices in general,
i.e. for those with positive, negative or zero elements. Since it is hardly conceivable 
that in reality (with any kind of non-negative price system and non-negative produc
tion levels) the price sums of either production or consumption will become zero, 
this possibility can be excluded ab initio on economic grounds.

At the end of his study Neumann called attention to the fact that the model, 
constructed to reflect an equilibrium situation is interpretable on the basis of the 
minimax strategy of the theory of games. Furthermore, it can be solved either for 
production levels (primal solution) or for prices (dual solution) by simple maxi
mization of the expansion factor or minimization of the rate of interest.

c) The dynamic model of Leontief

The roots of Leontief’s model in the history of theory are the most varied. Leontief 
[1949] refers to the equilibrium model of Walras, but Walras’ model is funda-

* He assumed, namely, that t lk f ik >  0, i.e. that all processes use or produce all products. 
Such a strong restriction proved to be unnecessary; it is sufficient to assume that the matrices 
are irreducible. With the exception of some “degenerated” cases, irreducibility will secure a 
unique solution in a, fi, p and x. (See Gale [I960].)
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mentally static. To construct his dynamic model, Leontief adds new elements also 
found in the Harrod—Domar growth model. In the latter, investment is the sole 
source of changes in production. The Leontief model might be conceived of as a 
multi-sector Harrod—Domar model. He might have been also influenced by the 
first chessboard tables constructed in the Soviet Union and by the growth models 
of Feldmann as well. Thus Leontief’s model has a close relation to the Neumann 
model and to the original Marxian concept of the reproduction process.

In the Leontief dynamic model total production of individual sectors must 
cover both intermediate consumption and the investment needed to increase 
production. The model can be written as either a system, of difference equations 
or of differential eq uations ; we start with the former :

x =  Ax + BAx

where, using the familiar symbols

x  =  the vector of total outputs 
A =  matrix of flow coefficients 
B matrix of stock coefficients 

Ax =  incremental production.

Seeking the “equilibrium” solution of the model, we assume as usual that produc
tion develops proportionately in all sectors Ax =  Xx, where X is the growth factor 
and thus

x  =  (A + XB)x. (15)

It strikes us immediately that the model is mathematically equivalent to that 
of equation (12).

While Neumann developed both the primal and dual aspects of his model, 
Marxian production prices and the dynamic Leontief model were long treated as 
things apart, although at this level of abstraction they are only two aspects — the 
primal and dual — of one and the same model.

Recently a number of scholars have elaborated the dual form of the Leontief 
model, and Seton [1951], Morishima [1964] and Johanssen [1965] pointed out 
its equivalence to Marx’s production prices.

The solution of the Leontief dynamic system is well known and can be given 
in a closed mathematical form. Now, as Neumann suggested, maximization or 
minimization problems can also be interpreted in terms of minimax strategy. 
It therefore becomes apparent that this closed model, built along deterministic 
lines, can be reinterpreted as maximization. The solution of equation (15) may also 
be conceived of as a maximum problem, to find those proportions that will 
maximize the growth rate in. the long run. This question will be taken up in more 
detail, in. Part 3.
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. d) Linear programming

The.origins of this model too are technical and mathematical rather than economic. 
At its cradle stand two mathematicians, Kantorovich [1939] and Dantzig 
[1947]. Both of them'developed the mathematical apparatus in order to solve 
technical supply problems. Since then, attempts have been made to interpret the 
model from the points of view of both, rnarginalist and labor theory. It is not 
surprising that both approaches have been essentially successful.

The aim of the model is to allocate limited resources among competing activities 
in an optimal way, i.e, to achieve maximal results through, choosing the best 
allocation of resources.

The well-known mathematical formulation of the model is: maximize c’x  subject 
to the constraints Ax < b, x  > 0 where

b — vector of resources
À =  matrix of technological coefficients ; the element aik specifies the amount 

, of the resource i used by a unit of activity k;
c’ — vector of coefficients of the objective function; its element ck specifies 

the weight of a unit of activity k  in. the objective function.
It is usual to transform the inequalities into equations by introducing so-called 
slack variables, fictitious activities using resources without affecting the objective 
function. In general we can state the linear programming problem as:

maximize <5 — c’x  (16)

subject to the constraints A x  =  b, x  >, 0.

The dual form serves to determine the so-called shadow prices. It can be stated as

minimize Q =  p ’b (17)

subject to the constraints j/A. = c\ p > 0

where p ’ is the vector of shado w prices.
. There are several algorithms for solving the model ; the best known are variations 

of the simplex method by Dantzig. The simplex method yields solutions for both 
the primal and the dual, models simultaneously. It has also been proven that if 
the model has any solution at all, then.

max <5 = min q.

This means that the values of the objective functions for the maximization and 
the minimization problem, are identical.

1.3.2. Equivalence

It has long been recognized in mathematics that the same problem can often, be 
formulated in both a “deterministic” and a “teleological” form. Thus, the solution
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of the deterministic equation Ax = b is x =  A~lb. But the same numerical result 
is reached if, instead of that, we seek an x  that minimizes the residual value of 
(b — Ax) = r. If the first formulation has a solution it will be a solution of the 
second, too. The second formulation is somewhat more general in that it yields 
an answer in cases when the first has no solution at all — for instance when the 
matrix A is singular or the equation system is inconsistent, etc.

If models have identical solutions notwithstanding differences in their formula
tion and in the interpretation of the results, we call them equivalent. Thus, equiv
alence can be proven if — assuming they have solutions — the models can be 
transformed into a common form.

The models described thus far are based on diverse approaches. The production 
price model has a deterministic-causal character. It defines production prices as 
those that yield equal rates of profit. The same model can be understood as an 
equilibrium model, too. For production prices, supply and demand coincide and 
thus the market will not trigger any deviations from existing proportions. No 
branches will attract capital from other branches because of their higher profit rates 
or repel capital because of lower rates. This interpretation, of course, necessitates 
certain assumptions concerning the character of the economic mechanism — say, 
capitalist-market relations.

Analogously the Neumann model is an equilibrium model, too. Its market 
mechanism is simplified to the utmost. If there is any surplus at all, the product
concerned will have a zero price. When supply exceeds demand, prices simply 
tumble to zero. And the same for scale of production : losses entail abrupt dis
continuation of the process.

Another starting point for model building — and we have already touched upon 
it by raising the question of market rules — is teleological. There is a goal, to maxi
mize some number considered favorable, or to minimize some loss. The logic of 
linear programming runs along these lines and every extremum-seeking model 
will have this feature. And it is interesting to note that both (primal and dual) 
aspects of the dynamic Leontief model and of the Neumann model, taken sepa
rately, can be reinterpreted as teleological models.

The Neumann model and the theory of games started from a very special and 
somewhat more complex viewpoint : that of the minimax principle. This is a mix
ture of an optimizing and an equilibrium approach. It poses the interesting ques
tion: will a function, maximized with respect to some of its independent variables 
and minimized with respect to others, attain any equilibrium?

A well-known common feature of all these models is their linearity. This seems 
to be a common shortcoming. They cannot reflect economic reality that is “not 
linear”, and where interrelations take more complicated forms. It is no justification 
that the assumption of linearity is “comfortable”, that it requires fewer observa
tions for a quantitative measurement of relationships. (The argument has some 
practical bearing, since, if a relation is not linear, one should specify more precisely 
what form it does take. Complex forms necessitate broader data and it is question
able whether the increase in exactness to be expected is commensurate with the 
costs of collection.)
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There is, however, a much more powerful argument in favour of using linear 
relationships. In the immediate vicinity of the point to be examined (e.g. the equi
librium situation, or the point determined by real price and volume relations) 
most complex relations can be approximated by linear ones with the required 
accuracy. Assume, for example, that the elements of the technological matrix A are 
complicated functions of production levels and prices as well as of time. The real 
question is not what functions they are in general but whether they can be approxi
mated by the matrix A with the accuracy required in economic decisions, which is 
not too great in most cases. We should ask whether with changed prices and 
volumes and at another date the given A matrix is still sufficiently exact. Since 
economic decision and policy based on such models do not change the relations 
too rapidly, the linear models can often be safely applied subject to additional 
checking; their linearity is not generally a serious problem.

But linearity is not the central issue here. The models have much deeper features 
in common. For two, this was rigorously proved by the model-builders themselves. 
When constructing his equilibrium model Neumann noted that the model of the 
theory of games may be conceived of as a special case of the growth model, where 
f j ~  1. Then the “utilization” matrix, F, takes the form:
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He did not, however, mention that the matrix C of the theory of games can have 
any real elements while the corresponding matrix T  of the growth model is strictly 
non-negative. It still may be accepted that the theory of games is a special case 
of the mentioned “general” Neumann model with unrestricted matrices. Other 
models will be reduced to the “general” form of the Neumann model below.

Dantzig also proved equivalence. He showed that all problems in the theory 
of games can be written as linear programming problems with matrices of the 
same order but that not all programming problems can be written in the form of a 
model of the theory of games having the same dimensions.*

Dantzig’s findings of equivalence can be shown by a very simple transformation 
of the linear programming problem.

As we have seen, the model of linear programming is: max <5 = c'x, with the
constraints Ax = b, x  > 0.

This can be transformed into a Neumann model by the following means. 
We assume that the programming problem has a solution. Hence max c’x  exists 
and is finite. Let us form the diadic matrix bd == {b,Cj}. ft will have as many

* He did prove later also that linear programming models can be written in the form of 
skew-symmetric game-matrices of double dimensions. (See Dantzig [1963].)
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rows as we have resources and as many columns as activities. Now we can write :

max <5, x >  0 ■ (18)

(be’ — ô A)x — 0,

This is mathematically equivalent to our equation (14). Instead of matrix T, which 
was not restricted in any respect, we have a diadic-matrix of rank 1. The matrix 
{ fj  =  1} of the theory of games is also such a diadic matrix and a very special 
one at that.

Equation (18) is equivalent to the programming model as well. This can be shown 
by multiplying it by x arriving at bc’x  -  8Ax  =  8(b -  Ax) = 0, If 8 is not zero, 
this necessarily leads to the equation b =  Ax.

Similarly the dual form may be reduced to the equivalent form of p ’(bc’ — 8A) =  
=  0. Thus, any programming model can be written in the form of a Neumann 
model but only special Neumann models, namely those whose matrix T  is of rank 
not greater than 1, can be written in the form of a programming model. Therefore, 
the Neumann model is more general than the programming model and the latter 
is more general than the fundamental model of the theory of games. Obviously, 
the Neumann model is more general than the Leontief model : Leontief models 
may be written as Neumann models but not all Neumann models can be written 
in the more restricted form. This becomes clear if the Leontief model is rewritten 
by introducing the unit-matrix 1 :

/;[(! — A) — rcB] — 0 and [(i — A) — A£]x = 0,

Here we have a Neumann model whose components are matrices (1~A) and B.* 
On the other hand, this model is more special than the Neumann model since its 
matrices are square while those in the Neumann model may be rectangular.

However, note that the solution of the Neumann model has as many optimal 
processes as there are products with positive prices and is therefore equivalent to 
an equation, written with square matrices. Precisely this feature of the model will 
serve later as the basis for a solution algorithm.

We cannot say whether the Leontief model or the programming model is more 
“general” . In the former the two matrices must be square while programming 
models operate with any kind of matrices. At the same time the be’ matrix used 
in the programming procedure is a strictly diadic matrix whose rank is at most 1. 
This is less general than the corresponding matrix (1 — A) whose rank is always n.

Both of these models can be transformed into a Neumann model. For the Leon
tief model this entails augmentation with relationships describing possible proc
esses (not, or not yet, employed in reality). The programming model must be

* The inverse of the matrix (1 —A) is strictly positive but the matrix itself, being a so-called 
Metzler matrix, may also have negative elements. Only the generalized Neumann model com
prises this model, too.
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rendered homogeneous. This is somewhat more complicated. It means that all 
processes (activities) by means of which the resources can be expanded must be 
fitted into the model — the resources must be made into variables. Obviously, 
this makes sense only for long-run analysis. In the short run, resource conditions 
are realistically fixed.'

To make the programming model homogeneous is to make it into a closed 
model. “Exogenous” resources disappear and therefore the “exogenous” objective 
function may also be dropped. When the scope of reality represented by the model 
both over space and time is expanded, the role of exogenous “endowments” and 
“objectives” will diminish.

Kornai [1965] points out that in a programming model there is a close inter
dependence between the “necessities” expressed by the constraints and the “wishes” 
contained in the objective function : “There is no self-evident and natural criterion 
for separating in each case the relationships which are to be enforced within the 
system of constraints . . .  from those coming under the objective function.” Thus, 
even in an open model, the “constraints” and “objectives” may — to a certain 
extent — substitute for each other. They serve to express the same deeper 
requirement which may be often expressed in an alternative manner (either as a 
“constraint” or as an “objective”).*

And this is only natural, since the “constraint” and the “objective” appear 
when we “open” a closed self-reproducing system. Where we cut is apt to be 
somewhat arbitrary, and so, thus, is the distinction between beginning (resources) 
and- end (objectives). This is a fundamental feature of the teleological approach 
which leads from a valuation of the final objective to the valuation of resources 
through optimization.

What, then, are the optimization features of the closed model? That the closed 
model may be constructed both in a strictly deterministic manner and in terms of 
extreme values has already been noted. Thus we could “maximize” the rate of 
growth (viewing the model from the production levels) or the rate of profits or 
interest (considering the problem from the dual aspect of prices). In both cases 
we economize on the only remaining “scarce resource” — time. It was in this 
sense that Marx made the remark: “Aile Ôkonomie ist Okonomie der Zeit” 
[G. 89 ].

In summary, all the models examined here can be written in the form of a 
general Neumann model. With the qualifications cited, their “generality”* is 
ranked by the following diagram :

Neumann
/  \

Marx- Leontief Pr ogrammi rig
\

■ Theory of games

* Along the same lines, note that the diadic matrix be’ obtained in the course of transfor
mation combines the constraints b and the coefficients c. of the objective function.
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Even the open static Leontief model may be interpreted as a “parallel” to the 
theory of games for the case of a B = {bik ss 1} matrix. In this case : p( 1 — A)x =
— y(p, x) and the value of the “Leontief-games” will be net surplus. À possible 
economic interpretation of the game is: there are two players, the Price Office 
and the Planning Office. The Price Office regulates prices — chooses p — so that 
the enterprises earn the minimum possible profits. The Planning Office regulates 
production so as to maximize profits. The two “strategies” will lead to stable out
put proportions and prices while a surplus emerges as the “value” of the game.

Various different approaches — equilibrium analysis, minimax strategy, com
putation of extreme values (optimization), as well as the construction of a de
terministic model — could be used interchangeably as a basis for all the models 
treated. These theoretical orientations do not influence the essential contents of 
the models nor the numerical values of their solutions.

The causal, deterministic concept of the labor theory of value and the optimiza
tion concept of marginalism have led to the same conclusions here. The funda
mental question is whether real relationships are represented correctly in the model. 
If the model reflects the essence of reality, both approaches will yield identical 
solutions and identical practical instructions. Should the two views conflict in 
some practical questions, the difference can lie only in the relations specified. 
When these are reconciled the practical solutions (as Neumann puts it, the “fore
sight”) must coincide.

While they can be rendered equivalent there are significant structural differences 
among the models in their traditional forms. This certainly affects their usefulness
— they are not all equally well suited to the same practical purposes. Compare, 
for example, the uses of linear programming and the Leontief model in planning 
application.

Strictly given constraints on resources are entirely real in many technical prob
lems. If we program the cutting of mill plates, their specifications will be strictly 
given and unyielding. As we increase the scope of programming to a whole shop 
or enterprise, the constraints begin to lose their rigidity. In the short run the 
number of machines or men in a shop is given — and this constrains the possible 
activities. Similarly the shop faces a given price system over which it has little 
control. But as the scope of programming is broadened in territory and in time, 
constraints and outside prices are less rigidly fixed. The number of machines can 
be increased by investment, the price system can be changed. While the number 
of workers, at a given moment, is limited in any actual economic system, working 
hours, or intensity of labor, or productivity of labor or all of them can be changed 
albeit at some expense and at limited rates. The area of arable land is limited — 
but the Dutch have succeeded in altering these limits by reclaiming land with 
skill, money and time. The same goes for all “capital goods” : they may be scarce 
but the limits are not set forever.

By setting finite limits to resources, the programming model assumes them given 
once for all, in spite of all the possibilities of their increase. This fault in reflecting *

* The yardstick here is the quantity of information subsumed in a model of given order.
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reality is also one of the great merits of linear programming. By artificially
dividing the world into changing and rigid parts it can neglect all that is not 
easy to alter in the given context and time span. This is the reason that it shows, a 
promise for the analysis of the problems of monopoly, scarce resources, land and 
mining rent, and rent theory in general.

There would be much to be gained by extending the reach of closed and homo
geneous growth models by some cunning marriage with a programming model. 
Because there is a formal equivalence between the two models one need not choose 
but can use them simultaneously, in conjunction. And really this is the path chosen 
in practical applications not so long ago. Joining forces of the two models might 
remedy their individual deficiencies.

The Leontief model does not limit expansion possibilities. Certainly there are 
some real limits that it does not specify. Thus it might well claim some goal as 
achievable that actually cannot be attained or can be reached only if special 
measures are taken. On the other hand, allowing no leeway for favorable choices 
of technology it may underestimate the possible speed of development.

Linear programming can optimize. But it cannot take into account restrictions 
that are not introduced explicitly. Thus if there are territories of the economy left 
out of the model, the solution will be a suboptimum that disregards them. If it 
spans a given time horizon it will neglect posterity. It may favor one group or 
sector while neglecting other interests, neglect the future in favor of the present, 
or even throw the economy into some sort of cycle by oversteering it.

The development of planning methods will certainly bring models which connect 
the two possible approaches more firmly. Here we have only tried to clear away 
some illusory and doctrinaire theoretical obstacles. Linear programming, Neumann 
and Leontief models have more in common than appears on the surface. Joining 
forces will not solve all problems — but I believe it is the way to go.

1.3.3. Duality

Not so long ago the view was generally held that Marxian political economy and 
the mathematical approach to economics were at best alien to each other and that 
Marx’s Capital provided but little guidance to the unsolved problems of practical 
management and planning under socialism.

But we have just shown that one of the fundamental instruments of modern 
mathematical economics and, for that matter, of operation research and control 
theory — namely the principle of duality — was formulated and elaborated a 
hundred years ago by Marx; moreover, this principle was a keystone in the 
theoretical foundation of his approach.

Primarily for lack of adequate mathematical tools, 60 years had to elapse 
before the first precise mathematical formulation of the principle of economic 
duality ; as for its application in economic practice almost a hundred years had to 
go by, because of lags of computation techniques and statistics. Now, a hundred 
years later, it is becoming clear that duality is a general clue to controlling compli
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cated systems, and economic systems are especially so. By carefully elaborating 
the concept of duality Marx has contributed to the evolution of mathematical 
economics and to the solution of the management and control problems. It is 
not altogether clear whether these concepts were adopted with open or tacit 
acknowledgement of the priority and merits of Marx or whether his contribution 
was recognized consciously at all. In any case'there is firm evidence of the priority 
of Marx in the history of this important area of theory. There are major links that 
connect him to modern mathematical economics and to the solution of the funda
mental theoretical problems of the socialist economy.

It should hardly need proving, at this stage, that Marx and mathematical eco
nomics are compatible with each other -.suffice it to mention the names of Feld-
inami, Nyemchinov, Kantorovich, Strumilin, Kalecki, Lange, and their followers. 
It has also become clear that certain aspects of socialist commodity production 
do not differ so fundamentally from the economic categories of Capital as we 
might have liked to believe. Nor is this surprising: Marx stressed and clarified 
precisely those categories which point in the direction of socialism and the con
scious control of a whole economy.

Let us return to the primary subject of our investigation : the mathematical 
formulation and development of the concept of duality, its logical and economic 
content, and the form it took in Capital. _

Duality in mathematical economics

Very simply the economic principle of duality means that all intricate productive 
processes can be examined from two aspects : as physical processes creating use 
values and as processes simultaneously assigning values to them. The first con
scious and precise mathematical formulation of the principle of duality seems to 
be found in Neumann’s writings, already described and discussed. From the 
fifties on it became more and more obvious that many successful multi-sector 
models of production were very similar to the Neumann models and were indebted 
to the mathematical notions worked out and applied by him.

If all these models are special cases of an “arch-type” , the principle of duality 
must play a central part in all of them. And this is actually so : all these models 
deduce in a similar manner from the same structural relations, on the one hand, 
the desired (optimal or equilibrium) proportions of social production and, on the 
other hand, the valuations (values, prices or shadow prices) belonging to these 
proportions.

Although the principle of duality first became widely known as the connection 
between the primal and dual solutions of linear programming, duality is not an 
exclusive feature of optimization models. Duality may be interpreted similarly in 
other models as well.

In all these models duality means a strict symmetry of the two aspects of the 
economic system presented, of the two sides of the production process, its physical 
and its value pattern, its “use value” and “value” aspects. There is not only sym
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metry but close interdependence as well. The mathematical equation systems 
describing the process of reproduction, the huge metabolism of society, determine, 
“as viewed from one aspect” , the proportions of products and labor processes, 
the relations between useful things and the special sorts of labor creating them, 
while the same system of equations, “as viewed from the other aspect”, explains 
valuation, the flow of values or monetary transactions, of homogeneous exchange 
values.

This leading principle of duality may govern non-linear as well as linear models, 
since non-linearity is, in this context, only a characteristic of the equation system 
describing the internal functioning of a model. Linear or non-linear, a system can 
always be examined from two points of view, from, that of heterogeneous use 
values and from that of homogeneous exchange values. For example, the mathe
matical theory of optimal processes formulated by Pontryagin and associates 
[1962] again utilizes the laws of the dual system for the mathematical solution of 
rather complicated problems in the field of control techniques. The economic 
application of Pontryagin’s mathematical model may be regarded as a non-linear 
generalization of the Neumann model. It provides a powerful tool for the treat
ment of some problems of economic control and regulation, to which we will 
return in Part 3.

From the purely mathematical point of view, the principle of duality is very 
simple in all these models. It establishes a connection between the solutions of a 
given system of equations and those of an adjoint (or transposed) system.* Despite 
its mathematical simplicity, duality characterizes many varied real phenomena. 
The principle already is or will be useful in numerous problems of classical and 
quantum mechanics, in physics and biology and increasingly in economics. It is 
most helpful in mathematical description of the movements and laws of movement 
of highly complicated systems.

In the analysis of such complicated systems certain parts of the system (its 
physical parameters or — in economic systems — certain activities, types of labor 
and of product) may not be directly commensurable because of their naturally 
heterogeneous character. However, for a dearer description and understanding 
of the system’s operation, and, later, for the control of these processes, a common 
denominator, a homogeneous measure becomes necessary. This problem of order, 
measurement and control can be solved by taking into account those very inter
relations that connect the parts of the system. Thus the system provides its own 
measuring instrument based on its own intrinsic laws and interrelations.

So long as the mutual relations of the parts of a system lend themselves to 
mathematical description, the dual will yield an instrument suitable for ordering 
and measurement. With the dual solutions as “weights” , “valuations” or “prices” ,

* The principle of mathematical dualism may be formulated in still more general terms. 
E.g.: “A central idea of analysis . . . can be expressed in the following simple form: An 
element of a linear space S can often be characterized most readily and revealiugly in terms of 
its interaction with a suitably chosen set of elements in a dual space S ’. This principle rat ho 
naturally finds its source in. geometry . . . permeates algebra . . . and analysis, in all likeli
hood it is the single most ramified concept in mathematics” (Beckenbaeli Belliliaun [19611).
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it becomes possible to order and measure the originally heterogeneous, non- 
commensurable parts (states, activities, products, etc.). Measurements can now be 
used for “optimization” of the system, i.e. for the control of the processes them
selves. We hope that technical description and analysis of the relations of à system 
will help us to “handle” it, to know what can be expected of it, what it is able and 
unable to do. Ordering, measurement and control are just steps in increasing 
knowledge about a given system, and the principle of duality permeates all these 
steps.

Duality in the economy

Obviously, the principle of duality in mathematical systems interests us only in 
that it reflects the real duality of the systems appearing in real life. In economic 
systems the substance of this duality can be (and was) understood without a know
ledge of the mathematical equations describing the system. The reproductive 
process takes place under conditions of complex and developed division of labor. 
The individual parts of the system (partial processes, activities) are interdepen
dent — because, for example, they use each other’s products, share the same raw 
materials or productive factors, serve the same final objectives or are subject to 
the same legal and social rules.

Thus individual operations are interconnected by innumerable technically and 
socially determined relations. This complicated network of interrelations deter
mines whether the reproduction process as a whole will operate within broad or
narrow, flexible or rigid limits.

But, however these interrelationships may develop or change, they remain 
mutual relations. Each individual economic transaction, every exchange takes 
place between two parties. There is a “seller” and a “buyer” . Delivery of a finished 
product at the same time creates the preconditions of production, or some type 
of consumption ; thus all output is, at the same time, an input. One participant 
in the division of labor produces in order that the other (or several others) may 
consume and these, again, consume in order to be able to produce for others.

With, highly developed division of labor and commodity production flows of 
money emerge as the “dual” of flows of goods. By inventing coins the Lyd
ians presented mankind with a practical (though possibly inconsistent) mecha
nism for the “calculation” of the dual solution. The circulation of money operates 
as a huge analogue computer that continuously traces the dual “ unknowns” of 
the reproduction process.

Money was invented long before the principle of duality was formulated and 
before the necessary computational techniques were developed. Social practice 
greatly preceded the advance of science in this field — “Am Anfang war die Tha t . . . 
They acted and transocted before they thought.” [L 86].*

“ In the beginning was the Deed.” The quotation is from Goethe’s Faust 5
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Neumann’s insight on duality seems to come with mathematical intuition rather 
than economic study. In articulating the principle of duality he looks in frightened 
amazement at his own intellectual child :

“Another feature of our theory, so far without interpretation, is the remarkable 
duality (symmetry) of the monetary variables (prices yp interest factor /?), and 
the technical variables (intensities of production xh coefficient of expansion of the 
economy a).”

However, the first part of Capital not only gives a clear interpretation of this 
duality (so much missed by Neumann on the occasion of the rediscovery of the 
dual character of the process) but also traces the historical and logical evolution 
of the dual form from its beginnings to the socially established forms of money
and currency.

Duality is even implicit in simple forms of random and isolated barter. With the 
“hair-splitting” analysis of these forms Marx’s new ideas began their scientific life.

Duality in Marx’s Capital

That commodities incorporate the duality of use value and exchange value, had
been already noted by Smith and, in a somewhat clearer, more consistent form,
by Ricardo. But they did not know, or at least did not show, that duality of the 
sysems rests on the “two-sidedness” of exchange and the dual character of labor 
in society.

This is one of the most important features of Marx’s approach: “In this 
method we proceed from the first and simplest relation that historically and in 
fact confronts us; here, therefore, from the first economic relation to be found. 
We analyze this relation. Being a relation already implies that it has two sides, 
related to each other” [S. 369]. Marx’s analysis shows that even in simple and 
random barter “the value of a commodity . . .  is expressed by . . . the use value 
of another one”, [I. 52] that value and use value, the dual and the primal aspects, 
stand on the two sides of the relationship.

In contrast to Smith or Ricardo, Marx does not speak of the duality of use 
value and exchange value but of that of use value and value in general. Only 
under certain historical conditions, namely, in the commodity-producing society, 
does this value appear in the form of exchange value.

“ When, at the beginning of this chapter, we said, in common parlance, that a 
commodity is both a use-value and an exchange-value, we were, accurately speak
ing, wrong. A commodity is a use-value or object of utility, and a value. It manifests 
itself as this two-fold thing, that it is, as soon as its value assumes an independent 
form — viz., the form of exchange-value. It never assumes this form when isolated, 
but only when placed in a value or exchange relation with another commodity 
of a different kind. When once we know this such a mode of expression does no 
harm; it simply serves as an abbreviation” [I. 60].

Labor has a dual character whenever there is division of labor, regardless of 
the type of social organisation. The writings of Quesnay, Smith and Ricardo

5 Proportions, prices and planning
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served to show that value and money relations help to solve some “primal” 
problem, for instance the allocation of use values among members of society. 
But Marx went further. He points out that the special form of the dual found in a 
commodity-producing society is a historical phenomenon. He also believed that 
this form is not ideal (as Smith believed it to be) but may, due to its contradictions, 
be plagued with inevitable disturbances in production and commerce.

This provides an important clarification of the connection between the two 
sides. The primal problem constitutes the fundamental economic problem of 
every social system, while the special solution of the dual problem characteristic 
of commodity production is a historical one and, therefore, subject to change in 
form. Indeed it is one of the most revolutionary discoveries in economics. Marx 
writes about it to Kugelman :

“It is self-evident that the necessity of allocating the labor of society in deter
mined proportions will by far not be abolished by a definite form of social produc
tion, only its form of appearance will change . . . What can change with various 
historical conditions will be the form in which these rules assert themselves. As a 
matter of fact, the form in which this allocation of labor according to certain 
proportions asserts itself in a state of society where the interrelations of social 
labor are expressed as the private exchange of individual products of labor, is 
nothing else but the exchange value of these products . .  . But there is also some
thing else behind this fact. With an understanding of this interrelation, all theoretical 
faith in the eternal necessity of existing conditions will collapse — before they 
.collapse in actual practice” [W. 552 — 4],

Many more passages, in fact, almost every sentence of the first part of Capital 
could be repeated here.

Duality is most clearly and consistently elaborated in the first volume of Capital. 
Suffice it here to point to such clearly dualistic pairs of concepts as labor process 
and realization process, surplus product and surplus value, and technical composi
tion and value composition of capital.

Yet the principle of duality runs through the whole work connecting many 
different ideas and problems. This correspondence is worked out not only in 
rough outlines but often in minute detail as well.

In Marx’s treatment the theory of value and the theory of reproduction are 
always corresponding pairs in strict duality with each other. For each definition, 
thesis or rule in the theory of value a strictly parallel definition, thesis or rule in 
the theory of reproduction can be given.

Marx himself felt that the consistent development of this dual character was 
the key not only to his book and his scientific research but, indeed, to the under
standing of political economy in general. In addition to the letter written to Kugel- 
mann and quoted above, two further letters addressed to Engels point to this fact. 
In the first of these, summing up his own opinion about the first volume, Marx 
declares:

. . The best thing in my book is: 1. the emphasis on the dual character of 
labor, right in the first chapter, according to whether labor is expressed in use 
value or exchange value (this is the basis of the whole understanding of facts)’
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[W. Vol. 31, 326]. And in. a second letter: “It has escaped the attention of all
economists, without exception, that if the commodity is something dual -  use 
value and exchange value -  then the labor embodied in the commodity must 
also be of dual character . . .  In fact, this is the whole secret of the critical con
ception” [W. Vol. 32, 11].

I t  is both remarkable and regrettable that this fundamental approach that Marx 
emphasized as the main result of his research work should have left so little impres
sion on our general concept of Capital, his principal work.

However great its indirect effects, the fate of Capital as a scientific work is, 
on the whole, not enviable. Were it less praised and less denounced but more 
widely read, there would have been fewer false ideas about it — and economics 
would have made faster progress.

5'



Part 2

Discussion of the Model

The core of the model set up in 'Part 1 is the matrix Â + IB, describing the inter
dependence of society’s metabolic process. The proportions represented in the 
two matrices yield rigorous definitions of values, production prices and their dual 
concepts, output proportions of Simple and Extended Reproduction, as a natural 
extension of Marx’s original definitions. They were defined respectively as positive 
left- and right-hand eigenvectors of the matrix Â + AB, belonging to its maximal 
eigenvalue. The latter is always equal to 1.

We now proceed to examine the character of the model in greater depth. 
We begin by showing that values and production prices are just special cases 
of a more generalized price system.

The mathematically well-known extremal properties of eigenvalues are helpful 
in demonstrating certain optimizing characteristics of each price system in its 
own model. Price systems defined by the labor theory of value do orient our 
decisions properly in certain typical situations. These questions will be discussed 
in the first chapter.

Mathematical eigenproblems are logically circular, but their formulation is 
powerful and indispensable in economic science. This prompts a review of some 
old arguments against circularity in labor theories of value. One of them, the 
so-called “transformation problem of values into prices” , actually suggests a prac
tical algorithmic solution of the model. All this will be the content of the second 
chapter.

'The third chapter fills in a few missing points: the analysis of the correct dimen
sionality of the model and the discussion of the economic significance and behavior 
of the scalar A. Finally, further theoretical generalization of the model is attempted 
through strict axiornatization and probabilistic interpretation.



2 . 1. Three Types of Price Systems

Values were defined in terms of relationships of Simple Reproduction, a historically 
ancient and simple form of production. Production prices pertain to Extended 
Reproduction -  historically capitalistic production. Thus far the resources tied 
up in reproducing manpower did not participate in determining the' average rate 
of profit under Extended Reproduction. At the end of this chapter a third, more 
general system of prices will be developed. It will take into account Extended 
Reproduction of manpower, and investment of resources serving this purpose as 
well. This so-called “ two-channel” price system will subsume values and produc
tion prices as its two special limiting cases. Here we resume that dual solutions 
(that is: price-like solutions) of models describing the functioning of dynamic 
systems yield proper scales for aggregating, explaining and finally controlling the 
systems themselves.

The models to be discussed reflect only problems of freely reproducible goods.
As already noted, scarce natural resources, monopolistic situations -  that is, 
circumstances temporarily hampering free development of production -  call for 
rent theory, and are better described by programming models.

