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The Unfinished Fable of the Sparrows

It was the nest-building season, but after days of long hard work, the sparrows 
sat in the evening glow, relaxing and chirping away.

“We are all so small and weak. Imagine how easy life would be if we had an 
owl who could help us build our nests!”

“Yes!” said another. “And we could use it to look after our elderly and our young.”
“It could give us advice and keep an eye out for the neighborhood cat,” added 

a third.
Then Pastus, the elder-bird, spoke: “Let us send out scouts in all directions and 

try to find an abandoned owlet somewhere, or maybe an egg. A crow chick might 
also do, or a baby weasel. This could be the best thing that ever happened to us, at 
least since the opening of the Pavilion of Unlimited Grain in yonder backyard.”

The flock was exhilarated, and sparrows everywhere started chirping at the top 
of their lungs.

Only Scronkfinkle, a one-eyed sparrow with a fretful temperament, was uncon-
vinced of the wisdom of the endeavor. Quoth he: “This will surely be our undoing. 
Should we not give some thought to the art of owl-domestication and owl-taming 
first, before we bring such a creature into our midst?”

Replied Pastus: “Taming an owl sounds like an exceedingly difficult thing to do. 
It will be difficult enough to find an owl egg. So let us start there. After we have suc-
ceeded in raising an owl, then we can think about taking on this other challenge.”

“There is a flaw in that plan!” squeaked Scronkfinkle; but his protests were in 
vain as the flock had already lifted off to start implementing the directives set out 
by Pastus.

Just two or three sparrows remained behind. Together they began to try to work 
out how owls might be tamed or domesticated. They soon realized that Pastus had 
been right: this was an exceedingly difficult challenge, especially in the absence 
of an actual owl to practice on. Nevertheless they pressed on as best they could, 
constantly fearing that the flock might return with an owl egg before a solution to 
the control problem had been found.

It is not known how the story ends, but the author dedicates this book to 
Scronkfinkle and his followers.
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PREFACE

Inside your cranium is the thing that does the reading. This thing, the human 
brain, has some capabilities that the brains of other animals lack. It is to these 
distinctive capabilities that we owe our dominant position on the planet. 

Other animals have stronger muscles and sharper claws, but we have cleverer 
brains. Our modest advantage in general intelligence has led us to develop lan-
guage, technology, and complex social organization. The advantage has com-
pounded over time, as each generation has built on the achievements of its 
predecessors.

If some day we build machine brains that surpass human brains in general 
intelligence, then this new superintelligence could become very powerful. And, 
as the fate of the gorillas now depends more on us humans than on the gorillas 
themselves, so the fate of our species would depend on the actions of the machine 
superintelligence.

We do have one advantage: we get to build the stuff. In principle, we could build 
a kind of superintelligence that would protect human values. We would certainly 
have strong reason to do so. In practice, the control problem—the problem of 
how to control what the superintelligence would do—looks quite difficult. It also 
looks like we will only get one chance. Once unfriendly superintelligence exists, 
it would prevent us from replacing it or changing its preferences. Our fate would 
be sealed.

In this book, I try to understand the challenge presented by the prospect of 
superintelligence, and how we might best respond. This is quite possibly the most 
important and most daunting challenge humanity has ever faced. And—whether 
we succeed or fail—it is probably the last challenge we will ever face.

It is no part of the argument in this book that we are on the threshold of a big 
breakthrough in artificial intelligence, or that we can predict with any precision 
when such a development might occur. It seems somewhat likely that it will hap-
pen sometime in this century, but we don’t know for sure. The first couple of chap-
ters do discuss possible pathways and say something about the question of timing. 
The bulk of the book, however, is about what happens after. We study the kinetics 
of an intelligence explosion, the forms and powers of superintelligence, and the 
strategic choices available to a superintelligent agent that attains a decisive advan-
tage. We then shift our focus to the control problem and ask what we could do to 
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shape the initial conditions so as to achieve a survivable and beneficial outcome. 
Toward the end of the book, we zoom out and contemplate the larger picture that 
emerges from our investigations. Some suggestions are offered on what ought to 
be done now to increase our chances of avoiding an existential catastrophe later.

This has not been an easy book to write. I hope the path that has been cleared 
will enable other investigators to reach the new frontier more swiftly and con-
veniently, so that they can arrive there fresh and ready to join the work to further 
expand the reach of our comprehension. (And if the way that has been made is 
a little bumpy and bendy, I hope that reviewers, in judging the result, will not 
underestimate the hostility of the terrain ex ante!)