This analysis only begins to explore the optimization properties of the models 
we discuss. It does not advocate the actual application of any particular price 
system under socialist circumstances. This latter question can be decided upon 
only after comparing the logical structure of the price system with actual (or 
suggested) rales of the economic game. “Which price system orients properly in a 
given model?” and “What would be the practical consequences of the same price 
system under given or proposed rules of the game?” are separate questions. The 
latter question will not be answered.

2.1.1. Value prices

We may reinterpret the causal-deterministic definition of value proportions in an 
optimizing context using the extremal characterization of eigenvalues. The analysis 
rests on the following mathematical inclusion theorem for eigenvalues:*

If the maximal eigenvalue of a non-negative irreducible matrix, A, equals a, 
then if the matrix is premultiplied by an arbitrary positive vector p > 0, then either

* The theorem stems from Frobenius and was sharpened by Birkhoff and Varga. Its proof 
may be found in Appendix I.
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Let us reformulate this theorem in economic terms. pA is the cost of the 
products measured by the given price system p. Its i-th element, (pA), is cost ol 
product i. Now pt being the price of product i, the quotient (pA);/p; may be 
called the cost ratio of product i, a term frequently used in socialist accounting
and planning,,practice.

Our theorem, now, stated in economic terms is : either all cost ratios are equal, in 
which case they equal the maximal eigenvalue, or they are different, in which case 
the maximal eigenvalue will be flanked by the maximal and minimal cost ratios.

This interpretation motivates our decision to consider the maximal eigenvalue 
as an indicator of efficiency of the economic system represented by the matrix Â. 
This was already suggested by the fact that a = 1 is the criterion of Simple, a <  1 
of Extended, and a > 1 of Diminishing Reproduction. This indicator is invariant 
with respect to similarity transformations of the matrix A. Thus it is independent 
of the units of measurements chosen and of the actual price systems used to 
measure the matrix A. This invariability is important. The criterion of optimality 
should be independent of the units or prices of the system.

Now the theorem can be used to prove that proper orientation is furnished by 
value proportions. Let us assume an economy under Simple Reproduction with 
value prices. Thus p =  pA, and the cost ratios are equal to 1 for every product. 
Let a new technical possibility to produce product i emerge. Say, vector at stands 
for the old technology and vector a* for the new one.

How can we decide upon whether to substitute the new technology for the old 
one? If after substitution Simple Reproduction is changed to Extended Reproduc
tion, substitution is advantageous. If Simple Reproduction is still to be continued, 
substitution is optional. But if Diminishing Reproduction ensues, substitution is 
clearly disadvantageous.

One important function of a price system is to orient decisions about possible 
alternative techniques. Value proportions (taken as a price system) help us to 
ascertain which of the three outcomes would ensue after substitution. II we use 
them to compute the cost ratio of the new technology, af, the number computed 
will indicate the efficiency of substitution. Thus

if _  p  that is, fa* =  p, substitution is optional
Pi

if — L < i that is, paf <  p, substitution is advantageous
P«

if — A > 1, that is, pa* > p substitu tion  is disadvantageous. 
Pi



If after substitution of af for a, the cost ratio remains 1, the matrix, A*, ■ 
with new technology substituted for old, will have still 1 as its maximal eigen
value and the system remains in Simple Reproduction. The result of substitution 
is neutral.

If p a* I pi - 5  <1, then, after substitution the cost ratios of all technologies but 
the f-th are still 1, but the new technology has a cost ratio less than 1. Here 
the inclusion theorem secures an eigenvalue of the matrix A* that is less than 1, 
namely 5 < a < 1. Thus Extended Reproduction becomes possible. The result of 
substitution is favorable.

Finally, if jtaflPi =  T> 1, then, after substitution, the maximal eigenvalue of 
the new matrix, A*, will be strictly greater than 1 ; 1 < a < y. Thus only Dimin
ishing Reproduction is possible. The result of substitution is unfavorable.

Value prices, 'therefore, do orient properly in this sense. Furthermore : the value 
véctor, p, being thft%ft-hand eigenvector belonging to the maximal eigenvalue, a, 
this must be the only price system, the only set of relative prices that does orient 
properly under conditions of Simple Reproduction.

Certainly the scalar multiplication of the two vectors af  and p is equivalent to 
everyday practical reckoning. Our decision process then amounts to the usual 
appraisal of comparing expenditures with results.

The above argument does not claim that the price system is appropriate for 
measuring the amount of saving induced by the new technology; nor does it give 
any orientation as to how much to produce with the new technology. But the scale 
of production cannot be determined by prices alone in a linear system of this sort.

The criterion of optimality used above should not be confused with the maximiza
tion of a fixed consumption structure or utility function. The consumption struc
ture before the decision is, of course, given. But the structure after the decision 
is not predetermined. In our procedure, after a favorable decision, society may 
increase and/or change its consumption without jeopardizing Simple Reproduc
tion. If | A* | < 1, then any or every element of consumption can be increased 
to a certain extent before the maximal eigenvalue again reaches 1. What to do 
with the surplus accruing after substitution is clearly a second question. It might 
be accumulated or consumed or both in varying proportions. To formalize this 
second decision we must know who will be in possession of the surplus and what 
are his goals. This certainly changes historically.

What happens now in the particular case where the surplus is consumed unpro- 
ductively ?

Now, in general, it is not value prices but the left-hancj eigenvector that orients 
properly. Its last element shows the new value prodjp&d by labor. If there is 
unproductive consumption the value of labor power i«ess than the value produced 
by it. To this extent, then, value prices will undervalue labor power; it will be 
“cheaper” than its properly orienting value, thus decisions will tend to waste it.

This seems to explain Marx’s train of thought ih the following passage: “The 
use of machinery for the exclusive purpose of cheajjffening the product, is limited 
in this way, that less labor must be expended in deducing the machinery than is 
displaced by the employment of machinery. Forme capitalist, however, this use
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is still more limited. Instead of paying for the labor, he only pays the value of 
labor power employed” -  and he adds in footnote : “Hence in a communistic 
society there would be a very different scope for the employment of machinery 
than there can be in a bourgeois society” [I. 392—3].

Value prices, therefore, will lead to inefficient use of labor resources when there 
is unproductive consumption. Value prices, therefore, orient properly only under 
conditions of simple commodity production, when the amount of surplus is 
negligible.

. THREE TYPES OF PRICE SYSTEMS

2.1.2. Production prices

In what sense do production prices, the left-hand eigenvector of the matrix A + AB, 
orient properly under conditions of Extended Reproduction ? Why is total capital 
tied up in the production process the proper measure — and why do value prices 
disorient in the case of growth?

Let the average rate of profit, X, and production prices, p, be given. We know that 
the cost ratio, now defined as [p(A +  AB)}ijpi, will be 1 for every product i 
because p(A + AB) = p by definition. This new definition of cost ratio contains 
beside costs proper, pA, a second term for profit on capital, ApB. Classical econo
mists do not consider profit bona fide cost of the production process. Still on. the 
basis of our earlier analysis of production prices it makes sense to include the 
term for capital costs equal to the expression given. Although deviating from 
classical usage, we use it to make the parallel to Simple Reproduction. After proof 
and discussion we will reformulate our result in classical terms, too.

Cost ratios, then, equal one for all the given input structures. Let us now con
sider a new technical possibility to produce product i with flow coefficients af 
and stock coefficients bf.

Analogously to the judgement for value prices,

if p (a* + Xbf) — p {a, + Ah,) = pt substitution is optional

if p(af + Xbf) < p(af + Xbf) = pt substitution is advantageous

if p (af + Xof) ;> p(cig T Xbf) — pj substitution is disadvantageous.

If the new technology is optional, then after it is substituted for the old the cost
ratio remains 1 for every i. Thus the maximal eigenvalue of the new matrix 
A* +  AB* still remains 1 and yields the old rate of profit.

If p(«f +  Xbf)jpi — ô < l, then, after substitution, the maximum cost ratio
equals 1, the minimal equals <5, and thus the maximum eigenvalue of the new 
matrix A* = AB* will be strictly less than 1.' Thus we can increase A until we 
reach its former level, 1. In other words, we can now achieve a higher average 
rate of profit and thus average rate of growth. The same reasoning shows that a 
disadvantageous substitution entails decrease of these rates.
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This does not mean' that the saving of an advantageous substitution must, be 
spent to increase the growth rate. It could be spent on a higher standard of living 
by increasing consumption coefficients without reducing the growth rate. What is 
essential is whether it is possible to answer the question of “worse or better?” 
without presupposing any special preference function. If we do not predetermine 
how the additional surplus will be spent we can circumvent the far more complex 
and*intricate question of “how much worse or better?” and “better or worse for 
whom?”.

The rentability of a new technological process can now be reformulated in 
classical terms. The criterion of a favorable decision can be transformed (let as 
drop the subscript i) from
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to
pa* + Ifb*  <  pa + Xpb

i P(g ~  a *) 
p(b* - b)

(19)

Here p(a — a*) stands for saving in flows resulting from the new technology and 
p(b* — b) is additional capital spent for this purpose.* So long as the quotient of 
these two magnitudes exceeds the average rate of profit, the new investment pro
ject should be accepted.

In the latter form our decision-prescription is equivalent to the investment 
appraisal formula in current use in socialist countries. It requires the internal rate 
of return to exceed the average, that is, the usual or external rate. Socialist litera
ture calls A the “time-factor” and its reciprocal, 1/A, the “pay-off period”. These 
expressions are thus linked conceptually to the average rate of profit and its dual, 
the average rate of growth.

In this formulation the production price system suggests an iterative solution 
algorithm for the Neumann model.** The algorithm is probably not practically 
useful but it is pedagogically interesting in that it gives an idealized description of 
perpetual optimization in a dynamic, long-range system.

Let us assume that, in the original Neumann model to be solved, we know more 
processes than products, that is: m > n. (If n > m we simply perform the dual of 
the following operations.) Let us select an arbitrary subsystem consisting of, say, 
the first n processes and n products neglecting temporarily the remaining m — n 
processes. We denote the selected submatrices by T0 and F0. First we compute the 
“production prices” of our subeconomy, that is, we solve the equation

P4J  0 "  h t  o) —

for p 0 and A0. How to solve it is a practical question taken up in Section 2.2.3. 
Theoretically it is possible that — for some submatrices — there will be no solu

* Or there might be dis-saving in flows p(«---a®) =  y < 0 counterbalanced by savings in 
stock p(b*—b) <  yjX, or savings in both!

** The procedure is closely related to that suggested by Weil [1964].
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tion’at all. But if the complete model has 

Neumann) there must be at least one subsystem of the possible

a solution (and that was proven by
'm
n

subsystems

that can be solved. Thus we may suppose that our T0, F0 subsystem has a solution.
“Production prices”, p 0, together w ith  our “profit rate”, A0, supply the necessary 

measuring rods for judging the (m — n) processes neglected in  the subeconom y 
T0, F0. Thus we examine the neglected processes, characterized by the vec to rs 
th f  (i =  n + l ,  n +  2,.  . ,,m), one by  one. That is, we compute the scalars 
p 0(tt — X0f )  = st. If we find a positive st it signifies a possibly advantageous sub
stitution — because this Lth process produces more, its sales receipts exceed the 
necessary expenditures allowing for the old return on capital, and reckoned in the 
prevailing price system. After substituting the new 7-th process we may improve 
the situation — th a t  is, reach a higher profit rate.

Substituting the new process for the old in i, we get a new subsystem, say, J \, 
Fx, and solve it for “production prices” again:

Pi{Tx -  A A ) =  0 .

Now we attain a higher Xx than before : Xx >  X0,
The number of possible subsystems being finite we sooner or later find the 

optimal one, that with the highest X. For the optimal subeconomy there will be 
no excluded process with a positive st, that is, there is no excluded process 
yielding a higher rate of return than those already in the optimal subeconomy.

We still have not entirely solved the problem of substitution. If a process is 
advantageous, which other process should be replaced by it? In the absence of 
joint products it is easy to answer this question. But if the product in question 
is already produced by several processes, it is not easy to see which of them should 
be eliminated by the favorable new process i. We must have some convention to 
prevent cyclic substitutions.*

But we are not really interested in computation here. Production prices can be 
interpreted as “shadow prices”. The real economy may be viewed as a single 
iteration in computing a big and endless Neumann model. If the processes that 
are not used in reality are not efficient at production prices, then the real economy 
is at an optimum. If, however, some hitherto unused process (or a newly invented 
one) seems to be efficient at production prices, one should decide to use it. After 
the new process has been introduced, a new production price vector has to be 
worked out again.

We do not look into the question of whether this perpetual iterative process of 
selecting improved technology does or does not reflect actual happenings. This 
would involve asking whether there is any ascertainable tendency nowadays 
toward production prices and equalization of profits and whether innovation 
policies are in fact rational at all.

* It might perhaps be a good rule to replace that activity j  for which +///; *s maximal — or 
if/„ =  0 for several,/, hen. to choose by inspecting the quotientspfjp/ .
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Under the idealized conditions of capitalism and Extended Reproduction it is 
production prices rather than value prices that should orient technological de
cisions. Our abstract model of capitalism does find its proper regulator in produc
tion prices.

The system described thus far does not take into account resources tied up in 
reproducing manpower. Thus, the computed average rate of profit will exceed the 
possible growth rate. Yet, to make growth possible, every factor must be increased, 
including all the resources tied up in creating manpower. This question is of 
utmost importance for proper economic orientation, and we devote the next 
section to its more thorough investigation.

2.1.3. Two-channel prices

Here we analyze two closely connected questions. The first is: How do resources 
tied up in reproducing manpower (the last column of matrix B, quite unrealistically 
considered thus far zero) modify the overall reproduction process and the cor
responding price system ? The second is the historical role of the three types of 
price systems.

Funds tied up in reproducing manpower are costs incurred long years before 
manpower becomes a skilled or unskilled agent of production. These are the costs 
of raising, educating and training manpower.

These costs were naturally not unknown to Marx, whose work abounds in 
observations about them. Thus on raising manpower :

“Hence the sum of the means of subsistence necessary for the production of 
labor-power must include the means necessary for the laborer’s substitutes, i.e. 
his children, in order that this race of peculiar commodity-owners may perpetuate 
its appearance in the market” [I. 172]. And about training and educational ex
penses :

“In order to modify the human organism, so that it may acquire skill and 
handiness in a given branch of industry, and become labor-power of a special 
kind, a special education or training is requisite, and this, on its part, costs an 
equivalent in commodities of a greater or less amount. This amount varies accord
ing to the more or less complicated character of the labor-power. The expenses of 
this education (excessively small in the case of ordinary labor-power) enter pro 
tanto into the total value spent in its production” [I. 172].

“The expenses of developing that power which expenses vary with the mode of 
production” [I. 519] tend to decrease because “ . . . the necessary training . . .  is 
more and more rapidly, easily, universally and cheaply reproduced with the 
progress of science and public education the more the capitalist mode of pro
duction directs teaching methods, etc. towards practical purposes” [HI. 300]. 
But in spite of “ . . . the general development which reduces the cost of production 
of specially trained labor-power” [III. 389] and thus reduces the gap in earning 
range between unskilled and highly qualified manpower; the funds tied up in 
reproducing manpower remain considerable.
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The hundred years that have passed since the publication of Marx’s Capital 
have even witnessed a considerable increase in those expenses — notwithstanding 
“economies” of mass-production in educational institutions, becaiise of the very 
high training requirements of modern technology. Illiteracy and child labor have 
dwindled since Marx’s age, not just because of more humanitarian ideals but 
because of economic requirements.

The increase of costs and the fact that they are incurred far in advance of the 
benefits to be gained become very conspicuous under socialism. The socialist 
state shoulders an increasing responsibility for family-care, health services, 
educational outlays — costs traditionally incurred by families themselves. This is 
done mainly for extra-economic reasons : whether the family is worse or better off 
should not determine its state of health, its educational opportunities or its size. 
But we have still to face the facts: after transferring heavy financial burdens to 
the state budget, families still carry very high expenses.

Nowadays in Hungary (and in other socialist states) government-financed 
“social costs” of reproducing manpower amount to approximately 20-30 per cent 
of wages. They are defrayed from the budget. And still the family spends approx
imately half of its income on rearing children. Thus a non-negligible part of 
national income — a part well in excess of the conventional investment ratio — 
serves the future generation and in this sense can and should itself be considered 
as investment. This investment is embodied not in the means of production but 
in the agent that controls them.

The gestation period of new fixed capital seldom exceeds 2-3 years. The gestation 
period of manpower, nowadays, is seldom less than 16-20 years.

The amount and composition of these costs, and the length of lags must certainly 
influence the overall pattern of reproduction and thus affect output proportions. 
This influence is recognized in the theory of planning — even if its full significance 
is seldom grasped. But planning practice has already taught planners some lessons. 
The demographic and employment structure of population — both very slow 
and expensive to influence and modify — delimits and constrains long-range goals. 
One of our experienced Hungarian planners, Timâr [1966], writes:

“As a consequence of the above-mentioned long reproduction cycle of man
power, the available manpower supply in the next fifteen to twenty years, for the 
most part consisting of the able-bodied population, is substantially given . . .  In 
this manner we obtain an important starting point for long-term national economic 
planning . .  . In long-term planning the principal task of manpower plans is . . . 
to yield information, on the basis of the available manpower supply, on the 
possible utilization of manpower in the national economy and to give initial data 
for drawing up the plans of individual branches” .

And the same problem is recognized for underdeveloped countries where lack 
of qualified manpower is a perpetual bottle-neck to take-off and growth. All the 
necessary educative tasks simply cannot be accomplished at once in the case of an 
underdeveloped country without a developed system of schooling. For example, 
teachers must be trained to teach engineers, who in turn teach engineers’ helpers, 
who train foremen to train skilled workers. A heavy influx of foreign experts and,
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possibly, equally strong help in educating countrymen abroad will be a sine qua 
non. Even with substantial foreign aid it remains a tedious and time consuming 
process.

In the framework of an already developed comprehensive system of education, 
all these tasks are performed simultaneously; once the educational pipeline is 
filled, there is parallel education in all layers. Yet, we should continue to take 
account of the indirect, less conspicuous time requirements for educating today’s 
educators and so on.

These expenses and time lags will affect output proportions, and also modify 
the price system. Value of manpower equals the value of means of subsistence 
necessary to reproduce it with all its skill — and the magnitude of this value is 
not changed whether the expenses are defrayed by the individual, the family, the 
community or the state.

This too is not a new idea among planners and economists. Esze and Nagy 
[1963] argue for the so-called “two-channel” price system (which allocates a part 
of “surplus” in proportion to wages) as follows :

“Here we think about that part which accrues to the workers as indirect trans
fer, including the amount spent to train new workers. This part is, strictly speaking, 
not a net income of society but — from the viewpoint of society — as much the 
cost of labor as wages” .

The costs of education, health and family care, shouldered by the state are 
usually not of a “flow” but of a “stock” nature. Even if they apparently take the 
form of flows (say, in the case of sick-relief or old age pension), they actually are 
disbursements of a collective insurance fund.

Let us estimate the order of magnitude of the funds invested in reproducing 
manpower and their turnover time. We will neglect consumer durables (a minor part 
of the total stock) and simplify the investigation, seeking only a rough estimate.

Turnover and reproduction of manpower differ characteristically from turn
over and reproduction of machines. In the case of machines two periods are 
sharply discernible : their gestation or production period, and the second period, 
when they are performing their duties. In the case of manpower the two periods 
are not segregated as clearly : after finishing their formal education men may be 
trained on the job; they learn by doing. The formative period of labor will thus 
not be entirely completed when they enter production. Furthermore, manpower 
acts as consumer of goods even after it becomes productive.

Of course the separation of the two periods is an abstraction even in the case of 
machines. There are additions, improvements, maintenance costs for a functioning 
machine, too. Economics has something, but not very much, to say about main
tenance. Maintenance is treated much more adequately in management science. 
In the case of manpower this neglect of “maintenance” is not permissible, and 
indeed personal consumption is considered one of the most important subjects 
of economics.

We begin our estimate by assuming a constant annual consumption throughout 
an individual’s life. This assumption is very crude because the first years cost 
more. The years of primary and secondary schooling absorb above-average costs,
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too, and old age also requires again above-average health and nursing care. We 
nevertheless assume constant consumption.

Our second assumption is even cruder: Manpower creates a constant amount 
of new value each year, On the basis of average earning potential in the different 
age groups it seems probable that the amount of new value created is not constant. 
It seems to increase very substantially after 
the first years and has a peak (varying with 
occupations) around the age group 40-45.
After that it seems to decline.

Both of our assumptions are incorrect in 
that they will tend to understate funds tied 
up in reproducing manpower, as should 
become clear below.

Third, for present purposes we assume 
Simple Reproduction. Taking Extended 
Reproduction into account here would 
complicate and blur the picture without 
adding much to our knowledge. Thus, we 
claim that the amount spent to reproduce 
manpower and the amount of value cre
ated by manpower so reproduced are equal.
This is a slightly different formulation of 
Simple Reproduction where value of man
power and the new value created by it are 
equal. There is no difference between the 
amounts spent and the amounts recovered.
There is nevertheless a considerable differ
ence in the timing of those two amounts.
This difference, this lag in recovering the amounts spent, explains the amount of 
funds tied up in reproducing manpower.

We divide the total life span of the laborer into two parts : raising time r, and 
productive time p. In the first r years there are only costs, in the second p years 
there are costs and “income” (new value created). The sum of costs over the 
r + p life span must equal the sum of the income.

Graphically, annual costs and incomes (recovery of costs) are shown in Fig. 1. 
But, at the same time, cumulated costs equal cumulated income. Thus Fig. 2 
shows the amount fixed.

The average amount of funds required is represented by the height of the 
rectangle indicated by broken lines ----- its area is equal to the area of our triangle. 
If annual costs consumption is c, the height of the triangle must be h == rc. There
fore the height of the rectangle, funds tied up on the average, will be rc/2.

If we compute “turnover time” of resources tied up in reproducing manpower, 
we arrive at a “life span” measure. The correct “life span” to reckon with is 
raising time, r. This means that, for Simple Reproduction, r/2 years of consumption 
are tied up as investment in human beings.
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Time spent in actual production, p, does not play any apparent role here. But 
this is deceptive. If we designate yearly value creation by v, then the postulated 
equality of cumulated costs with cumulated income, (r +  p)c =  pv, implies
ix = (v -  c)p, hence rc/2 =  (v -  c)p /2. Now half of production time (actual 
life span spent as an agent of production) is equal to the - “turnover time” 
of another stream: the difference between annual value production and con- 
sumpion.

On the basis of this relationship it becomes clear that if raising time, r, is 10-20 
years, the order of magnitude of the funds fixed in reproducing manpower will be 
about 5-10 years’ income. If raising time costs are above average (as they usually 
are nowadays), we underestimate the stock, and if income is not constant but has 
a peak around 40-50 years, we overestimate the speed of recovering the sums 
spent and thus tend to underestimate stocks again.

It is well known that the total reproducible (tangible) wealth of society (in
cluding not only means of production but “infrastructure” -  highway systems, 
residential buildings, etc.) seldom exceeds 3-4 years’ national income. Comparison 
with 5-10 years’ income tied up in reproducing manpower clearly indicates that 
the man working with a machine is worth much more than the machine itself, 
including all the expensive auxiliary fixed equipment. This crude computation 
justifies the socialist commonplace : “The greatest value is man himself.”* 6 Yet 
this point of view remains purely theoretical until output proportions and price 
systems are actually adapted to it.

Everybody is shocked by waste and yet we condone everyday waste of man
power and skills. For example in Hungary, where skills and talents are in principle 
much esteemed, Kovâcs [1968] has shown that, in spite of a shortage of skilled 
labor, about 2000 highly qualified persons work in jobs not requiring more than 
skilled workers’ education, 2500 graduates of universities and 25 thousand gradu
ates of high-schools work as semi- and unskilled workers, and about 235 thousand 
skilled workers work at jobs not equal to their skills. (Total active population is 
about 6 millions.) The educational expenses wasted here are about 10 per cent of 
national income -  and additional loss of national income caused by this dis
location exceeds one per cent annually. But this estimate covers only waste by 
persons working full time in jobs beneath their qualifications. Many also spend 
part of their working day at tasks that could be accomplished by lesser talents.

As long as we reckon labor costs in wages alone this waste will not stop. If we 
were to introduce human investment into the matrix B, we would get a totally 
different price system, one that would give proper orientation for allocation of 
labor of different skills also.

“Two-channel” prices are a comprehensive system of production prices that 
also takes into account resources tied up in reproducing manpower. We 
show that this “two-channel” price system is nothing but the left-hand eigen
vector of the total system (including stocks in the last column of matrix B) ; this

* Abbot Galiani, a very early economist, already had an inkling of this: “La vera ricchezza 
. . . cel’uomo.” (“Della Moneta”. Custodi. Parte moderna. Vol. Ill, p. 229.)
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serves as proof that in  the new, total system it is “two-channel” prices (and not 
classical production prices) that orient properly.

Let us start from the definition of “ two-channel” prices given by Esze and 
Nagy. They are prices where the mark-up on cost is partly proportional to fixed 
capital and partly to wages. Thus, surplus value is allocated among prices with a 
mark-up rate n on capital and /? on wages. In this notation

p = pA +  npB + (1 + P)v + n(l + f})z . (20)

Here pA =  costs of intermediate inputs
pB  =  capital/output ratio 

(1 + P)v — wages, increased by the mark-up 
(1 + (T)z — variable capital, increased by the mark-up.

Thus wages and the part of capital tied up in advancing wages, that is, variable 
capital, are both increased by the mark-up and a rate of profit % is computed on 
all the capital tied up in production. Our stock coefficient matrix, with its last 
row and column identified separately, will be

1  = B ,g
z, o

B  stands for means of production, z for variable capital and g is resources tied 
up in reproducing manpower. In parallel to the augmentation of the matrix A to 
A, the matrix B is augmented into a comprehensive system by taking into account 
(in place of the former zeros) the resources tied up in the production of man
power.

The definition just given in equation (20) for two-channel prices is simply 
the positive left-hand eigenvector of the matrix A +  ttB.

p( A + 7tB) =  (p, 1 + ft)
A c
V  o

+ n
~ B ,  g  !

z ,  o J
= (pA + npB + (1 + p)v + 7i( 1 +  P) z, pc + npg) —

= (j>, pc + npg) = (p , 1 + P) =  p.

Therefore the “two-channel” price system is a comprehensive production price 
system, computed from the matrix B of the total system, manpower reproduction
included. The magnitude of n and of the primal growth rate are again equal — 
average rate of profit no longer exceeds the attainable rate of growth because the 
very sizeable investment in human beings is no longer neglected.

There is an interesting aside : as P = npg the mark-up cannot be chosen arbi
trarily. It must equal the product of the rate of profit, n, and the resources tied up 
in reproducing manpower, p#. That is, mark-up is the cost of using those resources. 
Now if g is not specified beforehand — and its measurement must be left to the

6  P ro p o rtio n s , prices and  p lann ing
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future because statistical date are insufficient — we can choose the mark-upy p, 
“freely” but the choice implies valuation of those resources. The formula is .

P
PS =  — •

TC

For instance a 5 per cent rate of profit and a 30 per cent mark-up on wages implies 
0 3 =  6 years income tied up in reproduction of manpower.*

There are certainly limits on the choice of p. If j? 0, then from pg — 0 and 
p  >  0» g =  0 follows. This means that we are totally neglecting human investment 
and the resulting price system will be the classical production price system. This 
is one extreme of the “two-channel” price system.

Let us now assume as a second extreme that all the resources are considered 
human investment. Then all the elements of the matrix B become zero except its 
last column. The corresponding “ two-channel” price system is . ,

(p, i + /d {

Thus p =  pA + (1 +  P)v from which

p =  (1 +  p)v (1 -  A Y 1 = (1 + P)vQ .

But this is the familiar formula for the value price system, ft is now surplus 
labor (included into the valuation, taking paid and unpaid labor into account). 
The form ft = ngp shows Expanded Reproduction of manpower following a it 
rate. The second extreme of “two-channel” prices is, therefore, the classical value 
price system. This can be seen intuitively: if we increase the mark-up on wages, 
the surplus value will all be allocated in proportion to wages. If all surplus is 
allocated in proportion to wages and none in proportion to capital, then we reach 
value prices. Thus value prices can be reinterpreted as production prices reckoning 
only with resources tied up in reproducing manpower. Considering all investment 
as human investment is equivalent to ignoring investment at all when computing 
prices.

Resources tied up in reproducing manpower tend to grow historically — not 
only in absolute terms but in relation to those tied up in production. Therefore we 
may conjecture that the properly orienting system of prices will deviate from 
classical production prices more and more and become nearer and nearer to value 
prices. If man becomes the greatest asset — if the resources tied up in its reproduc
tion outgrow every other sort of funds — then the “two-channel” prices will 
approach value prices.

* These were approximately the implications of the Hungarian price reform of 1968. 
I suspect human investment was still underestimated by this.

~A, c" o, g
+ n

V ,  o 0, 0
: (pA +  ( 1  4 - P)v, pc +  npg) ,
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Certainly the historical phase when we can neglect all investment except that 
tied up in reproduction of manpower is far off.

This, then, suggests how price systems change in the course of history. The 
value prices of simple commodity production evolved slowly into classical pro
duction prices. Production prices develop as production requires more and more 
funds to invest. In the beginning of commodity-exchange “plant and equipment” 
is negligible as compared to variable capital, thus the dominating form remains 
close to value prices. As production becomes more capital-intensive, human 
investment requirements lag. Classical production prices prevail.

Sooner or later developing technology demands qualified manpower. As 
resources tied up in reproducing manpower increase, the classical production 
price system ceases to orient properly. As human investment begins to dominate, 
the price system returns toward value prices.

Summing up : the appropriate price systems defined by the labor theory of value 
vary with historical changes in the economy. The labor theory defines the price 
systems as historical phenomena.



2,2. Circularity

A circular definition, a definition that defines some concept in terms of itself, 
idem per idem, was considered a grave fault by classical logic. But self-contained 
(closed) systems require circular definitions and modem  scientific experience has
demonstrated their power.

Classical labor theory thought itself free of such “logical blunders” . It defined 
values by reducing them to labor expenditure, explaining them as a certain amount 
of crystallized labor energy. The corresponding mathematical equation was 
p( 1 — A) =  v, which could be solved as p — »(1 — A ) '1 =  vQ. That is, it started 
from direct labor expenditure, v, the premises, and from these premises, using the 
operator (matrix) Q, it deduced the conclusion, p. The prescription was to add up 
all the labor directly and indirectly expended on the product. This logical operation 
yielded the sought values.

The eigenequation for the closed model, p = pA, leading to the same numerical 
results, would have been considered circular by classical logic. It starts from p 
and deduces its own premises, p, again. It defines values by values, idem per idem, 
moving in a circle rather than reducing values to something given previously. 
Nevertheless it is still a logically correct and fruitful formulation and in a sense 
a more general one than that for the open classical model.

This peculiar feature of circularity was a very important basis for criticism of 
Marx’s labor theory of value.

Bôhm-Bawerk [1896] was the first of a long series of critics who objected to 
this sort of reasoning. Rebuttals were unconvincing because they attempted to 
deny the circularity altogether. (See for example Hilferding [1904].) A more realistic 
and fruitful defense would acknowledge the circularity but go on to demonstrate 
the merits of such definitions in scientific economic thought.

It is no accident that Marx developed this new way to approach reality. He was 
a well read philosopher and a former follower of Hegel. Hegel, in an ingenious 
clumsy and sometimes mysterious way, anticipated many problems of modern 
scientific thought and set up the first new tools of a more flexible, dialectical logic. 
In the following we start with these “circular” eigenequation definitions of value 
and production prices and use them to answer the very questions that troubled 
Bôhm-Bawerk. These are the problems of skilled and unskilled labor, and the 
famous problem of the transformation of values into production prices. I shall 
try to show that Marx’s standpoint was entirely logical and consistent — and that 
mathematical difficulties arise when we try to eliminate circular definitions;
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2.2.1. Simple and skilled labor

Our eigenequation for values was
p = pA .

It can be interpreted in economic terms : if we add the values of all the socially 
necessary expenditures incurred during production we obtain the value of the 
finished products. Value of manpower and value created by its activity are equal 
under Simple Reproduction; surplus product or surplus value is nil. This eigen- 
equation simply states the law of the conservation of value: the sum of the values 
of the parts is the value of the whole. Yet it subsumes some economic laws that 
are far from trivial.

We set out from, the labor theory of value when defining the value vector, p, 
above. Labor expended by manpower as a source of value and labor time as an 
immanent measure of the magnitude of value play a. central role. Yet with the same 
eigenequation any other product could be cast in the same role. It guarantees 
the necessary expenditure to reproduce the special product, manpower, but it 
also guarantees all the inputs for all the other products. In the eigenequation this 
special thing, labor, source and measure of value, is logically indistinguishable 
from other products and services.

The left-hand eigenvector of the matrix A, the value vector defined according 
to the labor theory of value, certainly depends on labor expenditures. But the 
form of the eigenequation generalizes this dependency. The eigenvector always 
characterizes the whole matrix — and it can be expressed equally well as a function 
of any row, column or element of the matrix. Hence from the point of view of the 
proportions of the price system attained, we might single out any other product 
or any bundle of products, instead of labor, and shall obtain the same answer to 
the valuation problem.

In economic terms this means that we may start from any “primary” input — 
or rather consider any input as primary: coal expenditures, electric energy con
sumed, etc. We might even choose ferrous or phosphate content as “source and 
measure” of value. Using any output as numéraire we reach the same price pro
portions. This really is a natural consequence of the law of conservation of value: 
every product (even manpower) can only transfer that amount of value into 
other new products that it contained originally.
Numerical example

A
0.2 0.7 0.05
0.2 0.2 0.3
1 1 0

We have seen that value prices are p = (2, 3, 1).
If we consider product I (“Tools”) as numéraire, we have to cancel the first

'0.2 0.3"
row and column; the remaining submatrix is A t

[2 0 . 6"

inverse is (1 — Aj)' J = Qs =
2 1.6

1 0
and its Leontief-
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W e form now  the corresponding price  system by prem ultip ly ing  this inverse 
by the deleted row:

(0.7,
0.6
1.6

(1.5, 0 .5 ) ,

and complete the price system by inserting the numéraire in its proper place:

Pi =  ( l ,  1-5, 0 .5 ) .

This price vector is proportional to our former price system p = (2, 3, I). 
Taking product II (“Material”) as numéraire, we proceed  as follows :

0.2 0.05' 1.3 0.06
An =

1 0 1.3 1.06

(0.2, 0.3)
1.3 0.06
1.3 1.06

(0.6, 0 .3 ) ,

and , a fte r inserting  th e  num éra ire  :

Pu =  (0.6, 1, 0 .3 ) .

The proportions being the same as those of the former price systems we may 
state :

In the case of Simple Reproduction the value price vector can be computed 
by starting from any  p ro d u c t’s in p u ts  o r  any  combination of several product’s 
inputs (weighed by their proper values).

This insight now leads to a new (or rather old) possibility of solving the problem 
of skilled and unskilled labor. The problem — as generally stated — is that labor, 
the source and measure of value, is not homogeneous. Not only its use value (as 
the carpenter’s, mason’s or spinner’s work) b u t also its “value creating energy” 
is heterogeneous — one hour of a sculptor’s labor counts as, say, five hours of a 
quarry worker’s labor, the former being more skilled. According to Marx :

“Skilled labor counts only as simple labor intensified, or rather, as multiplied 
simple labor, a given quantity of skilled being equal to a greater quantity of simple 
labor. Experience shows th a t  th is reduction is constantly being made. A  com 
m odity  may be the p ro d u c t of the most skilled labo r, but its value, by equating it 
to the product of simple, unskilled labor, represents a definite quantity of the 
latter labor alone. The different proportions in which different sorts of labor are 
reduced to  unskilled la b o r as their standard, are established by a social process 
that goes on behind the backs of the producers and , consequently, appear to be 
fixed by custom” [I. 44].

But B ôhm -B aw erk  interjects:
“How does Marx explain th is?  He says the exchange relation is this, and no 

other — because one clay of sculptor’s work is reducible exactly to five days of 
unskilled work. A nd  why is it reducible to exactly five days? Because experience
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Shows that it js so. reduced by a social process. And what is th is  social process? 
The same process th a t has to  be explained.”

Marx has to explain the exchange relations found in the market. And how does 
he explain them ? By recourse to the market itself. The market has first to decide 
how skilled and unskilled work will b e  reckoned. Only after this process of re
duction to common units are we able to explain the exchange relations found on 
the market.

But there is really no need to consult the market to homogenize labor inputs. 
It was not the market but the social division of labor that Marx meant by the
“ social p rocess” . I t  is th is division o f la b o r  th a t  dictates the struc tu re  o f  the system
and thus regulates the process “behind the backs of the producers”.

All the products, therefore, really possess a definite value before entering the 
market. The market cannot decide their values but only their actual prices which 
m ay  diverge from their values (or production prices) under unbalanced supply 
and;demand conditions. A certain circularity characterizes the definition of the 
values (or value creating powers) of skilled and unskilled labor because the th e o 
retical prescription is based on the e igenequation  approach.

All we have to  do  is to  disaggregate (o r  ra th e r  n o t to  aggregate) th e  labo r sec to r 
in o u r m atrix  A. If under Sim ple Reproduction we have  as many row s and  co lum ns 
fo r  labo r as the n u m b er o f  different skills, we will still have a  non-negative  and  
irreducib le m atrix  yielding a  un ique positive  left-hand  eigenvector: values. T h e  
relative weights fo r  the d ifferent skills, th a t  is, their values, can be used th e rea fte r 
to homogenize labor to a common standard.

This might well be the very solution Marx had in mind when, on a later occasion, 
he elaborated the problem:

“All labor of a higher or more complicated character than average labor is 
expenditure of labor power of a more costly kind, labor power whose production 
has cost more tim e and labor, and which therefore has a higher value than unskilled 
or simple labor power. This power being of higher value, its consumption is la b o r  
of a higher class, labor that creates in equal times proportionally higher values 
than unskilled labor does” [I. 197],

The same procedure  — disaggregation of the labor sector — can  be used to  
compute production prices. All we have to do is to  secure the same detail in matrix 
B, too , and we are ready to compute the  production prices o f  different sorts of 
labor power.

If there is some surplus product a n d  hence surplus value, we might be asked 
how much surplus value can  be derived fro m  the different skills. But we can  raise 
the same question for homogeneous labor. It is n o t easy to decide whether the 
“homogeneous” labo r employed in  different sectors is exploited a t  a uniform rate.

Marx assum ed a uniform rate of exploitation, and we may assume the same in 
the case of different skills.* It is n o t possible to prove o r  disprove either assumption .

There is no  urgent need  to inquire in to  differences in  exploitation : if there is a 
surplus fed back in to  production, then we face Extended Reproduction and prices 
will oscillate around production prices and not around values. Under these con-

See [III. 142-3],
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d itions to ta l surplus is divided among capitalists in proportion to the amount of 
capital invested. The total amount of surplus can be determined irrespective of 
its sectoral origin. It is “incidental and irrelevant” which sphere, of production o r 
which sort of labor yields the surplus when society is reckoning with prices of 
production. It is not the individual laborer but the laboring class that is exploited.

Similar reasoning applies to the problem of joint products. Thus far we have 
considered homogeneous products and heterogeneous labor inputs. In the case 
of joint production the inputs and the process are homogeneous and the product 
is heterogeneous.

The same method outlined above also solves the joint product problem when 
there are just as many products as processes.

Numerical example

Let us assume that, in our original example, one unit of product 1 is jointly pro
duced with product II. To remain in the state of Simple Reproduction, Robinson 
has to consume it whether he likes it or not. Our previous matrix becomes:

[ 0 .2 0.7 0.05 ~ ' 0.2 - 0 .3 0.55 1
0.2 0.2 0.3 ------ 0.2 0.2 0.3

J 1 o _ 1 1 o

T he “input” coefficient -0 .3  show s a consum ption  of 0.7 units a n d  a pro
duction of 1 u n it of p ro d u c t I. T h e  values are

(2, 3, 1 ) ----- * (10/7, 5/7, 1).

Formally, our procedure works, but now the matrix A is not necessarily non
negative. What really happens is that in the definitional equation pi = pA, the 
left-hand unit matrix has extra elements wherever joint products occur. But then 
it becomes a Neumann model with non-negative square matrices. The trans
formation into a Neumann model is necessary in the theoretically more general 
case, when — because of joint production — the number of products and of 
processes is no longer equal. To be more general, we must introduce rec tangu lar 
matrices. A s was n o ted  in P a rt 1 the Neumann model is the  m ost general of th is 
fam ily o f  m odels.

2.2.2. The transformation problem

T he tran sfo rm atio n  p rob lem  is a  trad itio n a l, a lm ost sanctified one, settled “ defi
n ite ly” as m any times as it has been  opened  and  reconsidered. I t  is n o t even 
possib le to  find a rigo rous s ta tem en t o f  the prob lem  th a t  is generally accepted. 
T he p rob lem  concerns the  relation betw een value and  p ro d u c tio n  prices and has
at least two major facets. The first is essentially computational. Given a system
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th a t  produces som e surplus, how  are th e  p ro d u c tio n  prices o f com m odities re la ted  
to their values, how to effect the reduction of production prices to something 
a lready  know n  ? T he second concerns th e  re la tion  betw een  economic history an d  
the  h isto ry  o f  econom ic th o u g h t concerning value a n d  surplus. W h a t were th e  
h isto rica l developm ents that led the  classical econom ists to  single o u t la b o r as 
th e  fund am en ta l source o f  value and  to  reduce the  p ro d u c tio n  prices, somehow, 
to  values?  W e begin w ith the co m p u ta tio n a l p rob lem .

For lack of adequate development of the necessary mathematics, it was n o t 
possible to  pose  the  tran sfo rm a tio n  p rob lem  rigorously . M arx ’s tex t con ta in s 
correct and  unassailable deductions an d  also  undeniable w eak spots. These prob
lems were b ro u g h t to  ligh t by D m itriev  [1904], B ortkiew icz [1907], W in tern itz  
[1948], S eton  an d  Morishima [1951], N o n e  o f  the ir solutions is entire ly  ad eq u a te  
to  the  orig inal fo rm u la tions o f  M arx.

T he  weakest spo t, d iscovered first by Bortkiewicz, is that Marx’s thesis 
“  . . .  the  sum  o f the  p ro fits  in  all spheres o f  p ro d u c tio n  m ust equa l the  sum  o f  

su rp lu s values, an d  the  sum  o f  th e  prices o f  production o f  the  to ta l social p ro d u c t 
equal the  sum  o f  its value” [III. 171] is not entirely  correct.

T ranscribed  in to  ou r system , le tting  p stand fo r  p ro d u c tio n  prices and r  fo r  
values, the thesis amounts to  th e  doub le  assertion

p (l — A )x = r ( l  — A)x (for surplus), (21)

px = rx (for total product). (22)

O ne o f  these equations can  be alw ays satisfied by using up the  one rem ain ing  
degree o f  freedom . F o r  instance i f  w e choose (rx/px)p as our p ro d u c tio n  p rice  
system, eq u a tio n  (22) will be  fulfilled au tom atically . In  this case, equation  (21) 
might be reduced to [(rx/px)p -  r]Ax =  0. This will ho ld  only  i f  the  vec to r 
(rx/px)p -  r is perpend icu lar to  the v ec to r Ax, a  p a rticu la r an d  n o t a general 
case. T hus Bortkiewicz w as rig h t in  h is criticism . O n th e  o ther h an d  A x m ight be  
proportional to  x, in  w hich case equa tions (21) and  (22) are identically  fulfilled, 
an d  M arx ’s thesis is right. W here  the s tru c tu re  is close to  Simple R ep ro d u c tio n , 
and Ax = x  (an d  th is  is the  h isto rical situation w hen th e  transformation happens), 
these  circumstances m igh t prevail.

Yet, even if the  thesis is entirely  rig h t (or w rong) a deeper problem remains. 
The price system to be derived is n o t the bastard price system mentioned in 
Section  1.2.2, w ith  an equal m ark -up  a fte r  costs, but the p ro d u c tio n  price system. 
These two price systems are equal only if we assume one year turnover, and thus 
equate stock and flow. I t  is the same assumption playing havoc here, which was 
already mentioned before. In general the average rate of profit is n o t given by 
dividing to ta l su rp lus by to ta l product b u t by  to ta l su rp lus divided by total funds 
invested . T he la tte r  q uo tien t yields the rate o f  p ro fit we are really after.

O n  this p o in t we find a stro n g  spot in the original tex t:
“The average profit, determining the prices of production must always b e  

approximately equal to that quantity of surplus value which falls to  the share o f
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the  ind iv idual capital in  its capacity o f  an  aliquot part of the total social capital” 
[III. 179-80].

Surplus value divided by total funds will be approximately equal to the average 
rate of profit, whether numerator and denominator are measured in value prices
o r p ro d u c tio n  prices. T his fact (o ften  useful in  p lanning) has a  m athem atica l ex
planation to  be analyzed  in  P a r t  3. T here , in  connection  w ith  e rro r  analysis, we 
prove th e  relative stability , insensitiv ity  o f  X to  erro rs b o th  in  the  price system  an d  in  
the  struc tu re  o f  p ro d u c tio n . H ere  we are  only  concerned w ith the  econom ic in te r
p re ta tio n  and  w ith  an  a p p ro p ria te  a lgorithm  fo r effecting the tran sfo rm atio n , 
th a t is, fo r  com puting  p ro d u c tio n  prices.

The re la tio n  m en tioned  by  Marx is sim ply

P (1 ~  A)x  
pBx

(23)

If the  s truc tu re  o f  p ro d u c tio n  is p ro p o rtio n a l to  the  righ t-hand  eigenvector, the 
balanced  growth path, then [(1 -  A )x], =  2[Bx];- fo r  every i, an d  the  re la tion  
exactly equals X, w hatever th e  price  system . If th e  price system  is p ro p o rtio n a l to  
the  left-hand  eigenvector, th e n  aga in  the  q u o tien t exactly equals X, w hatever 
d is to rtio n  o r  dev ia tion  fro m  th e  b a lan ced  g row th  p a th  th e re  m ay be. I f  th e  ac tu a l 
price system  an d  the  ac tua l o u tp u t proportions only app rox im ate  the  theoretical 
ones (the eigenvectors), th e n  the  re la tio n , to o , will only  app rox im ate  the  tru e  value 
of X — b u t it will be  a  very good  ap p ro x im atio n , its e rro r being  much less th a n  the  
e rro r  in  the  prices o r  outputs.*

H ow  can  we im prove the  price  co m p u ta tio n  ? Sim ply by ite ra ting  the  p rocedu re  
th a t leads from  values to  app rox im ate  p ro d u c tio n  prices, transfo rm ing  the 
app rox im ate  p ro d u c tio n  prices to  m ore  accurate ones, and  repeating  the  p ro 
cedure until th e  necessary accuracy  o f  the  price vecto r is ob ta ined .

T he w hole itera tive  procedure can  be prescribed  as

py+1 = PyA + J?̂ ^ LP7B . <24)

an d  if  a fte r enough  steps an d  w ith  th e  precision necessary p„ =  pn+ :l =  p, then  
o f  course,

* p  =  pA  +  2pB

and we have arrived a t  our so lu tio n  fo r the  p rice  system.
In  th is  a lgorithm  to ta l p ro d u c t, px , is he ld  constan t. By postm ultip ly ing  b o th  

sides of equation (24) by  the  vecto r x , we get pi+ xx  =  pyx. T o ta l p ro d u c t, m easured 
by th e  successive approx im ative  price system s, does n o t change. Here x can  be

* A 10 per cent deviation in both (price and output) vectors can cause at most a 1 per cent 
relative error in the computed value of A, and an even smaller error limit is likely because of 
further cancellation of errors of the data. (See Section 3.1.3. and Appendix II.)
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arbitrary. However, the closer x  to  the rig h t-h an d  eigenvector the  m ore  accurate
n il _  AWP i ( l  — A)x

the  magnitude of X, =    — — -

Xj is exact.
- N ow  the  tran sfo rm atio n  leading -to the  successive price systems being co n 

tin u o u s  an d  closed (because o f  px =  constant, p >  0) the  p ro ced u re  will c o n 
verge to  the  fixed p o in t given by the  le ft-hand  eigenvector, the p ro d u c tio n  p rice  
vector.

T h is is a  very quick an d  sim ple a lgo rithm . Its  main advantage lies in  the  fac t 
th a t i t  uses th e  orig inal A  an d  B m atrices th ro u g h o u t. H ence th e re  is no  accumu
lation o f  ro u n d in g  errors.

T he sam e p rocedu re  can  be used to  com pute  the  righ t-hand  eigenvector, th e  
balanced g row th  pa th . H ere  th e  in itia l p can  be chosen  arb itra rily , b u t  it helps a 
lo t i f  the in itia l price system  is as close to  p ro d u c tio n  prices as possib le and  th u s 
yields an  accu ra te  in itial value  fo r th e  g row th  ra te  X.

C ertain ly  th e  m ost in teresting  a lg o rith m  would be o ne  alternatively  im prov ing  
the  left- and  th e  righ t-hand  eigenvectors. This p ro ced u re  along  th e  lines o f  th e  
orig inal S m ith -R ic a rd o -M a rx  co ncep tion  o f  equalizing  ra tes  o f  p ro fit and  reg u la t
ing  o u tp u t p ro p o rtio n s  a t the sam e tim e leads us to o  fa r  from  o u r m ain  questions 
here.

T he  m ain  p rac tica l lesson o f  the tran sfo rm a tio n  p ro b lem  lies in  the  q uestion  
ju s t  discussed : how  to  com pu te  p ro d u c tio n  prices sta rting  from  a  value price 
system — or m ore generally : how to  im prove a distorted price system  ? Planners 
certa in ly  face th is problem in  th e ir daily  routine a n d  are continuously  seeking 
“ m ore re liab le” benchm arks. H u n g a rian  p lann ing  p ractice  (n o t just theo ry ) 
abounds w ith  com puta tions in  search  o f  m ore  m eaningfu l guidelines th a n  th e  
sim ple current cost reckoned in  the p revailing  price system . M any co m p u ta tio n s 
resem ble the  p rocedu re  outlined abc ve an d  arrive (by m ore o r less naive la b o r- 
th eo ry  reasoning) a t the sam e o r  sim ilar results. Many a re  convinced th a t  im p o rtan t 
proportions (say, the  savings ratio, or th e  attainable grow th  ra te , or the  cap ita l- 
o u tp u t ra tio , or the  share of industry  a n d  agriculture in  n a tio n a l incom e, etc.) 
a re  d isto rted  by the  current price system — and  th ey  usually  a re  d isto rted  in  
planned and market econom ies as well. The a lgorithm  ju s t  presented m ay 
answer some prac tica l needs in  this area.

T he above is only one facet o f  th e  tran sfo rm a tio n  problem . Now we turn 
to its other facet, the alleged “antinomy” between th e  first and third volume 
of Capital.

2.2.3. Value versus production price

W e. have seen th a t, under conditions of Sim ple Reproduction, the role o f la b o r as 
source and measure of value is indiscernible. Any other “source” may serve as 
well — the relative price system remains the same whether we start from labor 
power or any  o th er product.
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Under conditions of Extended Reproduction again, the price system can be ’ 
constructed entirely on a “cost plus” principle and, once it is firmly established 
that this “plus” is proportional to capital, labor does not seem to play a special 
analytical role.

It is exactly on the threshold between stagnation and growth that the question 
emerges: whence the surplus? The mercantilists claim that it comes from com
merce; the physiocrats from land. Each emphasizes an important element in 
mankind’s first “take-off” period : the establishment of broader exchange relations 
and a primitive accumulation in agriculture ready to be fed back into production. 
The classical economists agreed that this surplus must be the fruit of labor and of 
increased labor productivity.

Classical economics is classical not because its authors were so much brighter
— which they may have been — but because the contemporary historical picture 
was clear. Just savor Smith’s deep and vivid impressions of the pin manufacture. 
Division of labor brought great jumps in labor productivity and opened the door 
to still more. The classical economics of Smith and Ricardo was indeed rooted in 
the labor theory of value. The same impression seems to attract minds toward a 
labor theory in more recent cases of take-off.

Marx, from the beginning of his economic studies, joined this strong tradition
— perhaps more decisively since Ferguson’s and Smith’s theories were transmitted 
to him by no less respected a teacher than Hegel himself. The first great sponta
neous clashes between laborers and capitalists also impressed him at this time. 
Along with his deep respect for Ricardo as a scholar, he was looking for economic 
facts and theories to explain the new historical events.

The following paragraph should show his esteem for Ricardo:
“At last, however, Ricardo comes on the stage, and calls to science : Halt!

— The foundation, the starting point for the physiology of the bourgeois system
— for the understanding of its internal organic coherence and life process — is 
the determination of value by labor time. Ricardo starts with this and compels 
science to leave its old beaten track and render an account of how far the rest of 
the categories it has developed and described — the relations of production and 
commerce — correspond or conflict with this foundation, with the starting point; 
how far in general the science that merely reflects and reproduces the phenomenal 
forms of the process — how far therefore also these phenomena themselves — 
correspond to the foundation on which the inner connections, the real physiology 
of bourgeois society, rests, or which forms its starting point; and what in general 
is the position with regard to this contradiction between the apparent and actual 
movement of the system. This is, therefore, the great historical significance of 
Ricardo for the science” [T. 203].

Still Marx finds theoretical faults to be corrected. He finds the most disturbing 
error in Ricardo’s profit theory:

“ fie assumes a general rate of profit . . . Instead of assuming this general, rate 
of profit in advance, Ricardo should rather have investigated how far its existence 
is in any way consistent with the determination of value by labor time; and he 
would then have found that instead of being consistent with it, prima fade  it
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contradicts it and its existence has therefore to be explained through a number of 
intermediary stages — an explanation which is something very different from 
merely including it under the law of value” [T. 212].

Clearing up this point was one of the main tasks Marx set for himself. The 
problem appears very early in his thinking, and his first full length treatise written 
in 1857/8 already contained his final solution. [G. 339, 449, 592, 632-3, etc.]

The important questions he set about to answer were : What is the source of profit 
and what determines its magnitude? In Marx’s time the mathematical determi
nation of 2, as treated by Neumann, was inconceivable. Some solid groundwork 
was required first. The labor theory of value as applied by Marx gave an answer 
to these two questions. It showed that there might be a surplus even if exchange is 
regulated by values. With equal exchange on the market, without cheating, profits 
still might exist. Marx provided what we nowadays would call the “existence proof” 
of the profit. He points out that this proof of existence is missing in Ricardo’s 
system and:

“Without this, the average profit is an average of nothing, a mere figment of the 
imagination. And in that case it might just as well be 1000 per cent as 10 per cent” 
[T. 231],

Clearly, Marx was trying to prove not only the existence hut also the uniqueness 
of the average rate of profit. He posed the theorem of uniqueness correctly and 
suggested outlines for a rigorous proof, by trying to reduce production prices to 
values.

Yet, Marx tried to go deeper and explain the historical and logical transfor
mation from values to production prices. An early letter to Engels clearly poses 
the main question, explains its solution and the necessity of relegating it to the 
third volume:

“How is the value of the commodity transformed into the production price of 
the commodity, in which

1. The whole labor appears as paid labor in the form of wages,
2. The surplus labor, on the other hand, that is, the surplus value, takes the 

shape of a plus above the cost price (=  the price of the constant capital + wages) 
as interest, profit, etc.

The preconditions of the answer to this question are:
I. That the transformation of the daily value of manpower into the daily wages, 

that is, price of labor be explained. This takes place in. Ch. 5 of this volume.
II. That the transformation of surplus value into profit, of profit into average 

profit, etc. be explained. This needs first the explanation of the circulation process 
of capital, because turnover time, etc. plays a part in this question. This question, 
then, can only be explained in the III. Volume” [W. 32].

The “ preconditions” of this “transformation” are not simply logical ones; 
they describe the historical process whereby wage-labor, circulation of capital, 
etc. — not found under simple commodity production — gradually become every
day phenomena.

Bôhm-Bawerk, possibly because he did not notice the historical aspect, objected 
very strongly :
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“I cannot help myself: I see here no. explanation and reconciliation of a contra
diction but the bare contradiction itself. Marx’s third volume contradicts the 
first.” And why? Because: “ Either products do actually exchange in the long run
in proportion to the labor attaching to them . . . or there is an equalization of the 
gains of capital.”

Yet, this objection might have been directed against Ricardo — but never
against Marx. The different price systems belonged to different historical layers
for Marx.

Still, for modern times, would it not be dearer to start not from values but from
production prices ? Some scholars advocate this approach. Schmidt [1892] claimed 
that value has no counterpart in real life. Sweezy [1946] takes a similar stand : 
“One might be tempted to go farther and concede that from a formal point of 
View it is possible to dispense with value calculation.”

I felt that it is better to proceed along orthodox lines, starting with values. 
“The history of a thing is the thing itself” — said Hegel. Our ideas and categories 
are reflections of real processes and there is advantage in developing them in the 
same order as they appeared in history. Perhaps unwittingly, Joan Robinson 
[1947] furnishes the strongest argument for considering values as an acceptable 
historical phenomenon. She describes pricing in a future socialist economy : 

“In the simplest case . . . if all incomes from surplus are abolished, prices would 
be regulated by wages cost plus depreciation.

This would be appropriate if investment has come to an end because no further 
increase in the stock of capital . . . In such a case capital, in orthodox language, 
has ceased to be a ‘scarce factor of production’, and the orthodox theory of 
prices would come to the same thing as the labor theory of value.”

Now — instead of a future socialist economy — is this not a picture of the 
remote past before the advent of capitalism and growthmanship ? Even the most 
minute growth rate, extrapolated backwards, makes national income dwindle in 
a couple of hundred years. It does not take much sense of history to see that most 
of mankind’s history must have passed away in virtually dead calm, in Simple 
Reproduction.

2.3. Miscellanea

We now have to add some missing points to the discussion. The first two of them 
axe already latent though not quite explicit in Marx’s Capital: first, the problem 
of correct dimensionalities in economic science in general and in our model in 
particular and, second, the various interpretations given to X, the average rate of 
profit, growth rate or “time factor”. The goal here is the analysis of the “valuation 
of time” — the comparison of material expenditure and time expenditure.

: The third point is not outright Marxian : mathematical formulation of economic 
theories encourages generalization of the underlying concepts and of the model 
based on them. The axiomatic approach spells out in detail all the abstractions 
and postulates of the model. Handled axiomatically, the model is ready for certain 
further generalizations. This, then, ends the discussion of the theoretical model 
and provides a transition to more practical problems — the application of the 
model to economic reality.

2.3.1. Dimensions

Clear and unambiguous definition of the correct dimensionalities serves three 
purposes. First, without spelling out the basic dimensions of measurement it is 
impossible to quantify scientific categories. Only if it is settled once for all that, 
say, the dimensionality of cubic content is [L3], where L  stands for length, can we 
begin to measure and compute it. Dimensionality gives a correct prescription of 
what to do when changing units of measurement. Cubic content in feet (1/3 yards) 
must be 33 = 27 times the cubic content measured in yards. Speed, that is [LT1-1], 
where T  stands for time, will be 60 times as much if measured in hours than if 
measured in seconds — the dimensionality T~x correctly reminding us what to do 
when conversion of the time unit becomes necessary. Only dimensional analysis 
— be it simple or complex — can establish the multipliers for transition from one 
system of units to another one.

Second, dimensional analysis provides a check on the logic of equations. Even 
prominent economic models actually lack dimensional consistency. Sometimes
the situation can be remedied by inserting the necessary constants of dimension
ality. Consider the Cobb-Douglas function: P — KxL?~a where P  stands for 
production — measured in monetary units per year, K  for capital — measured in 
monetary units (usually not the same ones) but without the dimension [T"1], 
that is: not per year but for a given moment, and L  for labor — measured in, say,
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man years. Without appropriate constants of conversion, dimensional analysis 
raises serious questions:

Money
Time

[Money]* [Man • Time]1"-®

If a happens to be 1, this means ——------  = Money, if a = 0, it means
lime

Money = Man • Time2 and if 0 <  a <  1, it does not mean anything. One can 
derive various other interesting imbecilities by changing units of measure
ment, for instance by measuring production by index-numbers.

Third, the most important outcome of dimensional analysis would be to help 
us to express economic laws in a way unaffected by changing units of measurement. 
Thus, the eigenvalues of the matrix A retain the same numerical magnitude 
regardless of changes in the physical or monetary units used for setting up the 
matrix. All other measures for the efficiency of an economic system will be 
affected by the price system or output proportions, etc.

Dimensional analysis is not unheard of in economic science, and I believe the 
first scholar to enter this field was levons [1888], Soon after levons a correction 
was brought forward by Wicksteed [1889] who after paying tremendous lip 
service to levons’ original thoughts succeeded in deriving almost exactly opposite 
dimensional statements. There has been little revival of interest since, except 
occasional meticulousness in questions of flows and stocks. Marx mocked the 
neglect of this question in his day :

“Capital — profit (profit of enterprise plus interest), land — ground-rent, 
labor — wages, this is the trinity formula . . . On closer examination of this eco
nomic trinity, we find the following:

First, the alleged sources of the annually available wealth belong to widely dis
similar spheres and are not at all analogous with one another. They have about 
the same relation to each other as lawyers’ fees, red beets and music” [III. 814].

Let us inspect creation and flow of values. Value, as crystallized labor time is 
spread layer by layer continuously in the course of the productive process onto 
the already existing value of the object of labor. But the labor itself may be inter
rupted — and the value of the finished product will not flow but jump over to the 
next stage of production. As means of production its circulation will not be 
smooth but irregular. Streams, flows of means of production (or of their value) 
are therefore images of pure abstraction — the corresponding phenomena cannot 
be observed in economic life. Value circulates in quanta, quite spasmodically from 
one sector to another. It is the result of abstraction when weekly pay rolls, payed 
52 times a year, are imagined a.s a stream of wages running smoothly into the 
pockets of laborers and then leaking out in exchange for streams of necessities.

Yet, we are pushed to this conception because, though the thing exchanged has 
a given, finite amount of value, stocked in it, still this value can be subdivided 
(at least mentally) infinitely, smoothly, continuously. The illusion stems from 
the money-form. Surely there is a minimal unit of money (a cent, a halfpenny, a
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centime) but firstly it is very small compared to the total amount of wealth and 
secondly, nobody can stop us in subdividing it, as done routinely in cost estimation...

Divisibility of money helps us to think in terms of streams of value :
“The distinct attribute — whether it serves as the money-form of revenue or 

capital — changes nothing in the character of money as a medium of circulation; 
it retains this character no matter which of the two functions itperforms” [III. 445],

But could we not do without this artificial separation? Extended Reproduction, 
growth itself seems to require it. In. continuous or discrete terms we must discern 
change itself from what is changing. If we settle for continuity we must distinguish 
between a given magnitude and the speed of its change..leading us in mathemat
ical terms to the value of some function and the value of its derivative. If we as
sume discrete growth, then the principal sum and the jump in it are apparently 
more homogeneous — but the jump is still specified for a time interval while the 
amount itself (which was or will be increased by the jump) remains “ timeless” 
-. insensitive to changes in the unit of time.

Thus we distinguish conceptually value from value stream. We designate the 
former dimension (based on German Worth and English Worth) symbolically
by [ W], and value streams, therefore, will have the dimension. [WT"1] ..intensity
of flow. Provisionally this means only that if we change unit of time from, say, a 
year to a month, then the numerical magnitude of a given value flow will become 
a twelfth of its former magnitude while all the variables of dimension [ W] remain 
unchanged.

But. what is then the measure of value? How is its dimension connected with 
other things observed in economics ? Labor theory of value offers an answer.
Value is created by labor:

“Labor has incorporated itself with its subject : the former is materialized, the 
latter transformed. That which in the laborer appeared as movement, now appears 
in the product as a fixed quality without motion. The blacksmith forges and the
product is a. forging” [I. 189].

“While the laborer is at work his labor constantly undergoes transformation:
from being motion, it becomes an object without motion ; from being the laborer
working it becomes the thing produced. At the end of one hour . . .  a definite 
quantity of labor . . . has become embodied” [I. 180].

We designate this, work, motion. — labor in short — by the symbol. [I,]. The 
quantity of labor expended [ITT], yields value. From, this it. follows that [L] = 
—- [W T^], labor has the dimension of a value stream.

But how to measure labor? Could it not be measured by its number ? But this 
is like measuring radioactivity of metals by their weight or cubic content, neglect
ing the specific activity itself. Manpower can. work more or less intensely, on a 
more or less skilled job — and the result will be quite different values created. 
Perhaps labor of average skill could be measured, as we have seen, in Section
2.2.1, by the differences of the cost of reproducing the skills needed. But the 
differing intensity of labor, or skills, in spite of being hard facts of everyday life, 
defy objective measurement and can be judged only very indirectly in terms of 
training costs, or of productivities.

t  P ro p o rtio n s , p rices an d  p la nn ing
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Therefore, we cannot find the exact measuring rod by going back from value 
to labor and from labor to manpower. Value, it seems, has no intrinsic unit. In 
our model value had to be determined in a circular way. We are able to determine 
proportions but not absolute magnitudes. There is one degree of freedom, left for 
the measuring rod; it has no absolute unit element. But we are in the same philo
sophical position about length or time units. They too are a matter of convention 
and there is no inbuilt, intrinsic, objective unit for them either.

What can we do ? We arbitrarily fix, say, one hour of labor of average skill and 
intensity as the unit to be used. Marx did this for didactical reasons in the first 
volume of Capital, and only this enabled him to deduce value prices (in contrast 
to production prices) in a seemingly non-circular manner. We do the same here 
when analyzing the dimensionality of our model — we consider the unit of value 
to be fixed somehow at the outset, and then build further on the dimension [W], 
now considered unequivocally measurable.

We started in setting up the model by defining input coefficients. Their dimen
sions cover a wide variety according to the socially accepted standards of measure 
of the individual products.

“The diversity of these measures has its origin partly in the diverse nature of 
the objects to be measured, partly in convention” [I. 36].

Though usual input-output tables are expressed in money terms, it is correct 
to start theoretically from physical units and derive value (or money) terms. In 
principle every sector could have a different unit — piece, kilogram, liter, calorie, 
etc. We designate it by [!]. Of course the same dimension and same unit must be 
used for a given sector (or product) throughout. The dimensionality of the input 
coefficient is therefore [aik\ — [i/k].

We then derive output proportions from these input coefficients. The elements 
of the output vector must be measured in the same units. The dimensionality of
M  is liT -1}.

The sort of time introduced here is peculiar, it has holes in it. Suppose that a 
given enterprise works only one eight-hour shift per day. Its output still will be 
measured per 24-hour day, and for that matter, per 365-day year, irrespective of 
the actual number of days (or hours) worked. We use different scales for labor 
time, turnover time and calendar time and this complicates planning and logistics.

The product Ax  has the same dimensionality as x; it is a flow. In multiplication 
the k  dimensions cancel

[«/***] =  [ilk] [kT-1] =  [ / r - 1] .

Multiplication by the matrix A  does not change the dimensionality o f x  in spite
of the fact that the matrix contains a welter of dimensions.

The choice of a manpower unit was discussed above. It was chosen as common 
labor of average skill and intensity per hour. Thus the row of our labor sector 
coefficients will have the dimension j>,-] = [W/i] and hence the column coefficients
m  =  w w ] .

A given number of laborers can create an ever-increasing amount of wealth if 
intensity, skill and technology develop. Certainly the unit of measurement will
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• change when average skill and intensity increases. But this is a separate problem of
long-range measurement not to be discussed here.

If. we look at the last element of the product Ax  its dimensionality will be

■ [viXi] =  [W/i] i n - 1] = [W T-1]

a flow dimension again.
To investigate value prices we start from the form p  = vQ ■■= v + vA + . . .  + 

+ vAn +  . . .  yielding

fPul = [ m k] =  [W/i] [i/k] =  {W/k]

price is thus the value of a unit of the product.
Yet, the last element in the price vector will be different :

[Pn\ =  iPifil =  W /i] [i/W] =  [1]

a dimensionless number ! It is a pure number determining the ratio of the price 
(value) of labor to the value created by it.

The bilinear form pAx  has, therefore, the dimension

[pflikxk] =  [W/i] [i/k] [kT-1] =  [WT- 1] ,

a flow dimension as expected.
In practice, now, we reckon not with these theoretical dimensionalities but with 

a matrix A already expressed in money terms. But it is easy to show that the 
operations amount to almost the same as formerly.

The elements of a practical matrix possess the form pflik/pk. Their dimensionality 
is therefore [W/i] [i/k] [W/k]-1 = [1], that is, they are pure numbers, ratios 
(the proportions of cost). Multiplication therefore is dimension-preserving as before. 
Yet, the value price vector changes in an interesting way because the vector of 
labor inputs becomes dimensionless. The price computation must then yield a 
dimensionless vector : it is the value price index.

The bilinear form pAx  still will have flow dimensions because we reckon output 
intensities in money terms and the new dimensinos actually reduce to the old ones:

[1] [pfliklPk] [xkPk\ =  IPfiikXkl as formerly.

Capital coefficients were defined as products of input coefficients and turnover 
times — and here time acquires a new role, to be analyzed later in more detail:

[bik\ -  [a,kt,k] = \ m  m .

The capital/output ratio is the matrix B premultiplied by prices

[ P M  == [W/i] [i/k] [T] = [W/k] [T]

7*
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and finally the bilinear form, pBx, for total stocks is

\.Pibikxk} = [W/k] m  [kT-1] = [W] .

The dimension is pure value as expected.
Our model, therefore, is founded on the basic dimensional dependence — re

maining the same in theoretical and practical computation:

£p(l -  A)x] = [A] [pBx]
that is

W T " 1} =  [A] [IT]

hence the correct dimensionality for A must be [IF-1], the reciprocal of time. We 
can turn now to analysis of X or “the time factor” .

2.3.2. The time, factor

Time plays various roles in economics. It influences the process of reproduction from, 
several sides. To distinguish among them appeared as hair-splitting pedantery, 
but was indispensable for the clear description and definition of the concepts used.

“Thrifty rise of tim e. . . remains the first economic lav/ in collectivist production. 
It even becomes a more strict law. Yet, this is essentially different from the measure
ment of exchange value (labor or product of labor) by labor time” [G. 89], 

Besides the usual “calendar time” we have mentioned two special sorts of time: 
labor time and the other sort of time that has to be used thriftily: turnover time. 
It is important to work out in detail how to measure and balance them in the 
determination of A.

The dimension of X was [T1-1], the reciprocal of time. This is more difficult to 
grasp than the dimension of 1/A, time itself. We shall try to interpret both forms. 

The first interpretation is given by our former equation (23)

X — p(l — A)x/pBx

and is well known: net product of society (profit) divided by total stocks (total 
capital employed). The numerical magnitude is influenced by the unit of time fixed 
for measuring the tik turnover times implicit in B.

If we want to interpret equation (23) in terms of total value of production we 
multiply numerator and denominator by px

p(l — A)x px
px pBx

(25)

The first factor is the saving ratio (net product to be accumulated divided by 
total production). It is a pure number .. a dimensionless ratio. The second factor
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is “capital productivity”, the reciprocal of the capital/output ratio. Equation (25) 
tells us that the growth rate, A, is equal to the saving ratio divided by the capital/ 
output ratio. This is the well-known formula of the Harrod-Domar type growth 
models. We touch upon this connection with aggregated growth models again
in Part 3.

Let us turn now to the reciprocal where we insert — to facilitate interpretation 
-  the scalar pAx

1/A
pBx pAx
pAx p(l — A)x (26)

The two factors on the right side again express — in a somewhat generalized
form .. familiar concepts. The first factor, taking into account the definition
bik  =  a uXiki 1S

pBx/pAx =  YjPialktikXk /  £  5] P ia ikx k •
i k  /  i k

The product Ptaikxk is the input stream flowing from sector i to sector k  multi
plied by its price. Let us designate it by sik, yielding

pBx/pAx =  £  siktik / £  sik.
i,k /  i,k

This reveals that our first fac to r is a weighted average of the turnover times, the 
weights being the  corresponding input streams. Thus the first factor is simply 
average turnover tim e. I t  is a real average, the w eights being, properly, those 
product flows, %, th a t are tied down for the time intervals, tik.

Average turnover tim e, then, is inversely proportional to growth rate: if average 
turnover time could be cut in half, g ro w th  rate would double. The first factor has
the dimension time and is measured in the same u n it as used for turnover times.

The second factor of our expression above is a dimensionless ratio, converting, 
as it were, the time un it to a smaller one. Expressed as pAx/p(l — A)x it could 
be called the input/savings ratio. It is remarkably stable in the long run, its value 
being around 10 in most developed countries. Thus, when tik is measured in years, 
this second factor will change the u n it  of measurement to approximately 36.5 
days. Hence 1/A shows for what multiple of the 36.5-day period th e  average input 
is tied down ; and A shows what proportion of inputs will be recovered in a period 
of 36.5 days.

If the average rate of profit is around 10 per cent, under the above circumstances, 
one-tenth of the inputs will be recovered in  36.5 days and this again amounts to 
an approximate average turnover time of one year. These were the orders of 
magnitude Marx reckoned with in his day and his assumption of a one-year 
period of turnover seems entirely warranted, not only as a theoretical simpli
fication but as an everyday observation, too. The predominance of agriculture with 
its monotonous yearly periods and a flat average of one-year turnover time in 
manufacture both worked in this direction.
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Economic reality has changed quite a lot since. A higher eapital/output ratio, 
the increase in funds tied up in reproducing manpower that is still going on, have 
altered the overall picture quite a lot. On the other hand, there have been numerous 
inventions which shortened turnover periods by improving communications, 
saving transportation, etc. We shall return to a closer inspection of these historical 
trends in Part 3 in analyzing the application of the aggregate form of our model.

Here we pose another, more theoretical problem : what is the exact interdepen
dence between turnover time and inputs, what is the relation between material and 
time expenditure, or to use an inexact but more intuitive wording — what is the 
value of time?

The labor theory of value does not attribute any “value” to things that are not 
produced and not reproducible by human labor. Thus if time is assigned any 
valuation, it can be only a reflection analogous to rent of land or other scarce 
factors. Most naturally, under conditions of Simple Reproduction no intrinsic 
value can be ascribed to time itself — hence the customary neglect of time in 
stagnating societies. There is no reason to expedite matters, so long as product 
require the old amounts of material and labor expenditure the acceleration of 
any process will bring no growth whatsoever. Simple Reproduction cannot be 
changed to Extended Reproduction by decreasing turnover times. The “ take-off'” 
from Simple to Extended Reproduction can be triggered only by some change 
in the matrix À, making its maximal eigenvalue less than 1, that is, by 
changing the flow coefficients themselves, improving technology, abolishing 
some layers of unproductive consumption.

Under Extended Reproduction timing becomes an important dimension. Then 
we can increase the rate of growth not only by economizing on inputs, but also by 
reducing turnover times. Accelerated flow in the channels on industry or commerce 
will therefore increase the profit rate, X, and hence the pace of growth. If time
saving methods affect the bulk of products — and modern techniques, including 
more rapid transportation and communication, rationalized financial systems, etc., 
are geared to this purpose — then their cumulative effect on growth can- surpass 
the influence of pure economies of material and labor. Therefore, turnover time 
becomes valuable, an object of economizing, and has to be used thriftily, but 
only under circumstances of Extended Reproduction.

How can we now compare economy of time and of material? We may answer 
this question from a macroeconomic standpoint, calling on our earlier formulas 
and investigating the effect of the two factors, average turnover time and average 
expenditure, on the growth rate, X. But we may investigate the same matter from 
a microeconomic standpoint, too, considering only one economic transaction, a 
single element in our matrix A +  IB.

For a change let us start from the latter, considering a single “stream” in the 
economic metabolism. Each element of our matrix À + IB is made up of two parts. 
For instance, consider coal (product i) delivered for producing electricity (product 
k). aik will be the flow coefficient and Xbik — Xaiktik the increase in coal inventory 
made necessary by the yearly growth rate, X, the turnover time of this item of 
inventory being tik.
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Our problem is to find that decrease in turnover time which is exactly counter
balanced by an increase in coal consumption, so as to leave the magnitude of the 
total stream and thus the growth rate unaltered.

Let us therefore assume a constant stream of coal input into electricity. Since the 
same relation will' hold for all coefficients aik, we can generalize by dropping 
subscripts.

a +  Xat — constant = c.

Expressing a as function of t we get

“ "  T T T i  '

Its logarithmic derivative is therefore

da t 
a dt

Xt
1 + Xt

signifying that a one per cent decrease of turnover time can be counterbalanced 
Xt

by a —-----—  per cent increase of material expenditure, in this example, coal
(1 T  At)

consumption. The effect of a decrease of turnover time therefore will be the greater 
our growth rate, X, and the longer turnover time, t, itself.

To illustrate the orders of magnitude by a numerical example, let us assume a 
10 per cent annual growth rate and a three months3 (t =  0.25) coal inventory. If 
the coal inventory could be decreased to a two months’ inventory, then this 33 per

0.025
cent decrease would be counterbalanced by an approximately Y q25 0-33 «0.008

increase in coal consumption. This magnitude now is roughly equivalent to the 
amount yielded by the usual, everyday computation based on 1 as the “rate of 
interest” . Originally coal was tied up in inventory for three months and its cost 
measured by compound interest was a{ 1 +  XtJ =  a(l.Ol)0-25. If now it is only 
tied up for two months, its cost with compound interest will be a(1.01)oa#. The 

a(l.Ol)0'25 -  a(l.Ol)0'18
relative saving will be = 1 — (1.01)' - 0.09 0.008, as before.

fl(l.Ol)0-25
Let us now proceed to the macroeconomic level. We are now interested in 

economy-wide averages. How can now these two averages move so as to counter
balance each other, leaving the rate of profit and thus the growth rate, X, unaffected ?

From the reciprocal of equation (26) we have X ==
pAx j>(l — A)x

. It is dear
pBx pAx

that every percentage change in the average turnover time, pBx/pAx, must affect 
the growth rate by the same percentage but in the opposite direction. The effect 
of average inputs can be handled by defining them as a =  pAx/px. In this case 
the second factor in the expression above will assume the form 1/a — 1 = 
= (1 — a)/a. A one per cent change in average inputs will cause a 1/(1 — a) per 
cent change in the value of X.
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Thus a one per cent increase in average input requirements must be compensated 
by a 1/(1 — a) per cent decrease of average turnover time, a being approximately
equal to 0.9 (this is only another way of saying that pAx/p(l — A)x = a/(l .. a)
is generally around 10) a one percentage change in average expenditure can be 
offset by approximately a ten percentage change of average turnover time in the 
opposite direction.

Expenditure of time and of products (services, materials, labor) is therefore com
mensurable in the framework of the labor theory of value. The computation might 
be based on the “time factor” , X (the growth rate, rate of profit which is — on this 
level of abstraction — equivalent to the rate of interest), or on the average input 
coefficient a. They are connected by the symbolic equation a +  Xta — 1 whence

1 + Xt 1 
Xt 1 — a

(27)

can be derived easily. The left side shows the conversion factor from the “micro- 
economic” standpoint; the right side shows the same from the “macroeconomic”
aspect — and both show the general tradeoff for time and product expenditure.

2.3.3. Generalization

We consider three ways to generalize the model. First we try to make explicit the
minimal basic assumptions underlying the model. Second we show how a slight 
generalization of the mathematical apparatus of the model enables it to subsume 
non-linear and more dynamic features. Third we reinterpret the model in a 
probabilistic way, giving a new interpretation to’ the stationary states (eigen
vectors).

None of the three topics is treated exhaustively. The main object is to show that 
there are various possibilities for further theoretical generalization and develop
ment. The most promising directions are only indicated but not thoroughly ex
plored.

The first possibility is an axiomatic approach. By screening the assumptions 
leading to our model, there appear to be six that are necessary:

1. We know certain distinguishable things and these we call products, numbered 
from 1 to n (Identification).

2. Every product is measurable (Weighs or is countable, etc.).
3. Every product is divisible without limit (Continuity).
4. There exists a system making or creating these products by means of the same 

products and, at the same time and with the same activity, consuming or annihilat
ing them. This activity of the system is called production.

5. The kih product can he produced by the system only by annihilating quanti
ties aik >  0 of product i(k, i — 1, 2 ,. . n).

6. From the instant when product i was created to the instant when it was 
annihilated to produce k  some time elapses. This time span is probabilistic, has an
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exponential density function and its expected value is tik > 0 (?', k  — 1 , 2 , . . . ,  ri). 
The product created but not yet consumed is called stock.

Now let us deduce our model from these 6 assumptions.
First we construct the matrix A = {ajk} which is square and of order n. By 

assumption 5 it exists and is non-negative. Let us designate the products created 
in a very short, dt, time interval by x = (x:t, x2, . . x„). By assumption 2 products
are measurable and by assumption 3 they can be measured in short, dt, intervals.

This vector x is produced by annihilating other already existing stocks of 
products. But in a short interval, dt., the proportion of stock i consumed to produce 

d t
product k must be — . By assumption 6 we have an exponential density function, 

h k
prescribing exactly this rate of mortality in the interval dt.

Thus, to make production x possible in the interval dt,  we must have stocks 
enough, that is, t ik times the amount used up. Hence total stocks must be {aiktik}x .  
We will call the matrix {aiktik} the stock matrix, B; thus total stocks are Bx.

Production of x annihilates a stock of amount Ax. The difference between pro
duction and consumption is change of stocks. But change of stocks in the interval 
dt will be Bx, where x == (dxjdt, dx2/d t,. . d x jd t) giving

x -  Ax =  Bx . (28)

This is our model in the form of a differential equation. If it is solvable at all, we 
can take x = lx  which leaves us with x =  (A + lB)x.

Yet, the six assumptions above are not sufficient to secure existence and unique
ness of the solution in x and X ; they suffice only to set up equation (28).

To secure a. positive and unambiguous solution we introduced further assump
tions, namely

7. | A | < 'l .
8. A  is not reducible.
These are really not necessary assumptions, but they suffice to insure a unique 

positive solution. Because of assumption 8 not only A but also B is irreducible. 
Thus (À + IB) must be a non-negative and irreducible, that is, Frobenius matrix 
with a positive eigenvector. From assumption 7 either j A | = 1, the case of 
Simple Reproduction, and X = 0, or | A | < 1, the case of Extended Reproduction, 
and X > 0.

Both assumptions 7 and 8, are easily justified by economic reality. Of the first
six assumptions three need some additional comment because they are not entirely
realistic.

Assumption 3. Unlimited divisibility of products. We certainly can point out 
quite a few instances where this assumption is wrong. Nevertheless with increase 
of the scale of production this assumption becomes more and more acceptable : 
with increase of the number of the same, individually indivisible, product pro
duction will be more and more finely subdivisible — just as the rational numbers 
1 , 2 become the more divisible the greater they are.
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Assumption. 5. There is only one technological possibility for producing a given 
product. This assumption becomes more palatable if we view each'sectors’ tech
nology as an average. For the future the assumption is misleading. It needs to be 
corrected or complemented to describe technological change correctly.

Assumption 6. Exponential density function of life spans. We have not enough 
facts at hand to prove or disprove this assumption. It is recommended as more 
realistic than the usual assumption of fixed life spans.

These eight assumptions seem to be acceptable from a theoretical and practical 
standpoint as long as we cannot improve them. For the time being I do not see 
better ones. Still let us suppose that, with increasing knowledge, we can set up 
better assumptions concerning technologies and life spans. Will our model be 
flexible enough to incorporate them? Of course it is difficult to prejudge the 
impact of an unknown innovation. But the mathematical apparatus of our model 
is quite suitable for further generalization and seems to be flexible enough to 
permit considerable modification. This leads us in the direction of the second 
generalization.

For many applications constant coefficients must somehow be made into more 
flexible representatives of real technical and market conditions. It is relatively 
simple, though not entirely satisfactory, to make the elements of the matrices A  
and B depend explicitly on time yielding the system of equations xf — A(x, =  B,i,.

The mathematical theory of the latter system is essentially analogous to that of 
the former one : both are linear differential equations (with constant or variable 
coefficients). Thus their solutions and the techniques of solving them are very 
similar. Certain practical computations have already been done for the latter, 
time-varying system based on extrapolations of observed changes in the matrices. 
We return to them in Part 3.

Linear operators afford a convenient general method for introducing changes 
in coefficients over time. Let us assume that our coefficients, aik, depend linearly 
on time, and on present, past and future values of the elements of x, and its 
derivatives and integrals. We can specify our assumptions in a model entirely 
analogous to our fixed coefficient model, except that in place of our former matrices 
we use linear operators. Time shifts, differentiation and integration, being linear 
operations, can each be represented by a simple linear operator. Now a one-to-one 
correspondence can be established between linear operators and matrices. There
fore computationally, linear operators can be treated as if they were ordinary 
matrices. Thus, all our former tools can be reinterpreted in the world of operators. 
There do exist non-negative and irreducible operators and such operators still 
possess an unambiguous positive eigenvector and eigenvalue. Of course, the 
eigenvector will be a somewhat more complex phenomenon: not a simple vector 
of stationary proportions but a vector made up of time-functions of outputs or 
prices. The same dual relation will persist : there are adjoint or transposed oper
ators ready to define dual, or valuation relations, too.

The new form would encompass a very broad field of possible interrelations. 
But our practical experience is not broad enough to implement such a model in 
any realistic way. We do not know enough to write out explicitly how our coeffi-
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dents (“inner proportions”) depend on time, on past and future outputs, on prices, 
etc. And therefore I do not see much reason to enter into a detailed study 
of operator models. Suffice it to stress that the possibilities of theoretical 
generalization far exceed the data at our disposal. It is lack of pertinent infor
mation and not lack of adequate mathematical or computational tools that 
blocks our way.

A third way of possible generalization, can reduce the rigidity of our assump
tions without really affecting the fundamental mathematical form and apparatus. 
This is the probabilistic reinterpretation of our model already suggested by Theil 
[1965], The essence of this approach is to view our coefficients as random variables. 
Instead of fixed magnitudes they are specified as expected values and probabilities. 
This certainly offers more flexibility in interpreting the fluctuations observed in 
real processes.

fo r  Simple Reproduction a probabilistic interpretation does not need any 
additional mathematical tools. To apply it to Extended Reproduction requires a 
longer exposition than is warranted here where we are concerned only with 
general methodological directions.

We know that, for Simple Reproduction, our matrix À is non-negative, its 
maximum eigenvalue equals one and it is irreducible. Under these assump
tions we can characterize the process of Simple Reproduction as a so-called 
ergodic Markov chain, by transforming our matrix A into a transition-probability 
matrix.

As we already know, under Simple Reproduction there exist positive left- and 
right-hand eigenvectors p =  pA and x =  Ax. Let us now denote the diagonal 
matrices formed of the elements of these eigenvectors by <p> and <x>, that is,

<P> = diag <Pi,lh, ■ ■ ■ > Pn>

<x> = diag <Xj, x,, . . ., xn>

P i

Pt

X-t
x2

Pn-

X n  J

We form the matrices C = <p)A<p>- i and D =  <x>‘.1A (x). Both can be
interpreted as stochastic matrices with elements that represent transition proba
bilities. Evidently cik > 0. Note that £  cik =  1 (k — 1, 2 , . .  ., n) because, if we

premultiply C by the summing vector e =  ( 1 ,1 , . .1 ) ,  we get eC — e <p>A<p> “I =  
=  pA<p>“x = p<p)~x =e. The same follows for D if we postmultiply it by e, 
Thus dik > 0 and dik — 1, (/ =  1 ,2 , . .  n).

Hence all the column sums of C equal 1 and similarly all the row sums of D 
equal 1, while all elements are non-negative. Tims the formal conditions for 
interpreting them as stochastic matrices are satisfied.
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But what does “probability of transition'” really mean here — what is the 
economic point of it? Certainly the matrix C reflects cost-structures, its column k 
representing percentages of the necessary ingredients to produce product k. This
now is the mixture in which sector k  wants to buy on the market. The probability 
of buying from sector i is exactly cik. It should be understood in the following 
way: Sector k  goes to market and will buy one day from one sector and another 
day from others. Its purchases may have an apparently irregular pattern. Some 
days it may not buy anything because inventories are full, to be depleted at random. 
Nevertheless the probabilities of spending will be allotted to the other sectors as
the coefficients cik .. and the real frequency of purchases, followed through, say,
a year, will approach this probability.

The purchases of sector k  depend not only on these probabilities but also on
the amounts other sectors purchase of its products. Sector k  fills its inventories to
supply its customers with its product.

Let us now suppose that at a given moment t = 0 the sectors want to purchase 
% = («ho, <?2o> • • .5 ?no) amounts on the market. How much additional purchase 
will this trigger in the next round ? We do not kno w exactly because actual pur
chases fluctuate around the probabilities, but we know what the probabilities are. 
The expected values for the next round will be qx = Cq0, and for the second round 
q2 =  Cqx =  C2q0 and so on. In general q„ — Cq„_1 =  C"q0.

The theory of Markov chains now can answer two important questions: do 
the values of q„ converge to some limit (in a probabilistic sense) as n increases ? ; 
and if it does, is this limit, the stationary state, independent of the initial 
state, f 0?

For our simple kind of model it has been established that there is a limiting 
distribution* that is independent of the starting state. It can be computed by solving 
the equation q* = Cq*, that is (1 — C)q* — 0.

In our case this stationary state equals q* = {p1x 1,p zx%, . . -,p„x^) — a term- 
by-term product of our two eigenvectors. Thus it is equal to the elements of the 
output vector reckoned in value prices

Cq* =  <p>A<p> ~ 1
' Pi*T '

P'lX‘2, =  < p > A x  == <P )x  =

1

■■
'U

'U
tv

- PnXn .. - P„X„ ..

All this certainly does not yield any new numerical or quantitative results — 
but it furnishes new qualitative insights into the process. The three most important 
of these are the following:

1. We do not have to assume the constancy of the input coefficients, nor any 
rigidity in the structure of purchases made. We can allow their actual magnitudes 
to fluctuate considerably and work only with their expected values.

* See for instance Rényi [1969],
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2. The stationary, state is not something necessarily experienced in reality. I t  is
just a limiting distribution around which the actual process fluctuates.

3.. We do not have to assume or postulate any market forces that bring our 
system, into equilibrium. If there exist expected values of necessary (though 
fluctuating) input coefficients, the system will demonstrate a behaviour which 
carries it toward “equilibrium”,

A probabilistic formulation may serve as a very useful and realistic approach 
to economic systems. If we try to depict economic processes in some deterministic
way we encounter two fundamental cases. Either the system so described is stable,
converging to some particular — locally or globally stable — state. Or it is diver
gent — that is, it simply blows up or oscillates with constant or ever-increasing 
amplitudes.

In reality neither of the two cases happens. Proportions, outputs, prices, etc. of 
real economic life fluctuate with mild or strong amplitudes — but neither con
vergence nor divergence was ever established. Reality is more adequately described 
in terms of the above stochastic model, displaying the same features.

Our matrix D can also be interpreted as a probabilistic description of the market 
structure. Each element dik expresses the probability of sector i’s selling its prod
uct to sector k. The stationary state, the limiting probabilities, will be the same 
as before : the output proportions reckoned in value prices.

It would not be difficult to interpret Extended Reproduction so that the element 
aik + Xbik stands in the place of the former aik. Yet, the really interesting case 
where A itself is a random variable still awaits analysis.

To sum up : the model can be modified and extended in various directions 
without sacrificing its general character and still maintains its roots in the labor- 
theory of value as demonstrated in Part 1. With this in mind we close Part 2. In 
Part 3 we return to its original simple form and consider its application to economic 
.reality.
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Part 3

Application of the Model

Applying the model involves implementation of its matrices with factual data and 
drawing conclusions as to the state of the whole economy and the future path 
and pace of its development. We want to study this model as a tool of analysis 
and forecasting. If the usefulness of the model towards these ends is accepted we 
might consider its workability as a tool of planning, as a basis for conscious govern
ment intervention into economic processes.

Now we have to investigate our model from a practical viewpoint fo find out 
how faithfully it pictures everyday real economic life. Thus far we have concen
trated on abstract, theoretical problems. Yet, now the tasks of forecasting and 
planning compel us to evaluate the model as a description not only of idealized 
states but of practical processes in the economy.

Now, in conjunction with these new tasks, questions of the stability and change 
of coefficients must be faced. It is legitimate to neglect coefficient change when 
describing momentary situations but not when describing real processes happen
ing in time. Coefficients, characterizing the economic metabolism of society are 
subject to change with scale of production, price and quite a few other circum
stances. Here we have to consider how to forecast and plan these very changes, 
or the consequences of ignoring them — of computing with fixed coefficients. 
Finally we must assess the errors that follow from inaccurately planned coeffi
cients.

Although changing coefficients are a major problem in practice this is far from 
being the only one. There are parallel contradictions between economic reality 
and other facets of the model’s abstractions and idealizations. Closedness of the 
model contradicts the openness of every particular country; the left- and right- 
hand eigenvectors may diverge from the actual price system and output propor
tions. These differences make interpretation of the numerical results difficult.

Two chapters will investigate these questions. The first considers general prob
lems of application, that is, practical interpretation of the particular output pro
portions, planning of coefficients and error limits in computation. The second 
chapter discusses some variants of the open and closed models and a special sort 
of open model that can make use of the mathematical theory of optimal processes. 
Such models should prove useful in solving problems of planning.

Finally, the third chapter surveys actual applications of this and closely related 
models. Experience with this broad class of models is just beginning to accumu
late and instances are scattered. But the results are reassuring. For the most part, 
the computations yield projections that are in fair agreement with observed eco
nomic reality.



3.1. Problems of Application

We begin by considering the two major unrealistic assumptions of our model: 
uniform expansion rate with particular output proportions and fixed coefficients. 
Everybody knows that economic development is not smooth and even in periods 
of relatively smooth growth characteristic differences in the growth rates of the 
particular branches of production still persist,

What guidance, then, do our equilibrium solutions give for output proportions ? 
The interpretation is parallel to that which is given for actual and equilibrium, 
prices. Production prices yield a uniform rate of profit. The latter are never real
ized in economic life, they do not “ become true” . We usually find an above-aver
age profit in growing branches and a depressed rate in slow-growing ones. Clas
sical economists considered production prices as a “center of gravity” . Economists 
from Smith and Ricardo through Marshal looked upon them this way and so do 
economists of modern times. Today interest takes the place of profit and the same 
equilibrium may be expressed as a “no profit” situation.

The second point concerns the methods of planning or forecasting coefficient 
changes. They all are “first aid” solutions. We have to acknowledge changes and, 
at the same time, we are not ready to formulate any definitive relationship among 
change and the other variables of the model. The fact that we have more than one 
method to plan changes in coefficients indicates that there is no final, approved 
and universally accepted explanation of structural change. Available data are 
barely adequate for specifying the model at a single point of time. Much more in
formation is needed to study coefficient change.

Finally we discuss numerical errors stemming from unrealistic theory, faulty 
data or ill-guessed change. How do errors in coefficients affect results of computa
tions ? How sensitive are the results to aggregation ? Do the errors cancel or accu
mulate ? These questions are investigated by methods of error-analysis and per
turbation theory.

3.1.1. Stationary state

Stationary solutions yielding an average rate of profit and securing a uniform
growth rate can be interpreted as equilibria where supply, x, is equal to demand 
for flows and increments to stock: Ax + ABx.

But if we gather data for the matrices Â and B for a given real state of the 
economy and then compute the eigenvectors — the solution will not necessarily 
represent an equilibrium for the economy in question. If the left-hand eigenvector
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deviates from actual prices then actual prices will be apt to change, triggering 
some substitution or other structural changes in adaptation to the new price sys
tem., With new coefficients further changes in prices will result, bringing more 
changes in coefficients, new data and a different equilibrium point again. For 
analytical convenience' we might hope that this new solution is near to the old one 
or at least, that after some iterations the economy will converge to its true equilib
rium. But. we do not understand enough to count on this. Therefore we choose to 
call the eigenvectors not equilibrium, but only stationary solutions, bearing in 
mind that they belong only to the given statistical data. There is no ground for 
claiming that they reflect true equilibrium proportions of the economy.

In setting up a model according to the classical approach it was legitimate to 
assume that the coefficients reflect “socially necessary expenditures” exactly — 
and that, hence, stationary and equilibrium, solutions do coincide.

Why, then, do we base a planning model on the stationary state? We assume 
that observed coefficients do not differ significantly from coefficients that we could 
derive from a true equilibrium state. Observed stability of coefficients over time 
substantiates this assumption.

Yet one might still object that the economy never will be in a stationary state, 
and it is not certain it will tend toward it automatically. With given coefficients, 
why do we consciously try to reach those states in planning? The stationary state 
is desirable because in a certain sense it secures the best, “most healthy” develop
ment that can be reached with a given structure. Over the long run the growth 
rate, A, connected with the stationary state is the maximal growth rate attainable 
by the economy.

The proof of this is not easy, the real situation is paradoxical and perplexing. 
This “maximal” growth rate can be surpassed at every given instant of time, but 
the consequence of surpassing it is to fall behind it in the longer ran. The develop
ment secured by the stationary state is never the fastest at any given moment; 
still in totality and for the long range it is unrivalled. This dialectical antinomy 
— “slow and steady wins the race” or “the more haste the less speed” — is not 
unknown in everyday practice.

Let us start from equation (12) Ax + ABx = x. We bring it into a form giving 
information about possible magnitudes for X. Using the notation ( l - A ) -1 =  Q 
we transform it to (1/A — QB)x = 0.

This now is an eigenequation for the matrix QB. This matrix is strictly positive 
as Q is positive and B is non-negative and irreducible. The stationary state is 
thus given by the positive eigenvector x, belonging to the maximal, positive eigen
value of the matrix QB.

Yet A is the reciprocal of the maximal eigenvalue. This implies that the recip
rocal of all the other eigenvalues exceeds A in modulus. But there is no positive 
eigenvector belonging to them and therefore these “greater” growth rates are not 
accompanied by economically meaningful output proportions. They cannot be 
interpreted straightforwardly as feasible output combinations, because a vector 
containing negative (and possibly imaginary) elements has no economic counter
part. They may, however, be construed as directions of moving off the stationary
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point. But these movements have to be small enough not to disturb the positivity 
or non-negativity of the output vector.

Thus generally there will be another eigenvalue, the reciprocal of which sur
passes the stationary growth rate, and the system can move momentarily along the 
eigenvectors belonging to it. This implies deviation from, the stationary propor
tions. If at a given moment, therefore, we force the system to attain its maximum 
possible momentary speed, then we can be certain that its movement will not point 
toward or be equal to the stationary proportions. We can claim that the direction 
securing the maximal growth rate at every given moment deviates from the sta
tionary path.

This faster direction, however, cannot be followed for long. All the other eigen
vectors contain negative elements. Moving along them, sooner or later we reach 
the point where one of the outputs becomes negative and we arrive at an economic
impasse.

Actually this impasse makes itself felt before one of the outputs reaches zero. 
The system can reproduce itself and expand only so long as all outputs exceed 
intermediate requirements. The system, can be expanded if and only if x — Ax > 0. 
When surplus becomes zero in any branch further growth of the system must stop 
because a closed system cannot secure inputs from outside.

The feasible output proportions, therefore, are to be found only in a sub-region, 
in a convex cone of totally positive vectors. The moment we reach the boundary 
of this cone growth must halt. We fall back to Simple Reproduction because lack 
of some component blocks further growth. Furthermore as we approach the 
boundary of the cone one or more elements of the surplus product decrease 
rapidly restricting thus the basis of future expansion.

Therefore if we deviate from the stationary path toward an apparently faster 
one we cannot follow it for long without endangering future growth. The station
ary path is momentarily the slowest but it secures the fastest growth in the long run

Numerical example

Let us illustrate this paradoxical situation by a simple example. Let
_  0.2 0.3"

0.2 0.3 '
The feasible output proportions, that is, those x for which x — Ax > 0, are 

bounded by the straight lines x2 =  8/3xx and ;c2 = 2 jlxx. We may compute them.

from the matrix 1 — A =  

illustrated in Fig. 3.

0.8 —0.3"
0.2 0.7 The cone of feasible outputs is

Now let B
0.5 2
0.5 2

1.4 0.6
0.4 1.6

and QB 1.5
1.5

3.5"
3.5 '

Then Q
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This matrix has two eigenvalues and eigenvectors, the first being 

1/A-l = 5 and x(1) = (1, 1).

This is the stationary (positive) solution. The stationary path is the halfline 
x = ;<2, and the stationary growth rate, Xx, is 0.2 per unit of time.

A A

Pig. 4. The eigenvectors

The second eigenvalue and eigenvector is

1/12 = 0 and x(2) = (3.5, —1.5).

This solution, then, has an infinite growth rate. The situation is illustrated in 
Fig. 4. The second eigenvector starts from the stationary point x  — (5, 5) and is 
directed downward, toward the boundary of feasible output proportions.

Let us assume our economy started at the stationary point x = (5, 5). The

su rplus here ready for accumulation is (1 — A)x =
0.8 -0.3" 5 2.5'

-0 .2 0.7. 5 2.5,
If we use this surplus to grow on the stationary path, then it is just enough to 

secure an increase Ax -  (1, 1) of 20 per cent. The necessary stocks making this
increase possible are

0.5 2 T '2.5'
0.5 2. 1 2.5,

equal to the surplus on hand.
Let us now investigate other possibilities. We cannot move exactly in the di

rection of the second eigenvector which would secure infinite growth. Investment 
being irreversible we cannot decumulate stocks of production in sector 2 in order 
to accumulate them in sector 1. But we might accumulate nothing in sector 2 — 
that is, increase production only in sector 1, and move in a horizontal direction 
parallel to the abscissa xq.

The first product being less capital-intensive, we might increase capacities much

more. The maximal attainable growth is Ax = (5,0) because B d x =
(2 51

= .. exhausts all the surplus at hand. Instead of moving on the stationary

0.5 2.5
0.5 2.5

8*
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path and reaching the point (6, 6) from point (5, 5) we have reached the non
stationary point (10, 5). This is a bigger, faster step.

But here we must ponder for a minute. To measure the length of the steps we 
need some price system. For the sake of simplicity let us assume the price system 
(1, 1), i.e. values of equal quantities. Reckoned in this price system the stationary 
path yields 20 per cent, the non-station ary one 50 per cent growth. If measured

Fig. 5. The possible states Fig. 6. The consecutive steps

in production prices, the non-stationary growth still surpasses the stationary 
one. In this question, then, the production price system does not orient properly. 
Let us add : no price system at all can orient us. Let us depict all the possible states 
we’can reach from point (5, 5), as seen in Fig. 5.

It becomes clear that every price system will show either point (10, 5) or point 
(5, 6.25) as optimal and none can direct us toward the truly optimal point (6, 6) -  
which of course is only optimal in a long-range sense, and never optimal for a 
finite time horizon.

One price system neither orients properly, nor disorients, being totally neutral : 
the price system (0.5, 2) which is proportional to the direct capital-output ratios. 
This makes every point connecting the vertices (5, 6.25) and (10, 5) equally desir
able. But only in two-dimensional economies can we find such a neutral price system. 
In general, and even in two dimensions but with a different B matrix, there will 
be no such a neutral price system. The question of reaching the stationary path 
cannot be solved by optimizing with any price system or objective function.

Let us now return to our original problem. How can we take the next step? 
From the stationary point (6, 6) we may reach the stationary point (7.2, 7.2) — 
again a step yielding 20 per cent growth. But this point cannot be reached from 
the non-stationary point (10, 5).

Anyway, this latter situation affords only (6.5, 1.5) surplus. This may look big, 
but surplus is only useful in certain proportions (given by the matrix B) and we 
willy-nilly begin to accumulate useless reserves. Thus we have to discard or store 
4.5 units of product 1 and use only (1.5, 1.5) surplus.

By stubbornly going in the wrong direction we still may reach the point (13, 5) 
giving 20 per cent growth and apparently not worse than that of the stationary 
path. Yet in the years (or steps) to come the surplus becomes tighter and more
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disproportionate. If we depict the feasible steps for four consecutive years we get
the interesting Fig. 6.

From the fourth step on, the “slow” stationary path yields more of both prod
ucts than the “faster” non-stationary path. It even gives more of product 1 
whose augmentation was the sole purpose of deviating from the stationary pro
portions.

The long-range optimal stationary solution is well known as the “turnpike” or 
“Neumann path”* (its curious instability seems to be less well noticed).

We have still to appraise the validity or real workability of the theorem. In 
practice it will not be optimal to have a uniform rate of growth in every branch. 
Optimal growth rates of individual branches would differ in a situation where À 
and B were themselves functions of time. Yet the rates must differ only in accord
ance with the needs of changing technology.

Here we understand technological change in the broadest sense, covering all the 
elements of the matrices, including changes in tastes, organization, etc. Branches 
whose products are substituted for others should grow faster than average. 
Those that are becoming obsolete should grow at less than average rates. Fast 
growth should not be an aim in itself. If  it is not in accordance with the require
ments of technological change, it results in gluts and inefficiency.

Secondly, and this is also important, the optimality of the stationary path does 
not remove the need for inquiry into non-stationary states. The paradoxical 
situation exemplified above shows all too well that there is a tendency to deviate 
from the optimal path. The stationary path has both attractive and repulsive 
features. Perhaps some explanation of cycles can be built on this observation.

A theory of transients and fluctuations can be established by connecting the 
primal and dual side of the model. This type of research is at a preliminary stage, 
to be reported here. Here we consider only one particular facet, that of the fluctua
tions found in planned economies. Since Goldmann [1964] it is well known that 
quite a few planned economies show heavy investment cycles. These influence 
the growth process in almost all branches and resemble the business cycles of 
market economies.

Under planned growth and direct regulation of production the main causes of 
such fluctuations are hardly likely to lie in market forces, faulty financial institu
tions, or changing business expectations. The process of planning itself must be 
examined in search of the underlying mechanism. Experience shows that fluctua
tions permeate not only ex post statistical data but ex ante plans. Thus the plans 
themselves have destabilizing features. An apparent equilibrium in the plan (the 
balance of planned supply and planned demand) is compatible with heavy fluctu
ations in growth rates and may even, be held responsible for the latter in some 
cases.

To make this more explicit: plans (the material-, financial- and other balances) 
may equilibrate supply and demand — or in terms of the planner: resources (do
mestic production, imports, etc.) and distribution (domestic consumption, exports,

See e.g. The Review of Economic Studies. Jan. 1967.
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etc.) — and still this procedure can result in moving oft' the balanced path o f 
growth. The short-run equilibrating tendency can keep the economy on its bal
anced growth path only if the output proportions of the past were consistent with 
the Neumann path. But with any deviation from the balanced growth path, dis- 
proportionalities of output proportions will be boosted by the balancing proce-

?

dure, the more so as it strives to smooth 
them.

Let us see how this works. A plan 
for a given stretch of time is supposed 
to equate society’s production and con
sumption. Outputs must be large enough 
to cover requirements for intermediate 
inputs, consumption and investment nec
essary for the expansion of capacity.

Let p be the plan-period (it may be 
one year, or a longer period), for which 
we are planning total outputs, denoted 
by the vector xp. With the aid of our 
usual notation the planners’ equilibrating 
task can be written in the following way ; 
given xb (output vector of the present) 
determine xp (output vector for the plan) 
securing equilibrium:

x p =  Axp +  B(xp -  xb). (29)

Assuming regularity of matrix (1—À—B) (to which assumption we will return 
later) we rewrite equation (29)

xp = -  (1 — A  B) ~1 Bxé . (30)

The characteristic features of the solution can now be analyzed by inspecting 
the matrixK =  — (1 —A -B )_1B. Designating the inverse (1 —A)""1 =  Q and trans
forming

-  K = (1 — A —B)_1B =

= [(1 — À) (1 — QB)] - :IB = 

= (1 - Q B ) - 1QB.

If the eigenvalues of the matrix QB are px > . . .  > q„, then the eigenvalues, Kh

of the matrix K will be jc(- = 

is shown in Fig. 7.

6i
Qi -  1

. The dependence between the two spectra
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The maximal eigenvalue of QB can be expected to lie in the interval 5 < qx < 50 

(that is, the maximal growth rate, A — — , is between 2 and 20 per cent). Thus we
1? i

will have an interval for % of — - < kx < — .

Now then k1s the only eigenvalue connected with a positive eigenvector (the 
balanced path), will certainly be dominated by all the other Kt eigenvalues with 
corresponding pd eigenvalues greater than, say, 0.6. This means that we have a 
nondominating positive eigenvector. Thus we should expect deviations from balan
ced growth path to increase with every solution of equation (30) for the plan, x p.

Note that some g,- may have values very close to 1. In this case the correspond
ing K; will be very large. If gt — 1, then (1 — QB) will be singular and thus (1 — A —B) 
will be singular, too. We assumed the opposite — but there seems to be no eco
nomic basis for excluding an eigenvalue, gb that approaches 1. In such cases 
balanced planning is almost impossible. Severe fluctuations will characterize 
planning computations themselves, and planners have to content themselves 
with truncated, contradictory planning balances. This phenomenon is known in 
practice as the “collapse” of balancing computations.

In the model of planning just considered attempts to clear the markets, i.e. to 
adjust requirements to supplies, may lead to increasing deviations from the bal
anced growth path.

Numerical example

Consider the following hypothetical but plausible economy.

0.4
0.3
6.6
4,7

0.5
0.1
0.5
1.9

Flow coefficient matrix À 

Stock coefficient matrix B 

Thus — ( 1 -A -B )  =

whence — ( 1 -  A—B) ~1 =

Finally the matrix

K = ~(1- -A..B)~XB =

6 1"
5 1_

1 - 1
- 5  6

1.9 
— 4.8

-1 .4 ' 
8.9 '

The balanced growth path (rounded to 4 decimals) is (1.6365, 1.)

Thus

amounting to approximately 4.5 per cent yearly growth.

' 1.9 -1 .4 ' 1.6365 '1.70935'
-4 ,8  8.9 . 1 1.0448 ,
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If we perturb the proportions, say start from the initial balanced growth vector 
rounded to one decimal xb = (1.6, 1) we get a “balanced” plan xp ~  (1.64, i.22) 
and for the next period (1.408, 2.986). Even though we start very close to the bal
anced growth path, we soon come to a decrease in the first sector. The situation is 
so ill-conditioned that we do not remedy by rounding upward to xb =  (1.7, 1) be
cause the plan vector will be xp =  (1.83, 0.74), with an instantaneous decrease in 
the second sector.

In spite of the very innocent appearance of the matrices, the plan computations 
are severely ill-conditioned. Even if we carried many more decimal places the 
problem would persist. The underlying cause is a second eigenvalue of the matrix 
K. This matrix has two eigenvalues, one for the balanced growth path: 1.045 and 
a second one, 9.755. The latter 'will dominate the computation. These two eigen
values correspond to two eigenvalues of matrix QB of approximately 23 and 1.11. 
The latter is dangerously close to the ominous value, 1.

Market equilibrium — and thus planned balancing of supply and demand, pro
duction and consumption, resources and distribution— does not secure smooth 
growth. In planning practice we have always to start from present proportions 
which are never exactly on the Neumann path. The equilibrating computations 
will worsen the situation. There might be ways to improve it again but they will 
always entail idle capacity and sacrifice full employment of resources in the short- 
run for the sake of long-run stability. If initial proportions are off the balanced 
path it can be reached again only by unused capacity, increase of reserves and 
foreign trade changes not dictated by market forces (or plan computations imi
tating them).

3.1.2. Information for change

For long-range planning or forecasting we cannot assume constancy of the co
efficients any more. However insignificant the year-to-year change of the coeffi
cients may be, as compared to the changes in outputs, errors due to coefficient 
change are bound to accumulate.

How can we anticipate the development of technology? The task is well known 
to planners, particularly those experts who regularly draw up material balances 
for future years. But there is no generally accepted, intellectually or practically 
satisfying approach that is useful in all sectors.

In the practice of planning, future coefficients (called norms, normatives, spe
cific indicators or ratios) are usually derived from various sources of information, 
experience and speculation. These are amalgamated, by intuition, conscious weigh
ing, simple or more complex arithmetic and pondering, into the most probable 
guess. This domain of planning must draw on technical expertise and knowledge, 
general economic know-how and political common sense. Guesses for every sector 
require a different mixture of purely technical, organizational, economic, socio
logical and political knowledge — and these questions are interwoven in an ever- 
changing pattern. Certainly we are learning, and can continue to learn to under
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stand coefficient change better. But even when its scientific basis is expanded,
coefficient projection will always remain an art.

Coefficient projection, however difficult, is central to the planning process. Thus 
it is imperative to take advantage of whatever scientific methods are available in 
this area. Let us review the main methods now available for dealing with coeffi
cient change.

The model itself renders it possible to organize, store and arrange our knowledge 
about past changes. If we know the past history of a coefficient, when and 
why, how much and how fast it changed, then it will be possible — even without 
much additional information — to assign broad limits to its future path.

In our country this factual knowledge is still scanty despite 20 years of planning 
practice and it is only for the last 5-10 years that we can follow through the 
changes in the necessary detail. To understand their movement better we need 
information on the age distribution of capital stocks. We lack a tabulation of the 
thirties, and even an earlier one would be helpful. Curiously historians rather than 
planners seem to be interested in this material.

As data become available, more sophisticated statistical techniques can be 
applied. In Hungary there are already some pioneering efforts to forecast future 
technological matrices systematically.* Yet even the most simple statistical ana
lysis needs a long time-series. 15-20 years’ data give a very small sample for ana
lytical trend computations. Planning practice can only be improved on the basis 
of information accumulated in planning itself.

What are other sources of information for technological forecasting? There is 
always some possibility of “borrowing” coefficients from technologically advanced 
countries. However; adaptation of foreign datais not an easy job. There are always 
differences in nomenclature, accounting conventions and prices. Augustinovics 
[1969] has developed methods that are insensitive to price differences. An effort 
to reconcile accounting and classification for a few East-European countries is 
under way.

Specific technological trends observed in United States’ input-output tables for 
1919,1929, 1939,1947 and 1958 seem to be relevant for Hungary, too : for example 
the shift from, coal to oil and natural gas, diffusion of chemical and synthetic 
technologies, automobiiization, packaging and automation. Here United States’ 
experience gives some basis for judging rates of diffusion and the consequences of 
individual changes.

Future technology is latent in current average structures and can be separated 
out by skilled fingers. Carter [1963] proposes the following approach. Let us 
assume that there are older and newer technological layers in each sector; their 
average is reflected by the coefficients. In the future the newer layers will have 
greater weights relative to older ones. Certainly there will be even “newer” tech
nological layers in the future but these may be neglected for short-run projections.

The weights for each layer depend on investment made in the respective tech
nologies. Therefore the life spans and age distributions of the means of production

* See Szakolczay-Vàsârhelyi [1967] and Nemeth [1969 j.
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particularly of machinery determine the relative importance of the layers in most 
branches of production. With a 30-year life span and a 10 per cent growth rate it 
takes 5 years to replace half of the machinery, with 3 per cent growth the same 
takes 11 years.* This certainly constrains the rate of change in relative weights 
and facilitates projections of structure up to 10 years hence.

The structure corresponding to the different technological layers can be esti
mated in several ways. Separate data on older and newer enterprises are sometimes 
available. Industry experts may prepare estimates on the basis of engineering in
formation. This is the method most often used in present planning practice. In
cremental coefficients can be computed from tabulations for two (or more) periods 
of time, by assuming that technological change is embodied in new investment. 
Carter concludes that each approach has its characteristic sources of error and 
recommends their joint application.

Given estimates of the structures of different layers and of technologies that are 
known but not yet in use, we roust gauge their relative weights for the future. Kor- 
nai [1967] and his collaborators demonstrated that it is feasible albeit a formi
dable task to enumerate the principal alternative technologies for many individual 
sectors. Using linear programming he computes the optimal future mix of activ
ities. These can serve as estimates of future coefficients.

There may be some advantage in using the closed dynamic model to consolidate 
separate sectoral programming models. First steps in this direction have already 
been taken by Ujlaky [1968] and Simon [1969],

Simon points out that the proportions of the output and price vectors of an 
economy-wide programming model for Hungary are fairly stable. This suggests 
that the stricter constraints of the closed dynamic model might riot be inappropri
ate for long-range planning. The model also offers reasonable criteria for opti
mality. For reasons already stated in the previous section it makes good sense to 
maximize A, the growth rate for an infinite time horizon. Programming has to use 
alternative criteria in order to narrow the territory of decisions. A should be cer
tainly one of them.

In summary, there are several possible methods of planning future coefficients.

1. Expert guesses based on engineering trends.
2. Statistical extrapolation of time series.
3. Estimates based on the experience of more developed countries.
4. Cross-sectional analysis of technological layers.
5. Computing incremental coefficients.
6. Computing optimal weights of alternative structures by sectoral programming.

All these methods use outside planning and policy information. The closed
dynamic model can incorporate and process estimates of future structures but for 
the time being they must be introduced exogenously.

* The exact formulas for computation are given in Appendix III.
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3.1.3. Error analysis

When we compute the model with actual statistical data the reliability of the results 
emerges as a  num erical p rob lem . B eyond th e  p rob lem s of logical consistency a n d
appropriateness of the theory the key problem in applying the model is one of its 
numerical accuracy : how precisely do its parameters measure real magnitudes ?

This question can be answered definitely only by experience itself. Experience 
still being scanty, we have recourse to sensitivity analysis for insight into what to  
expect from the model when it is applied. The central question is: What happens 
to the results of our computations if the original data are inaccurate, or are per
turbed or aggregated ? The tools of this analysis are mathematical error-computa
tion and perturbation theory.

The source of errors may be in computational methods, data and inadequacy 
o f  th e  m odel itself. W e a re  not in te re s ted  in th e  exactness of th e  co m p u ta tio n a l
process itself nor in errors of rounding, truncating, etc. This strictly mathematical 
problem does not trouble us because the iterative algorithm proposed does not 
accumulate errors and computations can be carried out to as many decimals places 
as desired. The exactness of the computational process surpasses that of both 
the economic data and the requirements. Thus in  the following we can take the 
exactness of computation itself for granted.

Theoretical simplifications are sources o f  error because it is difficult to approxi
mate com plex reality  in terms o f  sim ple m ath em atica l relations. W e are driven 
to assume linearity, constant coefficients, etc., and to close the model. Even when 
we try to improve the approximation by introducing exogenous changes, we are 
still left with errors in planned coefficients. Further errors are endemic in the method
ology of collecting and processing economic statistics. The double-entry scheme 
of input-output tabulations imposes a characteristic pattern on possible errors, 
and this must be investigated. Aggregation may also be a source of error. In prac
tice we usually work with less than 200 sectors. Bigger tabulations are very costly 
from  the  p o in t o f  view o f  d a ta  p rocessing  a n d  o f  com pu ta tion . A  m o d e m  economy 
has tens of thousands of economic (or statistical) units. Hundreds of thousands, 
even millions, of products can be distinguished. An input-output tabulation must 
willy-nilly aggregate roughly 10s—10® individual streams into each cell. Aggre
gation entails loss of information, but what is its effect?

All these are very broad problems and we can only to begin to study them here. 
Perturbation analysis of eigenvalues and eigenvectors is developed mostly in 
theoretical but not in computational terms. W e fall back on linear approximations 
of errors, and th is is legitimate only for minor perturbations. Furthermore it is 
difficult to  interpret the mathematical error fo rm u lae  in economic terms.

The following theorems give some basis for optimism about the workability 
of the dosed dynamic model.

1 . Aggregating on the basis o f  production prices and stationary output propor
tions is unbiased.

F o r  simplicity let us designate  the m a trix  A + IB  by the  m atrix  C -  {cik } =  
— {aik + M>ik } — {<% = ^aiktik }.

PROBLEMS OF APPLICATION
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Assume that coefficients are already expressed in production prices. There
fore the left-hand eigenvector of the matrix C will be the summing vector 
e = (1, 1, . . . , 1), that is, every column sum of C equals 1.

Let us now aggregate the original men matrix nCn to an sxs matrix SC*, where of 
course s < n. We can permute columns and rows in the matrix nC„ until the sec
tors we want to aggregate become neighbors. We now aggregate 
the first j t sectors ( j  =  1,2, . .  . , j t) [into a common sector,
the second j 2 sectors ( j  = j i  + 1, . . . , j 2) into a common J2 sector,...
. . . and the last j s sectors ( j = j s_1 + 1, . . . , jQ into a common Js sector.

This process is equivalent to the following matrix-multiplication

where
'eh 0 • • • 0

0 0 ... m*- J.1 '

the <?; =  (1, 1, . . . , 1) vectors containing as many elements (all equal to one) as 
there are sectors to be combined.

N
0

o  . . . (T  
. 0

" X x  " 
*2

.6 Ô . . • v s _

^  1  i ;î n .. “ i
“ • • ÉT

where the vt vectors signify the output proportions of the subsectors in the com
mon sector.

The following are evident

1 n

W* ,Un — ie„ • the summing vector of s elements postmultiplied by the matrix 
U yields a summing vector of n elements (disaggregation)

Vs =  1ef the summing vector of n elements postmultiplied by the matrix 
V yields a summing vector of s elements (aggregation) 

nnAx the outputs are aggregated by premultiplying them by the ma
trix U
the outputs are disaggregated by premultiplying them by the 
matrix V.

We are now ready to prove that the column sums of the aggregated matrix are 
equal to 1.

A = i j ,

v .

e*C* = e* UCV =  eCV  == eV  =  e*

The aggregated price vector, e*, is an eigenvector of the aggregated matrix C*. 
Aggregation maintains equal column sums ; therefore it does not change the maxi

PROBLEMS OF APPLICATION 1 2 5

mum eigenvalue (equal to the column sums), and the left-hand eigenvector can be 
obtained by aggregating the original eigenvector. The dual also holds

€*x* = UCVx* =  UCx =  Ux =  x * .

Thus by aggregating the right-hand eigenvector we obtain, the eigenvector of the 
aggregated matrix.

If the matrix C has unequal column sums we can compute production prices,
pC — p, and perform the similarity transformation cik — ptciklpk . By converting
the matrix to the production price system we can always secure the equality of 
column sums. Therefore aggregation on the basis of the eigenvectors, that is, the 
production price system and the stationary output proportions, will transform 
eigenvectors into eigenvectors and will leave the maximal eigenvalue of the matrix 
unchanged.

2- Aggregating on the basis o f faulty prices and proportions will never increase 
the error o f the computed vectors.

Let us assume that the vectors are not exact eigenvectors, that is,

eC — e + r and Cx = x  + s

where r and s are residual vectors. We can consider some suitable norm of these 
residuals as the appropriate gauge of errors.

Now of course

a n d
e*C* = e*UCV = e*CV == e + r V =  e* + rV

C * x *  = U C V x * == UCx =  U x  + x = x* + Us.

It follows, considering the non-negativity of matrices U and V and their pattern
that

if | r \ <  se then | rV  \ < seV — se*
and

if j s j <  §x then | Us | < SUx — Sx*

Thus if v/e gauge the magnitude of the error by e and. §, then the gauge will not 
increase in consequence of the aggregation. The elements of the residuals, being of 
opposite signs, may cancel in the course of aggregation. According to the degree 
of cancellation the error can decrease quite substantially with aggregation.

3. In a probabilistic approach there will be significant cancellation of errors 
with aggregation.

Now let us assume that the residuals are expressed as random variables. Let 
r =  (qx, q2, . . .  , gB) and s = (oq, o2, be random vectors and let us assume
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that their expected value is zero, E(r) ~  0 and E(s) =  0. And let their disper
sion (standard error) be D(r) =  D(s) = d =  (d, d , . . . . , d).

E  is a linear and distributive operator, and therefore E{rV) -  E( r )V— 0 and 
E(Us) =  UE(s) =  0. We may reason as before:

E(e*C*) =  E(e* + rV) = e*
and

E(C*x*) = E(x* +  Us) = x*

Therefore the expected error after aggregation will be zero in both cases.
Dispersion after aggregation can be analyzed by assuming provisionally pair

wise independence of the elements of r and s. Then D \rV )  =  d2V(2) where V {2) <, V 
means the matrix whose elements are the squares of the respective elements of V, 
and D\U s) — U(2)d2 =  Ud2, because all the elements of the matrix U are equal 
to either 1 or 0. If we aggregate z streams of information, the dispersion of the 
price or output of the aggregated sector will be proportional to ri/W2. The average 
number of aggregated streams being between 10s and 10®, this amounts to a very 
significant decrease in dispersion.

Yet the assumption of pairwise independence is very strong. In practice we can 
expect considerable correlation among errors, because of control totals. (See 
p. 128.) Unfortunately we do not know its magnitude. It can be expected strongly 
to counteract the error-cancellation based on pairwise independence. Yet to 
multify it the correlation coefficient would have to be +1 (perfect correlation 
of errors).

4. The deviations o f actual prices and outputs from the eigenvectors never affect 
the computation o f A significantly.

In practice we estimate the value of X from statistical data by forming the quo
tient p { \—A)jpBx, that is, by dividing net surplus by total stocks. This is always 
done on the basis of actual prices and output proportions because statistical data 
originate on a current price basis and reflect actual rather than stationary pro
portions. According to price computations now done routinely in Hungary and 
Czechoslovakia* actual prices may deviate as much as +20 per cent from produc
tion prices and the same seems to be true for market economies at least when 
computed in the detail accessible in their input-output tabulations.

On the other hand, output proportions seem to be more exact. A ±10 per cent 
limit seems to be reasonable. Even lesser deviations lead to great variations in 
inventories. Our problem, now, is to estimate the possible influence on the esti
mated value of X of respective +20 and ±  10 per cent errors.

We will know the error in X if we know how much the bilinear form 
p(A + XB)xjpx = pCxjpx deviates from 1. This again amounts to the error analysis

See for example Ganczer [1965] and Sekerka-Hejl-Kyn [1969],
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o f  the so-called R ay le ig h -A itk en  quotient widely used to  estimate or improve 
an eigenvalue when approximate eigenvectors are already known.*

The error of a product is generally the sum of the errors of the factors multi
plied. Yet in the case of our quotient we are in a better situation. If one of the 
factors has no error the product will have none either.

Let us therefore designate the true eigenvectors by p 0 and x 0) the actual price 
and output systems by p and x, where the error is dp — p — p 0, dx = x ~ x 0. 
The Rayleigh-Aitken quotient can be expressed as (p0 + dp) C(x0 + dx)/px. 
Considering that p 0C = p 0 and Cx0 =  x 0 we can transform the quotient to 
(p0x 0 + p 0dx + dpx0 + dpCdx)jpx — î +  dp(C— 1 )dxjpx. Thus the error of o u r  
estimate will be A = dp(C— l)dx/px.

We now take norms element by  element, that is, assume | dp j <  ap and 
d x  | A ftx and estimate the error :

| A 1 <  <xp | C — 1 | fixjpx < aj}\ C .- 1 | .

Hence, | C — 1 | being at most equal to 1, we obtain A < afi. In the practical 
case considered above, where a =  0 .2  and /? =  0.1 w e can  be sure th a t  the  re la tive
error in computing X will not exceed 0.02.

5 . Computed values of X are much less sensitive to errors o f the stock than in the 
flow matrix.

We develop the exact perturbation fo rm u la  and take its linear approximation. 
Let the perturbation of A  be dA, that of B  be dB. Consequently X will change to 
A + dX and the change of the eigenvectors will be dx and dp. Therefore

[A +  dA +  (X + dX) (B +  A ? ) ]  (x +  dx) = ( x  +  dx).

We perform the multiplication

Ax  +  Adx  +  dAx +  dAdx +

+  XBx +  XBdx +  XdBx +  XdBdx +

+  dXBx + dXBdx +  dXdBx +  dXdRdx — x  +  d x .

Considering th a t  (A + XB)x =  x and  neglecting terms o f  h igher order, we can  
simplify the formula to

. PROBLEMS OF APPLICATION

Adx +  dAx +

+ XBdx +  MBx+  

+ dXBx =  dx .

* See for example Bodewig [1962] and Wilkinson [1965], The proof given here is based on
an observation of a. pupil of mine, A. Simonovits [1969].
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Premultiplying the equation by p  and considering that p  — p(A + XB), we arrive

at

whence
pdAx + XpdBx + dXpBx = 0

— dl =  p(dA + XdB)xjpBx , (31)

Thus the change of the maximal eigenvalue is given by a quotient of two bilin
ear forms* — both formed by the left- and right-hand eigenvectors.

Note two special cases. When dB and dA are respectively zero,

— dX =  pdAxjpBx and —dX = XpdBxjpBx.

Both formulas are well known in economic reasoning and were already used in
Section 2.3.2. Savings in flows divided by total stocks yield the change of growth 
(or profit) rate. A one per cent change in stock requirements influences this rate 
by one per cent in the opposite direction. With a given level of accuracy prescribed 
we can allow 1/A, that is, 10-25-fold errors in B as compared with A. This
is a very useful feature because it is always the stock matrix that causes difficulties 
of measurement.

6. Statistical errors in the data do tend to cancel out.
When we tabulate statistical data in the usual input-output form the row and 

column sums — total input and total output — are better known and more exact 
than the detail. If we consider these row and column sums entirely exact, there will 
be a special configuration of possible allocation errors.

Errors come not just in pairs but in fours. It is not possible to commit a single 
one. If there is an error of magnitude s in the output of, say, the i-th sector 
allocated to the y'-th sector, we are certain that there must be at least three more 
errors in the tabulation, all of the same magnitude. If the cell ij has an error +  e, 
the row sum being exact, there must be at least one cell in the same row, say, in 
the k-th column with, an error —e, balancing the first. By the same reasoning 
there must be a similar error in column j. If this occurred in row / then, again, the 
cell Ik must have an error of magnitude +s. Therefore the canonical pattern of 
a quadruple error will be:

. . .  Column . . . .  Column .. .
, j  k

row i + s —8

row / — e + 8

Appendix II contains a more exact approximation, based on the resolvent.
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This is of course the simplest configuration and in reality we will find more, 
partly overlapping error-quadrates. But all the actual errors are reducible to 
sums of these simple ones.

This has a peculiar effect on the flow coefficient matrix, computed from the 
statistical tabulation. If the flows were originally measured in the production, 
price system p, and the outputs, x, had the proportions of the stationary state, 
then the error matrix, dA, will be such thatpdA = 0 and dAx =  0. Mutatis mutandis 
the same is true regarding errors in the stock matrix B.

Substituting this now into our perturbation formula equation (31) we can con
clude that dX == 0.

Two remarks are in order here. First: this does not hold for the allocation error 
caused by mixing up stocks and flows. These latter errors are equivalent to errors 
in turnover time and they do not cancel. Confusion between the flow and stock 
account is an important source of error In practice.

Second: all this holds only when we reckon with eigenvectors (production, 
prices, stationary state proportions). Actual prices and proportions will differ 
from these. But allocation errors, then, will affect X only to the extent that the 
actual price system and output proportions deviate from the eigenvectors. If 
deviations in prices do not exceed the ±  20 per cent, and that of outputs the +10 
per cent limits assumed above, the effect of allocation errors on X will be very 
small.

9 Proportions, prices and planning



3.2. Thoughts on Planning

Nowadays the “older brother” of the dosed dynamic model — the open, static 
input-output model — is almost routinely applied to supplement traditional 
planning methods both for yearly (operative) and medium-range (3-5 year) 
plans. First let us review this application.

Traditional planning can be divided roughly into three consecutive phases. 
The first consists of analyzing past performance and setting main targets for the 
future plan. The second phase is the most time consuming: spelling out the main 
targets and drawing up production plans in detail. These must be accompanied
by material balances, securing the necessary allocation of basic materials to 
producers. Finally, in the third phase all the detail is coordinated and cross
checked to make the entire system of figures consistent and to reveal and eliminate 
possible contradictions.

Input-output methods are mostly used in this third phase where its solid frame
work and double-entry book-keeping accuracy provides the perfect tool for 
checking and coordinating. Historically, in traditional planning methods the 
early “value balances of the economy” closely resembled input-output tabu
lations. These were also called “chessboard balances” or balances of “producing 
and allocating the social product” . They served the same purposes, but afforded 
less detail. The additional information yielded by more refined input-output 
tabulations and the additional analytical possibilities obtainable by relatively easy 
mathematical manipulation of the data made input-output a welcome replacement 
for the chessboard balances.

Planners are now considering the possibilities of applying input-output 
techniques to the second phase, for drawing up detailed production plans and for 
help in balancing the allocation of materials. In spite of the obvious merits of the 
input-output approach there is no routine application yet in this phase.

Finally, an overall conviction that the most effective use of the method would 
be in the first phase is growing. It would be very useful for making plan targets 
consistent in advance and thus avoiding superfluous and inconsistent work in 
later detail. Yet input-output methods have only recently been considered for 
this phase of planning. This lag is due primarily to differences in planning and 
in statistical classification schemes. For statistical reporting, the standard classi
fication basis should be reasonably stable. But until recently the planning system 
has had to work with government bodies, ministries, industrial and agricultural 
organizations, changing abruptly from year to year. The firm, basis of input- 
output analysis being of course statistics, the transition from one nomenclature
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to the other was always time consuming and full of pitfalls. This problem is 
becoming less important. First, with more detail in statistics the aggregation to 
any necessary scheme becomes viable. Second, planning is freeing itself from the 
devastating influence of particular and provincial interests, and is now more ready 
to handle the situation in scientific and statistical terms.

What is the exact relation between our dynamic model and its brother, the 
open, static model, approached from the problems of the traditional planners? 
The dynamic model resembles the static one in that it uses all the old data in the 
same form and frame. It is therefore backed by all the data and analysis performed 
with the aid of its older brother. Yet it is a closed and more dynamical version. 
Thus it requires additional data for the variables it considers endogenous. It calls 
for a stock matrix and the rows and columns reflecting expanded reproduction of 
manpower. Both were considered exogenous in the open, static model and although 
most of the additional data are already available and routinely used for analytical 
purposes, it is not easy to organize them into a really consistent set.

The number of workers, their skills and occupations on the one hand, and the 
structure and allocation of investment on the other are well known to planning 
bodies. Yet in the operative, yearly plans these act as exogenous, outside con
straints — they can usually be not much influenced for the year to come. In 
normal times, that is, excluding national emergencies, the working force available 
is given by reasonably firm demographic accounts. To change occupational 
structure is a task of decades. Likewise most of the investment projects to be 
finished next year were already started in the past and there is not much left for 
the planner to decide. Only a fraction of investment will be new projects. But this 
investment in turn will influence output proportions only in later years. Therefore 
the open, static model seems to be best suited for annual planning.

In the perspective of medium and long-range plans, both factors become more 
flexible on the one hand and more influential on the other. If the planner changes 
them, they will influence planned proportions. These factors are in the last analysis 
responsible for the pace of development and the future proportions of the economy. 
Hence not only their future magnitudes but the interdependencies among their 
scale and composition and the pattern and movement of the whole economy have 
to be taken explicitly into account. These latter interdependencies can only be 
analyzed with a dynamic model.

We can thus characterize the dynamic model from the planner’s viewpoint, as 
a system of data and interdependencies, based on the usual input-output tabu
lations but also taking into account requirements for growth of capacity and of 
skilled manpower and their effects on the pattern and movement of production. 
It considers the adaptation of the old and new productive forces and capacities 
to the genera! movement of the process of reproduction.

Symbolically, therefore, the model can.be, considered as a summary of all the 
computations performed routinely in a Planning Office. It subsumes the balancing 
of flow expenditures and the computations necessary to equilibrate them (as is 
done by the open static input-output model) and, in addition, the balancing of 
manpower and balancing of investments, too, systematizing their interdependence

9*
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with flows and their change. Therefore it can be used to coordinate a!i these 
balances at the same time.

The dynamic model, as the open static one, reckons in monetary terms and in 
aggregated streams for the sake of uniformity and simplicity. This peculiarity is 
simultaneously its main advantage and disadvantage and decides the role it might 
play in the general work of longer-range planning.

First, in the early phase of planning it can give several variants, each consistent 
in itself, for fixing the main plan targets achievable. These are called the “main 
indicators” of economic development and will be enumerated later. This can 
secure the start of consistent detail work in different territories of the plan.

Second, the detail work finished, it can check its overall consistency. The check 
is a double one : first one verifies that the detailed plans do fit into a whole without 
contradictions. (This is usually not the case. Corrections are always necessary, but 
perhaps less so if the primary target-setting process was consistent.) Second, one 
can check whether the whole still fits into the original conception, expressed by 
the main indicators and targets.

Whenever a plan is drafted, the dual solution of the model will automatically 
yield the appropriate and specific price systems dictated by the plan’s inner pro
portions. Theoretically, therefore, it is a model generating the necessary information 
for future price-planning, a subject that is dangerously neglected in present planning 
practice.

In the following we inquire into three subjects. The first is how the unrealistic 
assumptions of the model (constant coefficients, stationary state) do work out in 
the course of planning, how to interpret the numerical results in planning language. 
Then we consider planning theory and possibilities of cutting open the closed 
model for planning purposes. An open model, besides being practically superior 
in solving certain problems of planning, can be linked to the mathematical theory 
of optimal processes. This in turn yields new insights into and new tools of planning,

3.2.1. Computing the plan

What are the numbers we can obtain from the model for practical planning? 
Depending on the detail and nomenclature represented in the model, it can yield 
all the “main indicators” that figure as plan targets and chief analytical data of a 
medium or long-range plan, except those which are expressed in natural units -  
because, as mentioned, the model only reckons in monetary terms.

These main indicators now are usually the following:
The national income and social product and their growth rates, 
the share of the individual branches in national income and social product and 

the change of these shares,
the division of national income between consumption and accumulation, 
the allocation of accumulation + depreciation = investment among individual 

branches,
the composition of consumption and its change, 
the allocation and skill composition of manpower.
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Some additional indicators are readily expressible as functions of the former 
ones, say, the relation of industrial to agricultural output, or the ratio of heavy 
to light industry, etc.

One major advantage of this type of model is the siimiltanous generation of all 
these measures. There is a fruitless and longwinded debate about where to start 
medium and long-range planning. Is it future consumption patterns and tastes

that should serve as a base ? Or perhaps extra- 
x t polation of the achievable growth of national

income to be divided between consumption and 
accumulation ? Or should production possibilities 
dominate our thoughts as we begin to draft the 
plan? All these approaches are justifiable to a 
certain extent but none is entirely satisfactory. 
A comprehensive model makes it possible to 
consider the whole complex of interdependent 
questions. It can insure consistent solutions for 
alternative policy decisions — giving rise to plan- 
variants useful in evaluating the decisions them
selves.

Yet we can only compute stationary solutions 
and assume fixed coefficients. How can we use, 
then, this model for planning?

We have already proven that stationary proportions are the best ones, securing 
optimal growth, if coefficients remain fixed. Yet coefficients change. In planning 
practice it is usual to separate changes into two categories. The changes in the 
first category are out of reach of the planner: he can forecast them more or less 
accurately but not influence them directly. The second can be influenced and will 
serve as policy variables. It is patterns of foreign trade, consumption habits and cer
tain technological trends (say, trends toward increased use of natural gas, etc.) that 
usually is considered as a policy variable and can be influenced with some success.

If it is not an easy job, it is at least feasible to plan future flow coefficient matrices 
(the stock coefficient matrix being fairly stable over long periods). With a present 
and a future matrix in hand we are ready to compute two “optimal solutions” . 
The situation is pictured in Fig. 8.

We distinguish the present actual development path, P, the present “optimal” 
one, Oj, and the future “optimal”, On, usually all different from each other. 
It is natural to seek the best transformation path, connecting the optimal states 
for each year. It necessarily will be found in the “tube” outlined in the neighbor
hood of the stationary states. The more data we have for the intermediate plan 
periods the more exact we can make the picture and the more narrowly we can 
delimit the corridor of reliable transformation paths. In any case, we can exclude 
a great region from consideration. This excluded region may be economically 
feasible but it is uninteresting, being far from the stationary states.

With this kind of interpretation our very approximate assumptions can be 
used in looking for near-optimal transformation paths generated by planned



134 APPLICATION OF THE MODEL

changes of coefficients. The model does not itself yield a rough and ready plan, 
but only guide-posts of a future evolutionary path. Yet these guide-posts, these 
“optimal” stationary states, should not be considered truly optimal for several 
reasons. First, all data, even planned data, have errors. These render all the com
puted results rough approximations. Second, we have no guarantee concerning 
the coincidence of the real equilibrium position with the stationary solution. Thus 
all results will be only tentative.

At the beginning of planning we do not need anything more exact. We want 
only tentatively to search the territory where the economy will be over the next 
5-25 years. At the start we have only to boil down all the apparent growth possi
bilities to a reasonable corridor or “tube” around the estimated optimal trajectory. 
Once this is marked out, the subsequent detailed planning work (which should 
not be constrained too tightly) can be done with greater safety, without risking 
serious inconsistencies of balances. The problems encountered in the third, coor
dinating phase of planning are most often reducible to contradictory initial hy
potheses that led to conflicts in the individual parts of the detail work. A certain 
consistency in the first phase is needed. At the same time, a too narrow and rigid 
basis would make subsequent detail work pointless and unrewarding.

In the third, coordinating, phase the model -• or rather the necessary double
entry book-keeping tabulation — can show what is left of the original consistency. 
This is no great improvement over what is already routinely done in the framework 
of the open static model. Still, an additional check is possible. The finished and 
aggregated plans already contain all the necessary coefficients. By computing 
stationary solutions again for the final coefficients, we can analyze how far and 
why the planned proportions deviate from the theoretically optimal ones. Further
more the dual solution, the projected price system, might indicate soundness of 
the whole structure or spot trouble.

One of the difficult problems encountered in planning practice is the coordina
tion of the investment plan with the production plan. The production must permit 
delivery of all the necessary investment goods to support the increases of output 
ia all sectors. If investment allocated to a certain sector is changed, then the 
planned increases of its production should be changed accordingly.

The latter interdependence can be secured by traditional methods. But planning 
practice does not yet consider the influence of a change in investment on the 
technological structure of the sector affected.

Given the importance of investment rates for coefficient change it seems only 
reasonable that plans for the two be coordinated. Carter [1969] suggests a method 
to overcome this difficulty. Given a knowledge of flow coefficients for newer 
techniques, it is always possible to take explicit account of the effects of growth 
and changeover investment on the A matrix. The information necessary about the 
new technology is best provided by technical experts and planners themselves. 
In the absence of direct information, incremental coefficients can be used as 
crude estimates of new technology. These tell what the new technology must have 
been to produce observed changes in coefficients with known rates of new 
investment.

THOUGHTS ON PLANNING 135

Foreign trade presents further problems for planners. Hungary having a rela* 
lively high proportion of trade with both planned and market economies, foreign 
trade is one of the major problems of planning. The first approach to this problem 
is to handle foreign trade as any other sector in the closed system, imports being 
its output, resulting from export inputs. One might even subdivide the sector 
according to various foreign markets — a subdivision that, considering bilateral 
agreements, is not entirely unrealistic. Since there are very close substitutes 
between domestic and foreign production of the same commodity, the input 
structure of foreign trade is easier to modify than that of an ordinary industrial 
sector. The most practical course is to assume various possible export struc
tures to represent various foreign trade policy decisions, and then to analyze the 
stationary solution and growth rates resulting from them. The existence of 
foreign trade therefore gives a new degree of freedom to the model, or rather 
cuts it open. Further analysis of the possibilities of such an open dynamic 
model will be taken up in the next two sections.

3 . 2 . 2 .  Opening the model

The central task of every economy — thus we started to set up the model — is 
to allocate society’s labor, manpower, to particular activities. Some of these are
not really economic activities and should not be part of the analysis of repro
duction. A certain amount of value is separated from the reproduction process 
and consumed by these activities. They are best treated as a “final demand” in an
open model.

For instance science and the arts are creative but not repeatable and therefore 
not reproductive activities. They are not production processes and although they 
yield a product, this is usually only enjoyed but not consumed, usedbut notused up.

At the other extreme we have defense and other wasteful yet, for the time being, 
apparently unavoidable activities. Expenditures for these activities are decided 
on the basis of other, exogenous (moral, aesthetic, political) considerations. 
These decisions are not entirely independent of the state of the economy, because 
they do depend on the order of magnitude of the surplus.

Really, the choice between the open and closed model is somewhat arbitrary. 
The logic of the open system makes exogenous factors decisive. As independent 
variables they become the objectives of the economic process.

Of course the closed model does not eliminate these extra-economic activities ; 
it is not a “consumptionless” model. It certainly can include a government sector 
(or an assortment of government sectors : defense, police, administration, justice, 
health, etc.) and government budgeting shows us that it is possible to anticipate 
their structure and cost.

In practical work — as opposed to pure theory — there are some questions of 
analysis and planning that can be handled more readily by the open model. 
As mentioned, the impact of foreign-trade-policy decisions on the total economic 
process can be better appraised by the open model. Whenever we are interested in
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the outcome of some decision (using the common ceteris paribus method ■ of 
analysis) we might use an open model because it takes the form of a question : 
How does a particular element, separated out for purposes of analysis, influence 
the economic process ? It is therefore the model suitable for analysing the impact 
of policy decisions, be it a new structure of foreign trade, increase in defense 
spending or a new health-care program.

It is not difficult to write out the open dynamic model in mathematical terms. 
One has only to bear in mind that the surplus on hand must cover not only capacity 
increase but some outside consumption, final bill of goods, too. Using differential 
equations :

(1 -  A)x, = Bxt + y, . (32)

The technique of solution is analogous for difference and differential equation 
systems. It depends on whether we can specify y, as a function of time (as the time

(«)
path of final outputs) or describe it in terms of its derivatives yt9 ÿt>. . y t, 
for a given instant of time t. Let us first study the second from making use of the 
differential operator D. This operator is linear and commutative for all matrices, 
that is AD =  DA. Thus the above equation can be expressed in operator 
calculus as

(1 -  d)x, = BDx, + y, (33)
and solved for x ,

x, = (1 -  A -  BD)~1yt. (34)

If the inverse exists, this expression can be written as an infinite geometric 
series. Denoting (1 -  A y 1 — Q, we have

A = (Q + QBDQ + . . .  + Q(BDQ)" + . . ,)yt (35)
that is

A = Qy, + QBQy, + . . . + Q(BQT y ] . (36)

We assume that x, remains finite for every /, that is, we postulate the convergence 
of the series. Yet we know that the maximal eigenvalue of BQ equals 1 /A, the 
reciprocal of the stationary growth rate. The series will converge if

(«) (»)
Dyt < A y t lrom some finite n and t.

This assumption can be interpreted, somewhat loosely, as a constraint on the 
growth of the final bill of goods. In the long run its growth rate cannot exceed 
the growth rate of the system itself. That is, expenditures on those non-productive 
or non-reproductive activities should grow almost never faster than the economy 
itself.

In terms of the time path of y„ we can write out the usual textbook solution of
our system :

x \ B - 1 yzd%}
o

( 3 7 )

1 3 7

x-Q being the state of the system at time t =  0. The form of the solution will again 
constrain the possible growth of yt. Yet the presence of the matrix B ~ \ i  — A) 
alerts us to further theoretical problems. First, B itself can be singular in practice. 
If, say, two sectors have the same capital structure, then B, having two columns 
equal, will be singular, 'and if the capital structures are very similar, B will be 
severely ill-conditioned. Furthermore, B ~ \  1 — A), if it exists at all, will have the 
economically meaningful growth rate, A, as its eigenvalue of minimal modulus. 
Actual computation, then, will be dominated by other eigenvalues, and therefore 
be clumsy and inexact. In the final chapter we review one way to circumvent this 
problem in practical work.

Yet, before turning to practical computation, let us consider the application 
of the mathematical theory of optimal processes to the open model.
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3.2.3. Optimal processes

The open model can be transformed, or rather interpreted, from a slightly different 
viewpoint. Here the mathematical theory of optimal processes gives new insights.* 
Its generic model is also an “open” one, and the behavior of the system will be 
again determined by exogenous variables. The first change is simply one of 
interpretation: we do not consider those outside variables an object in themselves 
but only as means to attain some other object, namely optimal development of the 
economy. The final bill of goods is therefore transformed into a variable load on 
the economy, serving to steer or control it toward previously determined targets.

The practical application of this model will need quite an amount of further 
investigations both in theoretical and practical-statistical respect. What can be 
outlined below is only an abstract theoretical description of a very simplified 
control model. Some problems needing future investigation will be pointed out. 
Still it is important to include this approach here because it seems to be a very 
powerful one to apply to the problems of optimal planning.

Thus far the mathematical technique of linear programing, originally conceived 
for the choice of optimal technology, has been our major tool of optimization. 
However, the burden of computing really long-range economy-wide systems may 
be forbidding.

Another mathematical technique, that of the control-system engineer, based on 
the Pontryagin-principle of optimal processes, will be applied here. This technique 
simplifies the computational problem. Besides, it gives some further theoretical 
insight into the working of a complex dynamic economic system.

First of all optimality, the criterion of choice, needs a strict and clear definition. 
Economists have taken two approaches. One tries to maximize the output of the 
economy (total production or final bill of goods or export surplus, etc.) and con
siders the time horizon of the plan, T  years or periods which may extend — at 
least theoretically — to infinity, as predetermined. The other approach considers

* See Pon try agi n-Iioltyanskii-Gainkrelidze--Mishchenko [1962],
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the transformation of economic proportions (corresponding to a given level and 
way of living or a given level and structure of industry, etc.) as a prescribed task 
and seeks to minimize the time necessary to accomplish it.

Planning practice usually follows the first approach although the first economy
wide plan, Lenin’s GOELRO for electrification of the Soviet Union, was clearly 
conceived with the second approach in mind. But both approaches must be 
applied with skill and careful judgement to avoid pitfalls.

Maximization of output with an infinite time horizon is often inconclusive 
because we cannot foresee all the important changes in technology, taste or 
habits far ahead. A finite time horizon mitigates the difficulty of anticipation but, 
by neglecting posterity, it may throw the economy out of its balance (this will be 
illustrated below).

Minimization of time involves a subjective element in the selection of the econ
omy’s specific goals. This choice can only be sidestepped for developing countries, 
if they accept a leading country’s standards as a guide. Thus both approaches 
present severe economic and moral problems and the different results should be 
carefully weighed. They may mutually complement each other.

In the literature of control-system theory, both approaches are well known. 
Output maximiz.ation is called a “fixed time-free endpoint”, and time minimization 
a “fixed endpoint-time optimal path” problem.

Now, the essential elements of the control problem are the following. First 
consider the system itself, to be controlled. Here we accept the dynamic model as a 
statistically implementable and well-behaving representation of economic reality. 
The system’s state at time k  is given by its gross production vector xk and its 
output may be production itself or some related variable such as personal con
sumption or net accumulation. Second we choose a set of controls which operate 
on the system forcing it to deviate from the normal dynamic course determined 
by its flow and stock coefficients.

The main control in the planner’s hand is decision about future investment. 
A control instrument, however, should be a device to be used optionally. Thus, 
ideally, it will be an economic reserve which may be used or not used at will to 
achieve the best performance of the system. In advocating a reserve we are already 
at variance with the common-sense planner. He usually deplores unused resources 
and assumes that operating at full capacity and investing whatever there is to 
invest must be a necessary condition of optimality.

Our control instrument, then, is unused surplus, reserve, something that may 
be invested to obtain new productive capacity in the system, but may be left idle 
if this serves our final aim better. It can be stand-by capacity or strategic raw 
materials or any other stock which may be withheld temporarily from productive 
use. The very generality of this concept does not allow us to set once for all limits 
on the tolerable amount, but in real life reserves certainly are limited somehow 
in every case. Mathematical theory starts simply by assuming some limits to, or 
constraints on them and does not worry about data. The constraints may them
selves be interdependent. Sometimes they are set by political necessities: say, limits 
to idle manpower permissible. If no other constraint is operational the prevailing
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amount of su rp lus is  still given and one can either use up all of it, part of it, 
or none.

Consider the closed dynamic system given in the form of difference-inequalities

' ■ B(xk+1 -  xk) <  (1 -  A)xk (38)

with investment limited by the surplus product on hand. Now we introduce 
unused surplus as slack variables, yk. These will transform equation (38) into equali
ties and at the same tim e m ay also be considered as o u r control variables:

B(xk+1 -  x k)  = (1 -  A ) x k -  yk (39)
and

b > yk >  0.

Here b stands for some lim it to tolerable “waste” . Now we suppose that B is 
regular and has an inverse, thus

**+i =  [5_,(1 -  A) + l]xk -  i r - % . (40)

Denoting B ~ \  1 -  A) +  1 — D as a one-step transformation matrix we write

M+i = ®xk — B~lyk . (41)

Let the state of the system be given at k  =  0 by its to ta l production vector, x 0. 
We wish to maximize output T  periods later, xT, measured by some objective 
function cxT

maximize cxT with cxu, T  given

subject to xk+1 = D x k — B~1yk k  = 0, 1,. . T  — 1

and 0 <  yk < b.

All this assumes, of course, a lot: B  might be singular or we might not find a 
y k < b which transforms equation (38) into equalities. These are matters for fu rth e r  
investigation and the ensuing difficulties m igh t or might not be solved in practical 
cases. For the time being we assume here that our system is controllable.

The solution to our problem can now be worked out in the  following way. 
Suppose we already know the optimal sequence of the control variables, yk 
(k — 0, 1, . . T  — 1) yieldingthe optimal sequence of th e  states, x*(/c = 1,. . T).
This sequence can be optimal if and only if any possible perturbation of the  final 
state x* + x'T (which can be reached by giving suitable perturbations, y'k, to the 
control variables) does n o t  increase th e  value o f th e  objective function. T he  
sequence jc* is optimal if and only i f  c ( x *  + x'T) < cx* for any possible x'T. Thus

cx j. <  0 (42)

emerges as the necessary and sufficient condition of optimality. We will now trans
form this condition in to  an equivalent condition concerning the control variables.
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Perturbations of the states and those of the control variables are connected'by 
equation (41) in the following manner:

4 + i  = Dxk -  B~l yk . (43)

We now introduce an auxiliary price vector sequence formed by the following 
recursive prescription:

P t  =  c (44)
and

Pk = Pm- i-D .

Multiplying both sides of equation (43) by pk+ 3 and summing from 0 to T  -  1, 
we have then

YJ^Pk+ix'k+i = YJ^Pk+iD x'k -  Y J " 1 P k+ i 'B-'1 y'k ■ (45)

The first term of the right side can be transformed by equation (43) as follows:

Y o ^ P k  + i Dxk =  Y l  l Pk x'k ■

But the same expression appears on the left side of equation (45), too, except for 
the time subscripts. Considering x[ = 0 (because x0 is given and thus cannot be 
perturbed) and p T =  c, we may simplify equation (45) to

cx't= -  Y o ^P k + iB ^y 'h -  (46)

Thus, our former condition for optimality, equation (42) can be written in the 
equivalent form of

E o ^ V / c + i ^ V ^ O .  (47)

This is already a condition on the perturbations of the control variables.
We now show that, at an optimum, each element of the control variable must 

be at the limit of its possible range.
The reasoning runs as follows. The perturbations of y* may take any values 

within the limits set by 0 <  yk <, b. We now fix our attention on one element of a 
given period’s control variable, say (j/c),-, and consider the perturbations of all 
the other elements and all the other periods to be zero.

For what value of (w); will equation (47) be true?If (pfc+15 —1)i > 0, then equa
tion (47) can *be true only if (y*)t > 0. But if the 7-th element of the optimal control 
variable of the /c-th period, (y'k)t, were not on the lower limit of its possible range, 
then we might perturb it in a negative direction ; thus an (y'k)t could be chosen less 
than zero and equation (47) would not hold. Therefore if (pk+1B~l)i > 0, then 
(y*)i must be at its minimal value where only positive perturbations are possible.

If however (pk+iB'~t)> < 0, then (yk)t must be at its maximal value. Otherwise a 
positive perturbation, (yk)t > 0, would be possible and equation (47) could be 
again violated.
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In summary, if:

(a) , (Pk+iB-1), >  0 ,  then (yk)i =  0 ,  that is, at the minimum of its range,

(b) (Pfc+i-B-1), <  Q, then (y*), =  bh that is, at the maximum, of its range,

(c) (ift+i-S-1); = 0, then {y*)t is undetermined, thus optional within its range.

After the recursive sequence of the auxiliary price vector is computed, the 
optimal control variable may be determined element by element, period by period, 
according to the respective signs of (pk + i
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Numerical example

To show the salient features of the procedure we present a 2-sector illustrative 
model.

We begin with the following assumed flow and stock matrices :

"0.4 0.3 '2.0 1.0'A = B =
0.5 0.3 1.0 1.0 .

We invert B

and compute the one-step transformation matrix

D =  .- A) + 1 =
2.1

-1 .6
-1 .0 ' 

2.7 '

It is easy to check that this dynamic system when left to itself (y = 0) has a 
unique “turnpike path”, producing a 10 per cent growth rate. Starting from. 
x0 = (100, 100)

Xj — Dx0 —
2.1

..1.6
-1 .0 '

2.7
100
100,

- ( 110
110

X,j =  Dx: I =
" 2.1 ..1.0' 110 1.21
.-1 .6 2.7 ,110 ,121

Now common-sense and some turnpike-theorems seem to suggest that travelling 
on the turnpike is the output-maximizing conduct. But it is not.

Let us assume we have to maximize x t  with c = ( 1, 1) — that is, the price of 
every unit produced is 1 dollar. Our former turnpike output then was worth 242 
dollars.

Let us further assume we tolerate 1 per cent “waste” on total, production, 
that is, our constraints on the control variable are 0 <  yk < 0.01 xk.
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We first compute the auxiliary prices: 

p2 = c =  (1, 1)

P i  =  P z D  = (1, 1)
2.1 - 1.0 

— 1.6 2.7
(0.5, 1 .7 ).

Then check the signs of pB~l

p 2B ~ l ( 1 , 1 )

PlB~'- = (0.5, 1.7)

(0, + )

(~ , + )•

Thus in the first period we have one negative sign in the first element. Therefore 
all elements of the control vector may be taken to be zero except its first element 
in the first period where it should be at its maximum: 0.01 • 100 = 1.

We are now ready to compute the new, controlled, path :

State Transformation Control End state
xk Dxk - B~'yk = xk-F 1

[100 ' 2.1 -1 .0 100 ' i. - r f i [109
|l00, 1.6 2.7 100 - 1  2 0 111

109 ' 2.1 -1.0" 1091 n [117.9

.HI. _ " l-6 2.1 111,
u

(125.3

Thus we end up with 243.2 dollars’ worth of output, that is, 1.2 dollars of 
additional output, in spite of investing 1 dollar less.

Our example not only substantiates the ease of computation but reveals some 
shortcomings of the approach, too. Greater speed of development is attained by 
going off balance — by abandoning the turnpike path, the only path which maxi
mizes growth for an infinite time horizon. This is the symptom mentioned earlier: 
finite time maximization neglects posterity and may throw the economy into a 
cycle whence it is not easy to recover.

Similar procedures can be used to solve certain extensions of the problem just 
discussed.

Instead of x T, total production, other variables may be maximized, say, final 
consumption or surplus or any other related items. If, for instance, we wished to 
maximize surplus, that is (1 — A)xT =  sT, the procedure would be the same except 
for equation (44) where pT = c(l — A) is the proper starting point for the new 
auxiliary price sequence.

Instead of variables for the final, T, period we may maximize across the whole 
time path. The cumulated output may be maximized by max Y Ï  cxk> moreover
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our objective function may have different parameters for each period: ck(Jc =
T

= 1, 2 ,. . ., T), that is, we may seek max Y  ckxk- the latter case the procedure
fc=i

is the same except that equation (44) must be again changed to pk ~ p k+1D + xk .
A linear loss function for unused surplus (yk > 0), or changing bk(k =  

=  0, 1,. . T  — 1) constraints on slack, might also be introduced.
Finally, instead of fixed coefficients in the A and B  matrices we may introduce 

technological change, specifying a different A k and Bk separately for each and 
every period. There is even some hope of solving the problem for systems where 
the change of coefficients depends linearly on previous investment, or where A  and 
B are more complicated linear operators embodying leads and lags.

In spite of all this, further research is needed before embarking on practical 
model building and solving. For the model to be realistic quite a few side-con
straints need to be established. For example, disinvestment in fixed capital cannot 
exceed the amount of normal wear and tear and investment in inventory is not 
totally reversible either. All these and related problems need assessment both 
from the economic and the computational viewpoint.

We now turn to the second problem which is to guide our system to a desired 
state in minimum time. In posing the problem we change to the continuous version 
of the system. Minimization of time is easy when time can be considered contin
uous. Then we do not have to bother — as in the discrete case — about over
shooting our objective in T  periods when it cannot be reached in T  — 1 periods. 
Otherwise our model and its assumptions about controllability remain the same.

A time-optimal path connects two given states x0 and x x and can be traversed 
in a shorter time than any other possible connecting path, subject to the constraints 
given by the structure of the system itself and the limitations on the control 
variables.

Let us now consider the closed dynamic system in the form of differential 
inequalities and apply reasoning analogous to that used in the first problem.

Bk <  (1 -  A)x (48)

(here x  stands for dx/dt and we omitted the time subscripts).
At a given moment say, t — 0, the state of the economy is given by the production 

vector x,=0 = x 0. We wish to lead the system into another state, x-u  in the shortest 
possible time, T, subject to the limitation given by equation (48).

For “steering” our system we introduce a piecewise smooth, bounded and non
negative “slack” vector, y  >  0. Now our problem is to determine that time-path 
of y  which brings our system from x0 to x L in minimum time, subject to

Bx =  (1 -  A)x — y. (49)

We introduce again an auxiliary price vector by the prescription

pB  =  -  p{ 1 -  A). (50)
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Now we can form the so-called Hamiltonian function

F(p, x, y) = 1 + p(t -  A)x -  py . 

Our Hamiltonian has the following partial derivatives:

dF
dp

(1 — A)x — y  — Bx

dF
dx

= X I -  A) = pB .

(51)

(52)

We are now ready to write our problem as follows.
Fond that time path of y  which minimizes

J(y) =  j  [F(p, x, y) -  pBx] dt. (53)
Xg

The expression in brackets is identically 1. [Considering equations (51) and (52). J
x x

Thus j dt is equal to the transition time from x0 to xq, and this is exactly what we
X ,

have to minimize.
The solution is given by the following Theorem :
Only that time path of y  may be considered optimal which extremizes the scalar 

product py  for all t.
Proof. Let us suppose, as before, we have arrived at the optimal solution, y*, 

yielding the time-optimal trajectory, x*, leading from x 0 to jcx in minimum time. 
Optimality again requires that for perturbations in y* and corresponding changes 
in x* and x* our functional

J(y*) < J(y* + / )  . (54)

We will transform this condition of optimality again into a more explicit formula. 
I  he change of the functional ÀJ — J(y* + y') — ./(>'*) can be expressed by 

taking differentials. This is feasible because we supposed the differentiability in 
x and y, thus after neglecting terms of higher order

ÔF , 
+ m— y

dy
■ pBx' dt.

Integrating pBx', by parts

(55)

\ pBx' dt =  [pBx’Yf — |  pBx' d t .
xü x0

The expression in parentheses vanishes because x'0 = x\ = 0, that is, the per
turbation of the trajectory must not alter its two end points.
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Thus equation (55) may be transformed into

AJ-
dF_
dx

+ pB
, dF ,

x  + —— /  
dy

d t . (56)

Here again the first member is identically zero because of equation (52), leaving 
us with

Xi
AJ — \ ~ / d t  <0 (57)

j  dy

as the condition of optimality.
Passing to the limit /  -* 0 and considering ÿ  to be of optional sign, this leads 

to the condition of optimality

dF—_ =  0 for every t from x 0 to x x . (58)
dy

Thus our Hamiltonian equation (51) must be extremal as a function of y on the 
optimal trajectory. Now y enters equation (51) only in the scalar product — py, 
hence we conclude that whenever

(a) Pi > 0 then y, must be at the minimum
allowed by its constraints

(b) Pi < 0 then y; must be at the maximum
(c) pi =  0 then yt is undetermined.

The parallel with the first problem is, indeed, straightforward.
This second, continuous, solution is rather inconvenient when it comes to 

actual computation. All we could prove was: there exists a price vector (as a
function of time) which may serve as a means to find the optimal control. But we
usually have not enough data to find it: all we know is the prescription of equation 
(50). This is a linear differential equation which lacks the boundary conditions. 
Still the general theorem has a certain advantage in properly stating qualitative 
characteristics of the optimal control variable.

Both formulations indicate that no matter how we constrain (or how reality 
constrains) the control variables, they invariably turn out to be on the limit ot 
their range when the system performance is optimal. Thus optimality and swing
ing to extremes seem to be connected.

Of course one could avoid economic interpretation maintaining that this con
nection is only a feature of the mathematical model and not of economic reality
itself. But it is not easy to deny that economic systems are prone to fluctuations.
Perhaps economic cycles are a .kind of flutter phenomenon induced by the strains 
of optimization.

Let us relate this finding to the result of our numerical example. We know that
the turnpike path is unique and time-optimal in the sense that we can go from one

10 Proportions, prices and planning
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point to another on it in minimum time. We also know that on this path the 
control must be zero, y  =  0. This entails pt >  0 for all i and all t. But there is 
only one entirely positive solution to pB  == p(l -  A) for all t: the well-known 
“production price” vector, yielding an average rate of profit after investment: 
p{ 1 -  A) = XpB.

How well now movements around this balanced growth path and equilibrium
price may be described by control theory formulation of the dynamic model 
needs study. Empirical research might show that the spectra of flutter frequencies 
(computed from the flow and stock matrices) and those frequencies found in the 
spectral analysis of economic time series are alike. But this is only a conjecture
not yet substantiated.

In summary: an interesting theoretical possibility emerges with the Pontryagin 
theory. It yields promising new insights into both theoretical and practical problems 
of planning. Yet our theoretical and factual knowledge is insufficient to assess its 
real usefulness. This is, then, one of the main domains of future research.

3.3, Practical Computations

The model that we have been discussing is hardly new. Economists in many 
different parts of the world have implemented variants of this system, some on a 
very limited experimental scale, and some on a more ambitious level. In this final 
chapter we review computations of the open and closed form of the model. This 
may help in assessing the potential value of the approach to long-range planning. 
In this survey we exclude the many instances where the model serves only as the 
inner core of programming procedures. The latter, although interesting in itself, 
does not help us to appraise how well the model itself reflects reality.

We have relatively more factual knowledge about the aggregated form of the 
model, equivalent to the Elarrod-Domar model. Its performance in the light of 
our general knowledge about growth rates, saving ratios and capital-output ratios 
will be analyzed inSection 3.3.1. The main question to be answered is: how well 
does this model explain the variety of growth rates experienced in modern history ?

We have less material concerning the more detailed forms of the model. No defin
itive assessment is possible, and we shall give more attention to special questions 
of application than to numerical results.

Yet experience prompts us to claim, very cautiously, that the implementation 
of the model is within reach, its solutions are well-conditioned, computation is 
smooth and easy to handle, and — finally — numerical results are in good agree
ment with statistical facts and readily interpretable.

3.3.1. The aggregated form

Let us inquire into the explanation of secular growth rates given by the one-sector 
model. As already pointed out in Section 2.3.2 the one-sector form of our model is:

growth rate == saving ratio/capital-output ratio.

In this aggregated form the model is equivalent to the formula presented by 
Harrod [1936] and later by Domar [1946], The main points were already implicit 
in Kalecki [1935] and developed very early in Feldmann’s two-sector models 
([1927] and [1928]).

All these models are of the relatively early theoretical vintage of the twenties 
when eastern economists, and of the thirties and forties when western scholars, 
became interested in growth. Yet reliable data to test the models and implement 
their use outside the classroom became available only after the second World 
War. At that time reconstructing historical time series became fashionable, and 
this made it possible to anchor theories of growth on a firmer basis.

10*
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This is certainly not the place to enumerate and review the data for many 
countries in detail. The following quotation summarizes some findings of a study 
where the secular relation of national wealth and national income were analyzed 
in detail.*

“When investigating the capital/output ratio for shorter periods (shorter than 
the length of the business cycle) we find heavy fluctuations . . . These fluctuations 
can be explained by the movement of the business cycle. The wealth once invested 
can be decumulated, if at all, only to the extent of its wear and tear (its scrappage) 
and thus it cannot follow closely the cyclical fluctuations of output. It is meaning
less to compare the increase in wealth and in output over the short run because, 
quite often, we find opposite changes, too : increase in wealth may be accompa
nied by decreasing output and vice versa. The marginal quotient that relates 
these differences is therefore totally unreliable. (This phenomenon will manifest 
itself naturally with greater force in particular branches — industry, agriculture 
etc.).

In spite of heavy short-range fluctuations the capital/output ratio, measured 
at peak periods, is manifestly stable. In the time-stretch investigated it changed 
only very slowly. There were no discernible international differences in its.absolute 
magnitude nor in its direction and speed of change. Changes in technology and 
the great differences in productivity among countries apparently do not influence 
the behavior of the capital/output ratio very much.

The relation of national wealth (as the sum of tangible and reproducible 
values) to national income shows a characteristic secular movement in the course 
of historical development. This wealth/output ratio will increase in the beginning, 
but this increase decelerates. The ratio reaches a peak and then starts to decrease 
slowly again. Its whole motion is constrained between tight boundaries. At its 
zenith — which is established after an approximately half century of industrializa
tion, and can be dated around the turn of the century for western countries — the 
ratio does not surpass its average by as much as 50 per cent. At its maximum it is 
not greater than 4-4.5 (which means that 4-4.5 years’ national income is accumu
lated as tangible wealth) and the ratio has not sunk below 2.5.3 nowadays.”

If we consider national income as output, define savings ratio as the part of 
national income accumulated (as is common in western literature) and investigate 
capital requirements of producing national income, then we arrive at an awk ward 
impasse. Let us assume, as a first approximation, a constant savings ratio. Then, 
given the course of actual capital/output ratios, the developed countries should 
have been growing at a decreasing rate until the turn of the century, thereafter 
experiencing accelerated growth. This clearly contradicts historical facts. On the 
contrary, almost all western countries had rapid (6—12 per cent) growth in the 
first phase (up to the first World War or the recession years of the thirties). 
In the second phase, growth was slower (2—3 per cent).

Thus observed growth rates could be explained by the model only if we dropped 
the assumption of a constant savings ratio. We would have to assume quite a high

Brôdy-Râcz [1966],
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savings ratio. Table 3 shows what the savings ratio would have had to be to produce
the observed growth rates with observed capital/output ratios.

Table 3

Typical savings ratios

Y ear
T ypical 

an n u a l g row th  
ra te

T ypical
ca p ita l/o u tp u t

ra tio

R esulting  
savings ra tio  

com puted

1850 10 per cent 3 30 per cent
1890 10 per cent 4 40 per cent
1910 10 per cent 4.5 45 per cent
1930 3 per cent 3 9 per cent
1970 3 per cent 2.5 7.5 per cent

The computed savings ratios contradict whatever vague and sparse statistical 
evidence we have about actual savings ratios. Accumulation out of national income 
will generally surpass the 10 per cent limit in developed or developing countries, 
and can surpass 25 per cent for a couple of years at most.

Rostow [1960], analyzing the different phases of the growth process, calls the 
first phase “sustained growth after the take-off” or “the drive to maturity”. What 
we described as “an approximately half century of industrialization” he highlights 
as follows: “Historically, it would appear that something like sixty years was 
required to move society from the beginning of take-off to maturity.”

Rostow considers “a rise in the rate of productive investment from, say, 5 per 
cent or less to over 10 per cent of national income” a condition sine qua non for 
this growth phase and generalizes it by saying : “After take-off there follows a long 
interval of sustained if fluctuating progress . . . Some 10-20 per cent of the national 
income is steadily invested, permitting output regularly to outstrip the increase 
in population.”

Thus, our first period, industrialization, with its extensive growth and high 
growth rate corresponds to his “drive to maturity” ; our second phase, essentially 
intensive and with lower growth rate, corresponds to his “maturity” . In neither 
phase are observed proportions compatible with expectations based on the one- 
sector model.

The actual savings ratio is not sufficient in the first phase to induce the growth 
observed ; in the second phase saving is overabundant and could apparently trigger 
a much higher growth rate, if the one-sector model were correct.

In addition two broad observations are left unexplained, by the one-sector model. 
First, those countries that grow fastest are. not those where the savings ratio is 
high or where the capital/output ratio is low.* Second, the model is plainly inade-

See, for example, Adelman [1966].
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quate for analyzing “reconstruction periods” . These periods — after wars, great 
recessions and other national emergencies — are sometimes followed by 20-25 
per cent growth rates for several years. They begin with a great slump in national 
income. Any increase of the savings ratio is out of the question: usually savings 
will be under average, consumption requiring a greater share of the decreased 
national income. Yet, just after the emergency, outputs increase very rapidly in 
spite of the absolutely and relatively low amounts of savings and accumulation. 
Then when times normalize and the savings ratio assumes its former, higher rate, 
the fast growth rate slackens.

All these contradictions are more apparent than real, and can be eliminated by 
modifying the specification of the model and reinterpreting its dynamics. The 
Keynesian school — leading to the Harrod-Domar interpretation — abhorred 
“double counting” and reckoned in “national income” and “value added” terms 
rather than in “severely double counted” , “social product” or “gross domestic 
output” terms. Yet, it is these double counted categories that give us the necessary 
clue. Growth rates of national income and of gross domestic output, GDO, will 
certainly coincide in the simple dynamic model. There seems to be no clear his
torical trend for GDO to increase faster or slower than national income. Savings 
ratios on a national income and a GDO base will therefore move in parallel. 
Rostow’s 10-20 per cent savings ratio from national income will simply be trans
formed to a 7—14 per cent savings ratio based on GDO.

Yet the capital/output ratio is modified by the broader interpretation. As already 
pointed out, we have to consider capital intensity of manpower, too. We must 
reckon with labor’s stock as well as its flow aspect. In the Harrod-Domar model 
labor plays a peculiar role. It only consumes part of the national income, as a 
hungry mouth, preventing it from being accumulated. It is like a net loss to the 
system, unproductive waste. To increase the part of national income consumed by 
the population has no positive impact on production. The system could work 
better with a savings ratio equal to 1. Actually if the number, skill, knowledge, 
quality of manpower are not increased (all these requiring massive amounts of 
investment), production will not grow, however high the savings ratio. This is 
really a lesson well learned by socialist and developing countries. And it is mostly 
human investment (or its lack) that will determine the growth rate. It is larger 
than any other investment for growth, and acts on growth with a very long lag 
period.

Let us now consider the three phases, reconstruction (annual growth rate 20-25 
per cent), industrialization (growth rate 6-12 per cent) and intensive growth 
(growth rate 2-4 per cent).

In a reconstruction period it is characteristic that manpower, including skilled 
and highly qualified manpower, is obtainable in abundance ; the labor market is 
glutted by would-be workers, educated and trained earlier. If productive capacities 
are more or less intact, all accumulation can go into filling depleted inventories. 
This growth, then, does not need much accumulation or investment at all, except 
for easing bottlenecks or replacing obsolete technology. With wages depressed 
even the oldest machines may still yield a profit.
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Once idle capacities and manpower capacities are absorbed, every increase in 
output, every additional worker and every addition to this skill has to be paid 
for by society. Growth in “non-reconstruction” periods will therefore be much 

. slower.
How can now the characteristic difference between “industrialization” and 

“maturity” be explained?
First of all we must be prudent in interpreting differences in characteristic 

growth rates. Some portion of the difference is undoubtedly due to statistical bias. 
The proportion of statistical coverage increases with industrialization, as more 
activities come under market control and later, efficiency of regulation and statisti
cal collection improves. Thus there is an upward bias to estimates of the growth 
rate in the period of rapid industrialization. This in turn exaggerates the difference 
between observed growth rates for the industrialization and the mature period. 
Nevertheless it cannot explain away the entire difference.

The remaining difference can be accounted for by increased requirements for 
reproducing skilled manpower. An industrialized, technically developed country 
requires a labor force that is more valuable and needs much more expenditure for 
rearing, education and training. To quote Rostow: “Those in manufacture, 
construction and transport — including skilled workers — rose about in propor
tion to the total rise in the working force. But semi-skilled workers increased more 
than twice as rapidly as the working force as a whole; professional people and 
office workers three times as rapidly as the working force as a whole. The era of 
the professional technician, and of the skilled and semi-skilled worker had come; 
and this trend in structure of the working force has proved virtually universal to 
all post-maturity societies.” Increases in human capital/output ratios may well 
counterbalance any tendency for the fixed capital/output ratio to decline. The total 
capital/output ratio, including human capital, may be therefore much higher in a 
mature economy than in a developing one.

Let us look into orders of magnitude, to see whether increases in human capital 
requirements have been significant enough to explain the differences in growth 
rates at various phases of development.

Section 2.1.3 noted that the capital/output ratios in reproducing manpower are 
equal to at least half of raising time. If therefore the average age of beginning work 
is 10 years, then the capital/output ratio is about 5. That is, 5 years’ national 
income is tied up in youth not yet in the working force, that is, in the “gestation 
period” of investment. The assumption that children enter the work force at age 
10 is quite realistic in societies before take-off. The picture may be complicated 
by international migration of human capital. Before 1930 the stream of immigrants 
to the United States endowed it generously with the human capital necessary for 
rapid growth. Transfers of human capital from poor to wealthy countries still 
persist and their value may well exceed transfers of conventional capital.

In a mature, industrialized economy the average age of entering employment is 
16-18 years and is still increasing. With improvements in living standards, im
provements in the system of education and health-care (dictated not necessarily by 
humanitarian considerations but by sheer needs of modern production processes
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and overall efficiency) the human capital/output ratio has . at least doubled. 
Probably human capital has increased even faster, considering the increase in 
consumer durables, shortening of the working week and day, increases in social- 
funds — security, health, recreation, etc. Let us stick to a conservative guess of 
10-15 years’ national income invested.

This capital/output ratio makes the traditional one — reproducible tangible 
wealth representing 2-3 years’ national income — seem to dwindle. Thus the total 
capital/output ratio which might be around 7-8 years’ national income (say, 3 for 
equipment and 5 for human investment) at the beginning of industrialization will 
increase to 12-17 years (say, 2 for equipment and 15 for human investment) in 
maturity. This difference, then, clearly entails a slow-down of the growth rate 
attainable by a mature economy, reducing it, at least in order of magnitude, to 
half of that of the industrialization period.

This process has a lot of side-effects, phenomena observed long ago by sociolo
gists and economists. The increasing share of the service sector in GDO has long 
been noticed. Many of these services really serve the reproduction process of 
manpower. Rising educational and health expenditures incurred by the state are 
often mentioned. The new economic power of youth is well known, and does not 
deserve lengthy comments. They are a market of their own, creating their own 
music, art and theatre, garments and fashion, and perhaps even their science and 
universities in the future. All this is related to the increasing importance of this 
“gestation period” , the “goods in process” part of manpower.

The above gauging of orders of magnitude needs to be supplemented with more 
precise, more detailed estimates. But the rough estimates suffice to explain the 
turning point from rapid industrialization to. slow maturing. The main levers for 
increasing the growth pace inmaturity will notbe found in increasing the traditional 
savings ratio, or improving the technology of manufacturing or transport, but 
only in making the system of education more efficient, by avoiding senseless waste 
of time and teaching of irrelevant knowledge, by shortening and reorganizing curri
cula and by connecting learning with doing. . .

Here is where the socialist countries have an advantage as compared to 
the private-ownership countries. Where there is no difference in the ownership of 
schools and of enterprises, their “production” processes can be better coordinated. 
Whether they do indeed effect this coordination remains to be seen.

In certain partial questions the planned economies have already recognized 
their /growing duties and made plans and established institutions for housing, 
health, family care, education, culture, etc. Still, coordination and integration of 
all these processes have hardly begun.

Human capital does increase continuously. But there is a turning point where 
the growth rate changes suddenly, within the stretch of a couple of years or at 
most a decade. Explanation of this abrupt change is tied to the problem of a closer 
coordination of schooling and production.

The turning point comes when the influx of agricultural population into industry 
slackens and finally stops. Before the turning point youth already trained at an 
early age in agriculture (trained mostly on the job) comes to industry (usually

into mining or construction) and acquires the necessary additional skill by further 
on-the-job training. There is little waste of time, the worker is productive while 
learning — and slowly educates and works himself info higher and higher jobs.

This inner migration (from agriculture to industry and within industry toward 
higher qualification) is almost totally discontinued after the end of industrializa
tion. Industrial, that is, “mature” societies tend to train each individual for his 
very specialized role as machinist, draftsman, teacher or whatever else. The long 
gestation period impedes higher growth rates.

There is no way out: if we want more growth, we have to-integrate education 
and production, learning and doing, securing at the same time the mobility of 
population towards higher qualification.
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3.3.2. The closed model

The first closed-model computations were made at the Harvard Economic Research 
Project [1954] in the early fifties. They, and Tsukui’s early work [1965] were never 
published. These pioneering computations established the feasibility of statistical- 
implementation and computation of the closed dynamic model.

À later simplified version* of the model assumed that every commodity i has a 
uniform life span lh independent of its destination . Hence the matrix B was derived 
from the flow matrix A by multiplying each row of A by an estimated average 
life span. If we define Ï  as a diagonal matrix made up to the t, life spans, 
T — <A> h, • ■ -, then B =  TA and the simplified primal model becomes 
x =  (1 + AT) Ax.

This simple system requires less data for implementation and is very easy to 
solve. Besides the matrix A it requires only informed guesses about life spans. 
It was computed for 7 x 7  order À matrices roughly descriptive of the American 
economy in 1947 and 1958, displayed in Table 4.

The guesses about the appropriate life spans were

Agriculture, food, textiles 1 year
Chemicals, plastics, rubber, metals 2.5 years
Machinery, fabricated metal products 15 years
Construction, cement, glass 50 years
Fuel, electric utilities 0.1 year
Transportation, services, undistributed 0.1 year

The above guesses were based on the following reasoning.
Sectors 1 and 2 produce most of the inventories, including those of households. 

The results of the computation are not sensitive to varying these life spans, between 
0.5 and 3 years.

Sectors 3 and 4 are indeed the most important, and they are taken from Domar
[1957]. Moderate changes of these magnitudes will affect the growth rate pro
portionately — this is one of the sensitive spots of the'model.

See Brody [1965],
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' . Table 4

Flow coefficients for the American Economy 1947 and 1958 
{rounded to 4 digits and multiplied by 104)

I  2 3 4  5 6  7

1947
1. Agriculture, food, textiles
2. Chemicals, plastics, rubber, metals
3. Machinery, fabricated metal products
4. Construction, cement, glass
5. Fuel, electric utilities
6. Transportation, services, undistributed
7. Households
1958
1. Agriculture, food, textiles
2. Chemicals, plastics, rubber, metals
3. Machinery, fabricated metal products
4. Construction, cement, glass
5. Fuel, electric utilities
6. Transportation, services, undistributed
7. Households

3924 400 195 798 98 839 2335
298 3758 1876 857 238 218 258
245 303 2586 1176 373 561 20
128 219 147 684 462 541 1
122 380 66 217 3420 212 353

1237 998 751 1650 895 1825 6090
5094 2112 3721 3342 1561 3338 399

4014 319 168 662 149 619 2778
294 3024 1420 716 191 226 177
232 493 2521 1300 487 576 22
112 240 141 913 546 403 6
152 497 101 247 3311 346 571

1244 1479 1112 2081 1070 2142 6117
3269 1837 2451 3809 526 4511 430

Source: Preliminary estimates in the files of the Harvard Economic Research Project 1965.

Sectors 5 and 6 produce mostly non-durables and here the life span lias almost 
no effect on the growth rate.

For the seventh sector, households, a twenty-year guess seems to be appro
priate. However, the total payroll, on which the coefficients of the last row are 
based, covers the needs of Extended as well as Simple Reproduction. In other 
words, the wage rate is above subsistence and includes expenditures for education 
and qualitative improvement of the labor force. Expenditures on capital account 
are included in the flow coefficients because they are not distinguished in the 
statistics. Accordingly ft = 0.

The computation started with actual gross domestic outputs in 1947 and 1958 
and followed the iterative procedure formulated in Section 2.2.2. The results are 
summarized in Table 5.

The first approximation of X, based on actual prices and output proportions, 
differs from the theoretical rate by only 0.046 for 1947 and 0.01 for 1958. The 
observed average growth rate of G DO was 3.56 per cent between 1947 and 1958. 
This is less than the computed rate, probably because 1947 was a year of upswing 
while 1958 was a recession year.

For 1947, computed outputs differed from observed by as much as ten percent. 
Construction, cement and glass output fell short of their optimum — and subse
quent fast development of this sector verifies this. The lag might have been related 
to post-war readjustments. Computed output of chemicals, plastics, rubber and
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■ ■ Table 5

Actual and computed outputs f o r  the A m erican  E conom y  
1947 and 1958

For the simplified growth model 
(Billions of 1958 $)

1. Agriculture, food, textiles
2. Chemicals, plastics, rubber, metals
3. Machinery, fabricated metal products
4. Construction, cement, glass
5. Fuel, electric utilities
6. Transportation, services, undistributed
7. Households

1 9 4 7  1 9 5 8

A ctua l “ O p tim al55 A c tu a l “ O p tim a l’

139.3 135.4 192.9 199.2
53.0 61.0 62.0 66.0
78.1 68.4 104.5 105.1
49.4 61.2 81.0 84.1
28.2 26,8 55.3 56.2

210.0 206.4 335.5 319.8
210.4 209,2 293.0 294,9

Table 6 

Growth rates

Computed for the simplified growth model 
(per cent per year)

Ite ra tio n
1 2  3 4  5 6

1947 3.876 3.906 3.920 3.922 3.922 3.922
1958 3.779 3.764 3.779 3.776 3.778 3.778

metals was well above actual, but the sector’s growth rate did not accelerate later. 
Here crude aggregation might have been the reason : a lot of information is buried 
when we add fast-growing chemicals and plasties to metals which were losing 
relative importance.

The 1958 results were closer to actual with an average error of 2-3 per cent 
and no error exceeding 5 per cent except in chemicals. Indeed, both computations 
suggest that the economy actually runs close to its “Neumann-path” , its “turn
pike” . Thus the stationary state has explanatory power.

When we find deviations between actual and “optimal” output, which should 
we trust? It might be that the computation is entirely sound and that real economic 
proportions are inefficient. How, then, can. the deviations be allocated between 
“faults of the model” and “faults of reality” ? This question needs several 
years’ work in a well-known economy and must be left to the future.

The successive values for A in the course of iterations are displayed in 
Table 6.

Note that in 1958, the recession year, the computed growth rate is lower, and 
actual proportions are closer to optimal ones than in 1947. In spite of this, the
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iterations cause the computed growth rate to fluctuate and the oscillation can be 
traced in the iterated output vectors, too. On the other hand, the 1947 data give a 
straightforward, non-oscillating convergence.

The same model, but with a complete B matrix, was computed for Hungary, 
1962. Table 7 gives the stock and flow matrices.

Table 7

Flow and stock coefficients for Hungary, 1962 
(rounded to 2 digits and multiplied by 10s)

1 2
A  m atrix
3 4 5 1 2

B m atrix
3 1 5

1. Industry 41 12 33 84 40 51 130 575 81 74
2. Agriculture 6 35 2 8 12 3 51 1 2 1
3. Other productive 5 3 7 7 11 0 0 0 0 0
4. Foreign trade 10 2 2 0 2 20 .14 67 22 1
5. Households 21 27 32 19 20 2 3 3 1 500

Both matrices are crude approximations, heavily aggregated. Yet, the results 
are quite in accord with outside knowledge about the performance for our econ
omy. They are displayed in Table 8.

The outcome of computations (considering GDO as of unit amount, that is, 
giving sectoral shares in GDO) was:

Table 8

Actual and computed outputs for Hungary, 1962 
(in percentages of total output)

A c tu a l “ O p t im a l”

1. Industry 46.4 45.2
2. Agriculture 10.5 11.4
3. Other productive 7.0 6.8
4. Foreign trade 9.0 6.4
5. Households 27.1 30.2

The deviations are quite as expected, indicating labor shortage, over-industriali
zation, underdevelopment of agriculture, and an inflated foreign-trade turnover. 
Nevertheless the deviations from the turnpike path are negligible and exceed 10 
per cent only for Households and Foreign Trade, the very sectors where data are 
the least reliable (particularly in column 5 of matrix B).

The convergence in X was rapid and non-oscillating beginning with 5.33 and 
ending with 5.35. The observed growth rate for 1962 was slightly over 5 per cent 
and the average for the period 1960—1965 was about the same.
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Convergence to -four digits in the eigenvector took only 7 iterations, although 
the actual (initial) price system was out of proportions. The dual computation 
took 9 iterations. Its results are displayed in Table 9.

The results make sense. Manpower and foreign currency are underpriced. The 
second fact is perhaps responsible for the excessive foreign trade, resulting in an. 
enormous drive to import. The first may well be responsible for the labor shortage

Table 9

Price indices for Hungary, 1962

P roduc tion  p r i c e !  
actual o n ce

1. Industry 0.84
2. Agriculture 0.85
3. Other productive 1.05
4. Foreign trade 1.11
5. Manpower 1.14

The only result that runs counter to our understanding of the economy is that 
industrial and agricultural products are overpriced in the same proportion. Our 
belief that agriculture was underpriced in relation to industry, was based on 
actual wage rates. It may well be that, if wages were raised to the production price 
level, the situation would have changed. Considering not only direct but total 
wage inputs agriculture is less wage-intensive than industry.

Anyhow, with such crude data the results are surprisingly dose to the facts. 
This should certainly justify more detailed and refined tabulations, particularly 
for stocks of the Household sector, a territory that is universally neglected.

Let us turn now to other contemporary work. The most detailed study was 
undertaken for Japan.

The original computation of Tsukui* was followed by a study of the balanced 
growth path for the Japanese economy for the seven years 1960 to 1966. Variants 
of the model embraced 10 to 12 sectors. The first variant projected linear growth 
of consumption and did not constrain disposal activities when, it started to 
reach the turnpike path. This model discontinued some activities quite suddenly 
before it reached the balanced path. Thus it predicted cutbacks for the first 
two years in certain sectors and then, for later years, had to supply additional 
investment for the capacities discarded in the beginning. No wonder its time 
path was slightly inferior to actual growth experienced in Japan.

The second variant was essentially a dosed dynamic model. It assumed expo
nential growth of consumption and fixed coefficients. The third model, besides 
minor differences in treating foreign trade, incorporated technological change.

* Its theoretical outlines were given in Tsukui [1965].



Variants 2 and 3 gave a turnpike path quite close to the actual one. The third 
model was not significantly better than the second: Tsukui-Muràkami-Tokoyama 
[1969] write:

“We can first note that specification of the objective function is immaterial. 
A solution to the second model — along with the solutions to other models which 
we cannot introduce here — shows that any efficient path can be approximated 
by the turnpike during almost all of the planning periods . . .

Let us now compare our solutions with 
the actual path of the Japanese Economy. 
Knowing that the Japanese Economy 
seems relatively unstable, we are naturally 
led to conjecture that the actual path will 
be rather divergent from, than convergent 
towards the turnpike. But, surprisingly 
enough, such a tendency of divergence is 
not revealed, as we may observe in Fig. 1* 
The actual path of the Japanese Economy 
clings to the turnpike, so to speak.

“There is a gap between the actual path 
and the planned path, of course. For exam

ple, a gap between the actual path and the planned path is widening in the 
transportation equipment industry. We seem still to underestimate an unmistak
able trend of mass motorization in Japan. Chemical industry may possibly be 
another example. In other industries, however, we may be able to detect a ten
dency toward the turnpike.

In Model 1, the planned path is generally lower than the actual path because 
of the “waste” incurred in the first two years of adjustment, but, from 1963 on, 
the actual path and the planned path generally remain parallel, which means that a 
gap between the two sets of output ratios is not widening. In Model 2, the actual 
path and the planned path are generally narrowing their gap especially at the 
later stage of the planning period. In Model 3, the two paths often remain parallel, 
though the planned path generally gets ahead of the actual path in the last two 
years. Our evidence for a coincidence of the actual path and the planned path 
may not be a strong one in itself. But, if we recall the relative instability of the 
Japanese economy, our evidence will become more than impressive. We may 
suggest a conclusion that the actual path of the Japanese economy is surprisingly 
close to the turnpike, or is not so far from the turnpike as is expected from its 
interindustrial structure.”

The Japanese computation is all the more conclusive because these were the 
years when Japan had very rapid growth unrivalled in Western economies. The 
growth rate was close to 10 per cent and a revolutionary structural change was 
under way. Though it has fixed coefficients, this closed model seems to work even
in tough situations.
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Fig. 9. Turnpike and actual path for Japan

Displayed here as Fig. 9.
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3.3.3. The open model

In recent years, t.vro versions of the open dynamic input-output model have been 
implemented in considerable detail in the United States. The earlier is that of 
Clopper Almon, now becoming a tool of practical business forecasting. More 
recently Leontief has published a reformulation of the open dynamic model 
[1969] lie first published in 1953.

Let us discuss Leontief’s computation first. His formulation shows how similar 
static and dynamic, open and closed models really are.

He starts with the difference equations of the open dynamic model :

( 1 ~ A  + B)x, - B x t+1= y t 

(1 -  A +  B)xl+1 -  Bxl+2i = yt+1

(I — A +  B ) x n  —B x n + i  =  yN+i

and so on to infinity.
We can now write up the corresponding infinite matrix. It is doubly infinite 

because the reproduction process has no beginning and no end, but it is easier to 
grasp the essence of this matrix, if we write out only 3 equations and then supply 
the missing ones mentally. Designating G = (1 — A +  B), the first three equations 
can be written

G —B 0 l X‘ ) ( y‘ )
0 G - B U / + i = \y t+1
0 0 G \x t+J Wt + J

The third equation is left truncated, the matrix — B missing (and its multiplier, 
the vector a(+3, missing, too). What we have in reality is a doubly infinite band 
matrix, with G in its diagonal and —B above: But the method of handling it and 
solving the system should be clear from the truncated form.

It is easy to check by direct computation that, if the matrix G has an inverse, 
G-1, then the form below is a solution for x  of the truncated system:

G -1 G~XBG~1 (G~lB)2G~1~ (y* \
0 G -1 G~1BG"~1 1 A + i
0 0 1)5 W

The rule for forming the inverse of the infinite band matrix should be clear 
from this, too. The inverse has G~l in its diagonal, and every successive band 
above the diagonal is premultiplied by G~XB again and again.

The infinite matrix will have a convergent inverse only if G — (1 — A + B) is 
regular, and G~lB  =  (1 -  A +  B)~XB  =  (1 +  QB)~XQB has all its eigenvalues
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within the u n it circle. Otherwise its powers will not converge. Now if QB lias the 
eigenvalues, gh then G~XB will have the eigenvalues q(/( 1 + Qt) and these will 
usually be less than 1, except when < —0.5. Yet the  latter difficulty can 
always be remedied by increasing the time unit used for measuring B and thus 
decreasing B itself. Increasing the time unit wifi decrease the modulus of all the 
eigenvalues, and hence q, can be made greater than —0.5 if it is negative. This 
secures the regularity of G — 1 — A + B, too. That is, (1 — A) being regular, 
one can decrease B  to a minor perturbation by changing the time u n it, then 
nothing endangers the regularity of G.

Now if regularity and convergence are granted, one can prove that every row 
and  every column of the  infinite Dynamic Inverse adds up to (1 — A)'”1 =  Q. 
As no ted  above, a typ ical row of the  infinite inverse, starting with the  diagonal 
term :
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G -1 + G ^ B G -1 + (G - 'B f  G -1 + . . . + (G~1B)n Q -1 + . . . =

= I  “ [(1 -  A + 2?)-1B]"(l -  A + B )-1 =
0

= [1 -  (1 -  A + A)“"he]'"1 (1 -  A + B Y 1 =

=  [(1 - A  + B ) - S \ - l ^ { _ \ - A ) - i = Q .

T hus the infinite form of the Dynamic Inverse is a generalization, or ra th e r  a 
disaggregation of the Open Static Inverse. If the destabilizing features mentioned 
above do not manifest themselves, then we can consider the Static Inverse an 
aggregated form o f  the Dynamic one. The Static Inverse answers the question: 
H ow  big must the total outputs be to make the production of a given final bill 
o f  goods, y, possible ? The Dynamic Inverse answ ers the same question, only in 
more detail. I t  d a tes  the total outputs and tells, how much of the to ta l amount 
a lready  given by the Static Inverse has to be produced now, how much of it had 
to be produced last year, an d  how  much of it two years ago — and so on. The 
analytical power of such a matrix is immense. It specifies not only the  magnitude 
b u t also th e  timing of the streams required to deliver som e end product.

Leontief computed th e  Dynamic Inverse for the  United States at 59 sector 
detail both for 1947 an d  1958 technology, and also performed a third computation 
with changing technology. (He had given time subscripts to the A and B  matrices 
an d  interpolated the formulas for the years between 1947 and 1958.)

In  spite of considerable technological change in the  decade covered by the 
computation, th e  shapes of the  time paths of the  necessary outputs do n o t differ 
much from those based on a  fixed technology. This indicates a fairly stable pattern 
of timing and suggests a certain regularity o f  lags.

A lm on  [1957] made a  long-range forecast using the Open Dynamic Model. 
Intended as a guide and  fram ew ork  for practical business decisions, it was first' 
computed in  1964 and covers a full decade of the American future, to 1975.

A lm o n ’s model is cut open only with respect to foreign trade and government 
expenditures. Since its objective is practical forecasting, he uses the  best available

estimates for future flow and capital coefficients and an ingeniously adapted
version of the Houthakker-Taylor method of projecting household expenditures. 
It is an impressive structure, taking full advantage of modern computing techniques.

H is experience indicates th a t, w henever there  is enough  in fo rm ation  to  specify 
a n d  im plem ent the  n on -linear p a rts  o f  the  m odel, it can  be done. The m o d e l 
in co rp o ra tes  an d  em braces additional in fo rm atio n  w ith  ease. Understandably 
bette r-th an -lin ear approx im ations a re  first sought fo r  the consum er expenditures 
a n d  lab o r p roductiv ity . M o re  recently  he  has introduced non-linear investm ent 
functions in  p lace  o f  fixed cap ita l coefficients.*

Almon’s m eth o d  o f  so lu tion  deserves a tten tio n . A s already  ind ica ted , w hen we 
solve the  difference eq u a tio n  system  BAx  = (1 — A)x — y  in  th e  u su a l way, w ith  
the  base year o u tp u ts  given, th a t  is, by  solving it fo r  Ax, the  com p u ta tio n  Ax =  
=  B ~ \\  — A)x — B~xy  will be  ill-conditioned .

A lm on h as  devised an itera tive  a lg o rith m  th a t solves the m odel fo r  x. T h a t is, 
he  s ta rts  from  (1 -  A)xJ+ x = BAx} + y. T his am oun ts  then  to  th e  iteration xJ+1 = 
=  QBAxj +  y.

T h is  ap p ro a c h  will certain ly  converge, QB being w ell-conditioned an d  positive. 
I ts  d o m in an t eigenvalue is th e  recip rocal o f  the  g row th  ra te , w hich in  tu rn  has a 
positive eigenvector, the  ba lanced  g row th  pa th . T h u s  the  co m p u ta tio n  will a p 
p ro ach  “ the  tu rn p ik e” — a m ore soph istica ted  tu rn p ik e  th a n  o u r sta tionary  p ro 
p o rtio n s because the m odel reckons w ith  non-linearities an d  changing  technology.

A lm on’s forecasted  overall g row th  ra te  is slightly above 5 p er cen t. This is a t 
variance w ith  m y — adm itted ly  very c ru d e  -  com pu ta tions review ed in  Section 
3.3.2 w hich ind icate  long-range grow th  below 4 per cent. T he difference m ay be 
du e  to  th e  fac t th a t hu m an  cap ita l is neglected, o r  ra th e r  n o t en tirely  included in 
A lm on’s m odel. A nyhow , it is up to  th e  facts to  decide this question . The official 
figures up  to  now  are in favor of A lm on’s forecast. B u t there are five m ore  years to  go.
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* See Almon [19691.
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Summary

ft is generally taken for granted that Marxian economies and recent achievements 
in mathematical economics with large-scale digital computation are worlds apart. 
Certainly this need not be the case. This study formulated Marxian theories of 
value and reproduction so as to reveal basic similarities in the essential logic of 
both approaches. From the synthesis, a practical model emerged which is mathe
matically solvable, computationally well-conditioned and statistically easily 
implemented. This model builds upon quantities and relations implicit in tra
ditional methods of volume and price planning already in use. Of necessity, the 
theoretical scope of the work was limited and theories of currency, interest and 
rent were not treated.

*

i. Setting up of the Model

Value theory and reproduction theory are dual reflections of society’s economic 
metabolism. They can be comprised in two systems of equations, two models. 
These models are tied by a close interdependence or symmetry called duality. 
Duality stems from the fact that both equation systems are based on the same 
coefficients. These coefficients reflect the structural interdependence of the whole 
economic process, its basic proportions. Value theory and reproduction theory 
can be developed in parallel by the dual interpretation of the single central structure.

1.1. Simple Reproduction

The central task of every economy -  whatever its specific institutional form — is 
to allocate society’s live and embodied labor to particular functions or areas of 
employment.

Recording all the aik “input coefficients”,* or — to use Marx’s expression — 
“the quantitative rules and proportions” to which the division of labor gives 
rise, we set up the matrix A = {aik}. This matrix characterizes the productive

* The input of product i used to produce one unit of product k. We only postulate that 
such coefficients exist under given circumstances, at a given time and place, and that they are 
statistically measurable with the necessary precision. No question of change or stability enters 
the discussion until the third part of the work.

11*
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processes of the complete and closed system. (The matrix includes household 
coefficients, the necessary inputs for reproducing labor power, too.)

With the aid of this matrix we set up a system of equations, which allocates 
labor power among the different branches of production. To solve this problem 
in the abstract does not require a notion of value. This “primitive” model gives 
an exact criterion for reproduction to be “simple” , that is, non-expanding:

Simple Reproduction is possible if and only if the maximal characteristic value 
of our matrix is equal to 1, | A | =  1. If | A | <  1 it is possible to expand the 
production process, if | A | >  1 reproduction ceases to be complete and only 
diminishing, restricted reproduction is possible.

As the dual of this allocation problem we set up the equation system which 
determines the values of products according to the classical labor theory of value.

In terms of the production vector, x, and value (or price) vector, p (given by 
two eigenvalue equations Ax = lx  and pA =  Ip), we can formulate our funda
mental theorem in the following dual fashion:

Given the non-negative and irreducible matrix A characterizing a closed and 
complete system of production

(a) if we can find a positive production vector x [price vector p] for which 
Ax =  x [pA — p], then Simple Reproduction is possible in this system,

(b) if we can find a positive x [p] vector, for which Ax <  x fpA <  p], then 
Extended Reproduction is possible. That is, the x — Ax >  0 surplus product 
[p — pA >  0 surplus value] may be used to increase production or may be with
drawn from the economy without jeopardizing Simple Reproduction,

(c) if neither (a) nor (b) is fulfilled, then only Restricted or Incomplete Reproduc
tion is possible.

The theorem leads to a proof that the matrix (1 — A) is regular under conditions 
of Simple or Extended Reproduction.

The matrix A is irreducible because every product needs labor input and every 
product serves — directly or indirectly — the fulfilment of human wants.

The model of Simple Reproduction describes the historical situation of simple 
commodity production, which Marx considered typical before the advent of 
capitalism. Little or no surplus value was created. If a greater amount of surplus 
value is created and not extended to increase production but consumed unproduc-- 
tively, the above theorems must be modified. In this case the last element 
of the value vector no longer measures the value of labor power but the 
value created by it. If we disaggregate our model by separating “paid” and 
“unpaid” labor and productive and unproductive consumption, a “rate, of 
exploitation” is determined.

1.2. Extended Reproduction

The Marxian system of production Pprices values products according to the 
total (that is, direct +  indirect) amount of investment tied up in their 
production.
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The equation system is analogous to that Section in 1.1 but based on the
matrix A + AB.*

The “law of value” of simple commodity production says that exchange on the 
market is regulated by the proportions of total labor necessary to produce com
modities. This “law” is different under capitalism: exchange is regulated by the 
proportions of the total investment tied up in the production of different com
modities.

Analysis of the mathematical conditions for Extended Reproduction shows that 
a unique positive price system and positive average rate of profit always exist. 
In this sense the Marxian definition is unambiguous and workable.

The dual system gives stationary proportions of production which may be 
increased by a common factor, A, the growth rate. A is the dual of the average rate 
of profit.

Although this dual model of reproduction is deficient in many respects, it 
clarifies the Marxian equilibrium growth conditions in a state of constant “organic 
composition of capital” .

Analysis of turnover time points up an error in the common practice of divid
ing inputs into “flow” and “stock” inputs. Flow and stock are only two aspects 
of the same economic transaction. Every transaction is a “flow” and a “stock” at 
the same time. They are connected by turnover time. By extension of this notion 
the mathematical structure of matrix B  is analogous to that of matrix A  and thus 
both must be non-negative and irreducible. It also becomes clear that the dimen
sion of the average rate of profit (growth rate), A, must be the reciprocal of time 
[T""1]. The exact relation and difference between turnover time and life span are 
cleared up. Finally, we postulate probabilistic durability instead of fixed life 
spans and extend the concept of conservation of value. We can assume that every 
product imparts its value in one lump sum at the end of its probabilistic life span. 
Under probabilistic conditions turnover time and life span become equal.

1.3. Related models

The systems of interdependence which Marx investigated with simple mathematical 
tools are shown to be mathematically equivalent to well-known modern linear 
models of the economy. Close formal resemblances are shown to exist among four 
major well-known and widely used models: the von Neumann model, the theory 
of games, the Leontief model, and the linear programming model. These and the 
model set up above can all be transformed into a common mathematical form. 
This is clear, even though they have on the surface strikingly different orientations : 
deterministic-causal, teleological-optimizing, equilibrating. It demonstrates the

* Here X is the average rate of profits and B — { blk } the matrix of capital coefficients. 
As in the case of the flow input coefficients we postulate only that capital coefficients exist and 
are measurable.



validity of von Neumann’s important remark : . . if one has really technically
penetrated a subject, things that previously seemed in complete contrast, might 
be purely mathematical transformations of each other.”

“Closed” and “open” models in this family are compared and their relative 
merits, principal fields of application and possibilities of joint exploitation are 
analyzed.

Each of the models is characterized by the essential property of duality. It is 
this dual viewpoint which makes ordering, measuring and controlling of great 
systems possible and manageable.
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2. Discussion of the Model

Part 2 explores some further features of the mathematical model which stem 
from its particular logical structure and form.

2.1. Three types o f price systems

The function of prices is considered first. Under circumstances of Simple Repro
duction it is value prices which orient properly in choosing production techniques. 
Under Extended Reproduction the same task is performed by production prices.

A proof based on an inclusion-theorem for eigenvalues is offered. Using this 
mathematical theorem, it is possible to answer the question of “worse or better” 
without presupposing any special utility or preference function. The more complex 
and intricate questions “how much worse or better?” and “better for whom?” 
are sidestepped.

It is also proved that the so-called “ two-channel” price system (cost + mark
up after investment +  mark-up after wages) is a totally consistent system of 
production prices where the mark-up after wages serves as interest on human 
capital.

The two-channel price applied in socialist economics is actually a mixture of 
value and production prices. Because of the absolute and relative increase in 
human capital, the properly orienting system of prices tends in the future toward 
value prices.

The historical evolution of the particular types of prices are related to the 
historically changing needs and forms of the economy.

2.2. Circularity

The Marxian development of labor theory has been severely criticized because of 
its “circularity”. The proper answer to this does not consist in denying it but in 
clarifying the role, scope, appropriateness and consistency of certain “circular” 
definitions used for defining value or prices.
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The eigenvalue equation Ax =  x  is itself a circular definition in x, and yet its 
analytical value is clear. Our mathematically formulated definitions of value 
prices, production prices and two-channel prices are eigenvalue equations. Each 
of these definitions is unambiguous and analytically straightforward.

With the system more explicitly formulated some issues concerning the value of 
simple and skilled labor, and the value of joint products are cleared up.

“The problem of transforming values into production prices” provides the 
framework for setting up an iterative process for computing the stationary states. 
It converges quickly. Another major advantage of this procedure is that it begins 
every iteration with the same initial data, thus minimizing problems of rounding 
a rid error-accumulation.

2.3. Miscellanea

Dimensionality problems connected with the model are taken up next. Detailed 
consideration is given to X, the average rate of profit or growth rate. Its exact 
dependence on time spans is explained.

The model allows us also to relate economy of inputs to economy of time:
1 + kt

1 per cent increase of material inputs is equivalent to a ....- ....  percent decrease
A t

o f  turnover time on a microeconomic level. (Here t stands for turnover time.)
On a macroeconomic level the corresponding percentage is - .̂...(here a stands

J — a
r  prix )
for average share of inputs a = —...-  .px j

Three directions for generalizing our model are explored : The axiomatic ap
proach is investigated first : 6 axioms set up the fully-fledged model and 2 economi
cally self-evident propositions (sufficient but not necessary) secure the exis
tence and uniqueness of solutions.

Second, alternative mathematical forms are surveyed. Linear differential equa
tion systems with a time parameter and, finally, linear operator equations are 
considered. It is not lack of tools but lack of information which constrains us to 
the use of the linear model with constant (observed or planned) coefficients.

Third, the most promising direction of generalization involves a probabilistic 
approach. Here the equivalence of our model with a Markovian chain process is 
proven. This suggests that coefficient information be interpreted in a new way: 
each is the expected value of a probability distribution.

These modifications and generalizations of the model do not change its essential 
character. Its connections with labour theory and classical economics are preserved.
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3 .  Application of the Model

Before using our model as a tool for realistic analysis, forecasting and planning 
(that is, as a description not only of abstract states but of real processes), we must 
reconsider some of its basic features. In particular the “stability” of coefficients, 
the “closedness” of the model and the interpretation of “stationary” states need 
further attention.

3.1. Problems o f application

Reasons are presented for using “stationary” or “equilibrium” states as bench
marks for planning. The turnpike-theorem is introduced with a common-sense 
interpretation, and the instability of this equilibrium path is demonstrated. Thus 
any deviation from the equilibrium path leads ultimately into an impasse.

With changes in technology the “optimal path” changes, too. There are several 
methods for reckoning with these changes : expert guesswork, statistical extrapola
tion, borrowing data from more developed countries, and statistical estimation 
of “technological layers”. The most efficient method seems to be programming 
within the sectors to achieve an optimal mix of technologies.

Constant coefficients, or ill-planned ones, and unavoidable aggregation are 
sources of errors in applied work. Theoretical sensitivity analysis proves the 
following important and optimistic theorems:

1. Aggregating on the basis of production prices and optimal production pro
portions is error-free.

2. Aggregating on the basis of faulty prices and proportions will never increase 
their faults.

3. A probabilistic approach leads us to expect significant cancellation of errors
with aggregation.

4. The deviation of actual prices and proportions from the theoretical eigen
vectors never affects the computation of 1 significantly.

5. The estimation of the capital matrix may be less exact than that of the flow 
matrix by an order of magnitude without endangering the exactness of the results.

6. The mutual allocation errors of statistics do cancel each other without 
seriously affecting the computation.

3.2. Thoughts on planning

Our model specifies all the major categories used in long-range planning. It gives 
numerical values to social product, national income, accumulation, wage fund, 
investment, consumption, etc., and computes their structure, interrelations and 
variations at any given level of detail.

Furthermore it deals simultaneously and consistently with the many estimates 
and computations which are traditionally carried out separately and indepen
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dently in the first stages of drafting a national economic plan. Besides coordinat
ing the various facets of planning, the present approach makes it possible to turn 
out consistent first variants in a relatively short time.

In planning, the assumption of constant coefficients and a stationary state must 
be interpreted realistically. After planning the changes in coefficients, we want to 
know the consequent changes in the optimal path. A good plan will follow the 
optimal trajectory based on the planned coefficients.

At the same time the dual solutions can be computed for price planning, too.
Some problems of planning require opening the model. Certain non-productive 

or non-reproductive activities must not be neglected in the course of planning. 
Inputs for these activities may be treated as final consumption. Mathematically 
the open model is not especially difficult to solve, but the solution remains a 
function of final consumption.

The theory of optimal processes, developed by Pontryagin et a t, is most useful 
in dealing with such problems. Final consumption can be treated as a variable 
load on the economy, as a control-variable. As a means of control it offers system
atic solutions to two deep problems of planning: It chooses the time-optimal 
transformation of the economy from one given state into the state sought for and 
(in another version) it chooses the transformation trajectory which maximizes 
output.

3.3. Practical computations

A  totally aggregated version of our model (comparable with the Harrod-Domar 
growth model but taking human capital into account, too) explains the great 
differences in historical growth rates: 20-25 per cent for recovery periods, 6-12 
per cent for industrialization and 2-4 per cent for a mature economy. The dominant 
force constraining development is the reproduction of human resources, skilled 
and highly qualified manpower.

A rough computation shows that in a mature economy human capital amounts 
to approximately 7-15 times the national income, whereas all the tangible invest
ment never exceeds 3-4 years’ national income. For long-range planning this 
aspect of development is thus of utmost importance.

Finally, some actual computations made by W. Leontief, C. Almon, I. Tsukui, 
A. Carter and myself are presented. Although the experience thus far is not 
sufficient to demonstrate the appropriateness of the model definitively, the evidence 
is unequivocally favorable.
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Definitions and theorems

A vector x i--- 0 is called an eigenvector of the square matrix A, if there is a number, 
a, called the eigenvalue, belonging to it, such that Ax  = ax.

Every element of the eigenvector is m ultip lied  by a common factor, the eigen
value, and thus multiplication by the matrix does n o t change the proportions of 
the elements of the eigenvector. It follows that eigenvalues and eigenvectors can 
be computed from the eigenequation (A — al)x = 0.

We solve this homogenous equation by setting det (A — cd) =  0.
The determinant, expanded in powers of a, yields a polynomial of degree n. 

It has n, not necessarily distinct, roots and these are the eigenvalues of A.
We are interested in the non-negative eigenvectors of a positive matrix, 

A  >  0. Therefore we set x  >  0 and survey those positive values of a tha t satisfy 
Ax > ax and are maximal for various x > 0.

We can now prove the following:

1. a has a maximum for some x

Because of A qx =■ g Ax we need to consider only the closed and bounded simplex 
set: Xj > 0; Ztx,- = 1. The maximal value of a is a continuous and bounded func
tion on this sim plex, because 0 < a < M, where M is the  m axim al row sum o f  A. 
Therefore it will have a maximum somewhere.

2. The maximum value o f a. will occur at a point where Ax = ax

If a were at a maximum when Ax > ax, then the vector c — Ax — ax > 0 would 
have to have at least one positive dement. In th a t case Ac ■= A (Ax — ax) > 0, 
and hence A (Ax) > a Ax. If the  latter is true a cannot be maximal. Therefore, 
Ax  =  ax is a necessary condition for a maximum. Thus the maximal value of 
a will be an eigenvalue and the corresponding vector, x, where th is maximum 
occurs, will be an eigenvector.

3. The eigenvector, x, is strictly positive

Ax > 0 otherwise implies Ax > ax. Yet according to 2, this is excluded. It follows 
that x > 0.
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4. x is determined unambiguously

Let us suppose the contrary : two vectors, x x and x2, belong to  the same eigen
value, a. W e can then choose q  so that c •■= xx — gx2 > 0 with at least one element 
of c equal to zero. Then Ac -  A xx — gAx2 — a(xx — px2) = etc. Therefore c would 
have to be another eigenvector belonging to a. But according to 3, none of the  
elements of an eigenvector can  be zero. Therefore only one eigenvector can 
belong to a.

5. The matrix A has no non-negative eigenvector other than that belonging to the 
maximal eigenvalue a

According to 4, there will be just one eigenvector x, belonging to the eigenvalue a, 
But let us assume that there exists another positive eigenvalue, fl. Since a is maximal 
0 < ft < a. Assume that to [i belongs a non-negative eigenvector, y  >, 0, that is, 
Ay  =  fiy. Nov/ we can choose q so as to render c ■— x  — gy > 0. Then Ac == 
=  A(x — gy) =  ax — figy > a(x — gy) =  ac, and this cannot be since a is 
maximal. Thus no positive eigenvalue, other than a, can have a non-negative 
eigenvector. Furthermore a negative or complex eigenvalue cannot belong to a 
non-negative eigenvector (A > 0 and x  > 0 implies Ax  >  0). Therefore the eigen
vector x belonging to the maximal eigenvalue a is the only non-negative eigen
vector of A.

6. I f  we increase any element o f the matrix À, its maximal eigenvalue « will 
increase and if we decrease any element, the eigenvalue will decrease

Let the matrix obtained by increasing A be given by B > A  where for at least 
one element bik > aik. Now if Ax — ax, then Bx > ax, with strict inequality 
holding for at least one element. B ut then, according to theo rem  2, a cannot be 
the  maximal eigenvalue o f  B. The m axim al eigenvalue of B  must therefore be 
greater. I f  we exchange the roles of A an d  B  we can prove the reverse.

7. Inclusion o f the maximal eigenvalue

Let A > 0 and x  be positive and optimal. Now fo rm ing  the quotients qt = 
=  (Ax)ilxj (i =  1,. . n). There are two possible cases:
(a) qt = a for every i ~~
(b) min qt < a <  max qt (i =

The consequence of (a) is trivial : Ax ■-= ax and x > 0. According to theorem 5, 
the quotient is equal to the  maximal eigenvalue.

For case (b) we increase the elements o f  A and construct a matrix B  with 
max q, as its maximal eigenvalue. Thus Bx =  max qpc, From theorem 6 it follows
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that this eigenvalue must be .strictly greater than a. By decreasing some elements 
o f  A we can establish the opposite inequality.

We now  generalize theorems 1-7 valid for A >  0 to apply to all non-nega
tive, primitive, irreducible matrices.

A  matrix A is reducible if by permuting its rows and columns we can bring it 
into the form

M l ^  12
0 Ag g

where A u  and An  are quadratic.
If A is irreducible and its maximal eigenvalue has the  multiplicity 1 (is a single 

root of the eigenequation), th e n  we call it primitive. If a  m atrix  is primitive, there 
is a unique eigenvector belonging to its  maximal eigenvalue, and if its maximal 
eigenvalue has a unique eigenvector, then the matrix must be primitive.

8. Let A > 0. The matrix A raised to some positive power m will be positive, 
Am > 0, i f  and only i f  A. is irreducible and primitive

a) If A is reducible its powers remain reducible.

d 11 -̂ 12 m M X
0 ^ 22_

|o

!

where A ^f  = A u A ^ - 1* + AlzAm~1.
T hus A must be irreducible to yield A m > 0.
(b) If A is primitive, A m is primitive too, because raising the matrix to 

powers does not alter the  multiplicity of th e  maximal eigenvalue.
If A is irreducible and primitive, its powers remain irreducible and primitive.
(c) Every positive m atrix , A  >  0, is primitive, because it is irreducible and, 

according to theorem 4, its maximal eigenvalue is of multiplicity 1.
(d) If A m >  0, then from 8(a) A must be irreducible. If A were n o t primitive, 

then Am would not be prim itive because the  multiplicity of its maximal eigen
value is not changed by raising it to any positive power.
Therefore if Am is irreducible and primitive, A must b e  irreducible and primitive too.

9. Generalization

Any primitive, irreducible and non-negative matrix, A, can be raised to some 
power, m, so that Am > 0. This matrix, A m, being positive, theorems 1 — 7 apply
to it.

A. and Am have the same eigenvectors A2x  — AAx  =  aAx — a?x and so 
forth and the eigenvalues of Am are respective powers of the eigenvalues of A.

Thus theorems 1-7 apply to every primitive, irreducible and non-negative  
matrix, A.
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The resolvent

W e call the inverse (11 — X)'"1 the resolvent of the equation Ip =  Ap + v. If the 
eigenvalues of the m atrix  A are a x, a2, . . ,, an, then  the matrix (11 — A) will have 
the eigenvalues A — a,, A — a2, A — a„. This m atrix  (11 — A) is therefore 
regular (and has an inverse: the resolvent) except if A coincides with one of the 
eigenvalues of A. In all the cases considered below A will always be greater than 
the maximal eigenvalue of A ; thus the resolvent exists and its power series con

verges :

Q a = {11 -  A ) - 1 = U " 1 + A A ~ *  + A ‘ZA - "  +  . . .  + A"A-<a + l) +  . . .

We will need the following formula:

AQx =  * Q a -  t- ( 0

This can be verified by multiplying the power series above by A.

Qx< y  Qi if h and Q k > y  Q x if A<  1. (2)

Both inequalities follow from comparing the series above with QJA

OJA = 11-1 + A A- 1 + A1 A~l + . .. +AnA-' + . . .

The first terms are identical, the following ones of QJA exceed those of Qx if 1 >  1 
and are smaller if 1 < 1 .

Ô 1 - .....<f A >  1

a n d

1 -  1 9 1 -  1
Qi ...........y  =  i ........y  Qi> Qx i f  * < i -

T h i s  c a n  be  c h e c k e d  by  in s p e c t i n g

i = - a ) = e,(i - a ) + ( i .i)e,

( 3)
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p o s tm iiltip ly in g  by Qx

Qi = Qx + (A -  l)QxQi-

From 2 it now follows that:

0i < Q.i + ~~J~~ 0i if 1 > 1

and

0x > Qx + 0 i if A <  1.

Generalization o f the formula o f Section 1.1.2

Let À
A, c 
v ,  0

I f  n o w  vQxc — X, then the maximal eigenvalue of A equals X, the right-hand 
eigenvector is given b y  x  =  {Qxc, 1), and the left-hand eigenvector by
P =  (pQx, !)•

P ro o f :  C o n s id e rin g  1 and vQxc =  X

Ax
A, c QxC AQxc +  c | A0ac '
v, 0 1 vQxc 1 X

lx

a n d

pA = {vQx, 1)
A, c 
v,  0 ,

=  (àvQx, X) =  Ip .

The last two formulae were applied in Section 1.1.2 only for the special case 
1 = 1 .

Error analysis o f the eigenvalue

The error limits given in Section 3.1.3 can be narrowed. The saving or diseconomy 
measured by the eigenvectors will always be greater than its actual magnitude.

Let us start from the matrix A, assuming that its maximal eigenvalue equals 1. 
(It can characterize Simple or Extended Reproduction.) In this case, then,
vQiC =  1.

Now let one of the activity vectors change from c to c + dc. (This need not 
necessarily be the household sector. A could be partitioned so as to single out any 
other sector.) Thus A changes to

A, c + dc 
v, 0

A* =
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The ex p re ss io n  pdc = vQxdc is the linear approximation of the change in the 
eigenvalue and coincides with everyday practical assessment of change in money 
te rm s . Let its magnitude be vQxdc =  ±  s (— fo r  saving and + for diseconomy). 
We assume that th e  final product, pc =  vQgc is of unit magnitude.

The tru e  change in  the eigenvalue o f  matrix A will be less than its linear approxi
mation +  s. A * will have a  maximal eigenvalue greater than 1 — s, or in the case 
of diseconomy less than. 1 + s.

Let X be the true new' eigenvalue. This implies vQx(c -f dc) =  X. According to
e q u a tio n  (2)

X =  vQÀ(c + dc) < y  vQ fc  +  dc) =  y  ( î + s) if X > 1

and

X vQx(c +  dc) > vQ fc  +  dc) — y  (1 -  e) if X <  1 .

Hence it follows that

or

Thus a fortiori

or

X2 < l + e  

)? > 1  — 8

X <  1 + 8 

X >  1 — 8

i f  A >  1

if X < 1. 

if 1 > 1 

if 2 <  1.

Estimation for the eigenvector o f a perturbed matrix

It is customary to assume full information about the spectral and modal matrix.* 
But the resolvent theory shows that for this purpose only the knowledge of the 
inverse is required.

A g a in  le t us assume A* =
A,
v,

c +  dc
0

How will the perturbation dc affect the eigenvector, Ax = x?
Assume th a t  it increases the eigenvalue o f  A *, then 2 > 1. From equations 

(2) and (3) we know' that

0i j ..6Ï < Qx < y  0i •

The new eigenvector is g iv en  by Qx{c +  dc). N o w  w e normalize its last element 
by setting it equal to 1. We can thus deduce

0 i  -  0 f j ( c  +  cd) <  Q x(c  +  dc)  <  y  0 j ( c  +  dc)  <  Q f c  +  dc).

* “To improve an arbitrary eigenvector all eigenvalues and vectors of A must therefore be 
known”. (Bodewig op. cit. p. 334 and analogously Wilkinson op. cit. pp. 69..70.)

12 Proportions, p ricesand planning
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Since QAc = x, therefore

dx < Q\dc
and

dx > Qidc -  X y --  Q‘j(c + dc) .

If the change in X resulting from dc is sufficiently small, then (X — .1) will be 
small too and therefore ■

dx ~  Q\dc = Qdc .

Thus a linear approximation of the change of the eigenvector can be computed 
by premultiplying the perturbation by the inverse, Q. Note the analogy with the 
open static model. Yet the content of the inverse here is slightly different.

I H
UH

!

Appendix III

Turnover time and life span

i

:

The purpose of this Appendix is to explore the question raised in Section 1,2.1. 
We start from the pioneering work of Domar [1957].

We neglect changes in technology and therefore obsolescence. We also neglect 
investment cycles. Random life spans will replace later Domar’s fixed ones.

In the following list of variables lower case letters stand for flows, upper case 
letters for stocks:

Investment 
Net investment 
Accumulation
Gross fixed capital 
Net fixed capital
Depreciation
Scrappage
life  span (fixed

or expected) 
Growth multiplier

b
n
f
B
N
k

T
1 + X er

where r is the exponential growth rate 
Time f or t .

1. Domar's findings

Domar assumed a'fixed life span of T  years for capital goods. At the end of it the 
investment good is scrapped and has zero salvage value. He reasons as follows:

Investment flows increase exponentially.

bt =  tf'bo. (1)

To simplify matters we assume unit intensity of investment at time t — 0, thus 
b0 = 1. Hence

(T)
The gross stock of fixed capital at / is equal to the sum of investment flows over 

the interval [t — T, t}. Therefore
t

t - T

( 2 )

12*
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Assuming straight line depreciation :

Bt 1 — e~k t = N T
T  * rT ■ = e' 1 ~  e ■ r T

rT

At time t we scrap everything that was invested T  years ago :

s, — b,_T = ert~T ,

I f  the  econom y is grow ing, dep rec ia tion  exceeds scrappage:

k t ert -  erT -  1
r r  + N l  + . . . + N T  +

l l  ml
st ^ t - ^ r T "

(3)

(4)

rT rT

„ rT  (r T f ~i

2 ! ni ■ +  . . . >  1. (5)

The excess of depreciation over scrappage can be invested. To this extent accumu
lation can be financed from a source other than surplus, growth itself. This source 
varies directly with r and T.

2. Turnover time o f net capital stock

The turnover time of gross fixed capital is, of course, T  years. The rate of profit 
and the growth rate are usually reckoned on capita! net of depreciation. We can
compute net capital in two ways.

(a) In terms o f life spans

With straight line depreciation equipment u years old has lost the fraction u/T
of its value. The fraction 1 — u/T =  (T  — u)IT of its original value remains. The 
remaining value of capital invested in the interval [t — T, r] is

/

t~ T

erxdx
t

l - T

i
f X  —

1
r en

i t - T

l
Y

T - t + x - — 
r

t - T
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1
T

T
ert -..

1

..+
T

= ert
r T  -  1 +  e - , r

r2jT~ (6)

(b) In terms o f depreciation

Alternatively we might arrive at remaining value by subtracting total depreciation 
from total investment. In this case it is more convenient to sum over the interval 
[ — oo, t]. Considering equations (T) anti (3):

Np ert 1
1 -  e"

rT
dx = en 1 1 -

N T
—  e

rT -  1 +  e 
.̂.N T ..

-  r T

This is identical with equation (6).
Turnover time is the ratio of net fixed capital depreciation. From equations 

(6) and (3) with a little manipulation :

NL
ks

= T
1

1 — e
1

7 f
(7)

The term in parentheses connects life span with turnover time. Designating
it by y

■ „ r T1 1 ' 
T F F ^  '  ""rT - 1

i
'rT

The numerical value of y is always between 1/2 and 1, as can be verified by 
passing to the limits 0 and oo

1 1 '
lira y ;

r T - -  oo
=  l

and
(rT f

1 + rT +  — + .. -
I erT 1 1 2!

lim y -Tf~ .............. -  =  lu» -
1 e r -  1 rT) rr-,orT- 0 ( rT f

rT +  -N ~~  + • •

1
"rT

2!

NT +  ( rT f  +
== lim

r T ~ 0

2 !
+ . . .  -  NT ■

( rT f
2!

( r T f  +
2 , ( rT f

21.
+ . . .
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=  lim
rT-*0

( r T f  

{ rT f +

{rT f ^_ 4

( r T f  ~
1
T  ‘

For Simple Reproduction, r =  0 and therefore the turnover period is exactly 
half of the life span. Turnover time will be the closer to life span the greater the 
life span and the growth rate.

With fixed life spans, accumulation based on gross and net capital formation 
differ. Normally we define accumulation as investment — investment minus 
depreciation. Therefore from equations (T) and (3):

nj = b, — k, =  en 1 —
1 -  e~rT 

r f = e"
r'T — 1 +  e~rT

_ _ (8)

This is identical to the growth of net fixed capital computed from equation (6) :

8N, ^  r T -  l+ e ~ rT
~ ~ d t~ e r f  ..’

On the other hand we can define accumulation as the difference between invest
ment and scrappage. Then from equations (T) and (4):

4 -= b t - s t = erT{\ - e ~ r7). (9)

This is identical to the growth of gross fixed capital computed from equati on (2):

dBt
f d f = ert{l -  e~rT).

This contradiction can be eliminated by introducing random life spans.

3. Distribution o f life spans

Life tables of productive equipment tell us that life spans are not really fixed more 
than they are for human beings. We assume an exponential distribution of life 
spans. This distribution is easy to handle and we have no knowledge that another 
is more realistic. It is equivalent to assuming a stable probability of survival. 
This assumption is analogous to the linearization of input-output relations, 
and can serve as a first approximation.

The probability of a random life span being equal to t is 1/T exp (—tjT). T  is 
now interpreted as expected (average) life span. The probability of survival at age 
i will be exp (—tjT).

a p p e n d ix  h i 1 8 3

4. Turnover time with random, life spans

We can now modify all our former equations, substituting exponential density 
functions and computing expected values:

b, =  en (1*)

B,-, = J e" e~ = J e T + e~ d% =

'..... ---j-

r + —-

! V
e- t  t

T  T
rT +  1 rT+  1

= A  = ....I  -
f T rT+  1

_ j  e- 1 h-® * .  ± j ' ,(- * T A„ t , ... 11 d% ~  e —-.-
rT +  1

(2*)

(3")

(4*)

In equations (3*) and (4*) depreciation and scrappage became identical because 
the exponential density function is exactly l/T  times its integral (that is, the 
distribution function). Thus

-T- = 1. (5*)
st

We cannot compute net stock in terms of life spans as before because the life 
spans of some capital goods exceed the expected life spans. Accumulated deprecia
tion thus can go “into the red”, that is, exceed original book values. But we can 
compute net stock by subtracting total depreciation from total investment :

1
rT+  1

dx “ J r'T ,e --------- dr
rT+  1

T
rT+  1

T
— e

rT+  1
( 6*)

The gross and net values of capital stock are now identical because scrappage 
always equals depreciation. From another viewpoint: fixed stocks maintain their 
original value until the moment of their scrappage, and then suddenly transfer 
it to the product. Turnover time will now be the same whether we reckon with 
gross or net stocks. Equations (6*) and (3*) both lead to

Bt = N,
k, k, (7*)
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Thus expected life span and turnover .time are equal and now turnover time is 
independent of the rate of growth of investment. This allows us to unify the 
mathematical theory of turnover.

Net investment based on depreciation or scrappage are now identical, and 
accumulation can be defined unambiguously. Equations (1*) and (3*) on the one 
hand and (4*) on the other lead to .

n, =  b, — k, — bt — st = erl 1 -
1

7r + T =  ert
rT

r r+T  ' (8*), (9*)

Growth of gross and net stocks are identical. Equations 6(*) and (2*) both
lead to

3Nt dBt = ^  rT  
dt dt rT + 1

5. Age distribution o f capital stock

Consider capital with a (fixed or expected) life span of T  years invested exponen
tially with growth rate r. We assume now that investment is of unit magnitude at 
timet, that is, ert — 1. We give parallel formulae for fixed and expected life spans.

Fixed life span = T  Expected life span = T

The value of gross fixed capital stock at time t

1 — e - r T

if 0 <  k  < T 

and zero, if k  >  T.

1 -  e~rm

1 — e

1
r{erT -  1)

Value of stocks of age k

Value of stocks of age group (0, m)

rT+  1

-(•■+ £■)*

if 0 <  k < °°

rT+  1

The share of the age group (0, m)

The average age of stocks

J,)»

1 — e

r T  +  I
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Numerical example

Let us assume T  =  20 years and r = 0.05.
■ The share of capital stocks less than 10 years old is

1 -  e-°-5
----- - 5 - »  62%1 — e

Half of the stocks is
older than 7.6 years older than 7 years

The average age of stocks is
8.3 years 10 years
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