This has not been an easy book to write: I have tried to make it an easy book 
to read, but I don’t think I have quite succeeded. When writing, I had in mind 
as the target audience an earlier time-slice of myself, and I tried to produce a 
kind of book that I would have enjoyed reading. This could prove a narrow demo-
graphic. Nevertheless, I think that the content should be accessible to many peo-
ple, if they put some thought into it and resist the temptation to instantaneously 
misunderstand each new idea by assimilating it with the most similar-sounding 
cliché available in their cultural larders. Non-technical readers should not be dis-
couraged by the occasional bit of mathematics or specialized vocabulary, for it 
is always possible to glean the main point from the surrounding explanations. 
(Conversely, for those readers who want more of the nitty-gritty, there is quite a 
lot to be found among the endnotes.1)

Many of the points made in this book are probably wrong.2 It is also likely that 
there are considerations of critical importance that I fail to take into account, 
thereby invalidating some or all of my conclusions. I have gone to some length to 
indicate nuances and degrees of uncertainty throughout the text—encumbering 
it with an unsightly smudge of “possibly,” “might,” “may,” “could well,” “it seems,” 
“probably,” “very likely,” “almost certainly.” Each qualifier has been placed where 
it is carefully and deliberately. Yet these topical applications of epistemic mod-
esty are not enough; they must be supplemented here by a systemic admission of 
uncertainty and fallibility. This is not false modesty: for while I believe that my 
book is likely to be seriously wrong and misleading, I think that the alternative 
views that have been presented in the literature are substantially worse—includ-
ing the default view, or “null hypothesis,” according to which we can for the time 
being safely or reasonably ignore the prospect of superintelligence.
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CHAPTER 1

Past developments 
and present capabilities

We begin by looking back. History, at the largest scale, seems to 
exhibit a sequence of distinct growth modes, each much more 
rapid than its predecessor. This pattern has been taken to suggest 

that another (even faster) growth mode might be possible. However, we do not 
place much weight on this observation—this is not a book about “technological 
acceleration” or “exponential growth” or the miscellaneous notions sometimes 
gathered under the rubric of “the singularity.” Next, we review the history of 
artificial intelligence. We then survey the field’s current capabilities. Finally, we 
glance at some recent expert opinion surveys, and contemplate our ignorance 
about the timeline of future advances.

Growth modes and big history

A mere few million years ago our ancestors were still swinging from the branches 
in the African canopy. On a geological or even evolutionary timescale, the rise 
of Homo sapiens from our last common ancestor with the great apes happened 
swiftly. We developed upright posture, opposable thumbs, and—crucially—some 
relatively minor changes in brain size and neurological organization that led to 
a great leap in cognitive ability. As a consequence, humans can think abstractly, 
communicate complex thoughts, and culturally accumulate information over the 
generations far better than any other species on the planet.

These capabilities let humans develop increasingly efficient productive technol-
ogies, making it possible for our ancestors to migrate far away from the rainforest 
and the savanna. Especially after the adoption of agriculture, population densi-
ties rose along with the total size of the human population. More people meant 
more ideas; greater densities meant that ideas could spread more readily and that 
some individuals could devote themselves to developing specialized skills. These 
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developments increased the rate of growth of economic productivity and techno-
logical capacity. Later developments, related to the Industrial Revolution, brought 
about a second, comparable step change in the rate of growth.

Such changes in the rate of growth have important consequences. A few hun-
dred thousand years ago, in early human (or hominid) prehistory, growth was so 
slow that it took on the order of one million years for human productive capacity 
to increase sufficiently to sustain an additional one million individuals living at 
subsistence level. By 5000 bc, following the Agricultural Revolution, the rate of 
growth had increased to the point where the same amount of growth took just two 
centuries. Today, following the Industrial Revolution, the world economy grows 
on average by that amount every ninety minutes.1

Even the present rate of growth will produce impressive results if maintained 
for a moderately long time. If the world economy continues to grow at the same 
pace as it has over the past fifty years, then the world will be some 4.8 times richer 
by 2050 and about 34 times richer by 2100 than it is today.2

Yet the prospect of continuing on a steady exponential growth path pales in 
comparison to what would happen if the world were to experience another step 
change in the rate of growth comparable in magnitude to those associated with 
the Agricultural Revolution and the Industrial Revolution. The economist Robin 
Hanson estimates, based on historical economic and population data, a char-
acteristic world economy doubling time for Pleistocene hunter–gatherer soci-
ety of 224,000 years; for farming society, 909 years; and for industrial society, 
6.3 years.3 (In Hanson’s model, the present epoch is a mixture of the farming and 
the industrial growth modes—the world economy as a whole is not yet growing at 
the  6.3-year doubling rate.) If another such transition to a different growth mode 
were to occur, and it were of similar magnitude to the previous two, it would result 
in a new growth regime in which the world economy would double in size about 
every two weeks.

Such a growth rate seems fantastic by current lights. Observers in earlier 
epochs might have found it equally preposterous to suppose that the world econ-
omy would one day be doubling several times within a single lifespan. Yet that is 
the extraordinary condition we now take to be ordinary.

The idea of a coming technological singularity has by now been widely popu-
larized, starting with Vernor Vinge’s seminal essay and continuing with the writ-
ings of Ray Kurzweil and others.4 The term “singularity,” however, has been used 
confusedly in many disparate senses and has accreted an unholy (yet almost mil-
lenarian) aura of techno-utopian connotations.5 Since most of these meanings 
and connotations are irrelevant to our argument, we can gain clarity by dispens-
ing with the “singularity” word in favor of more precise terminology.

The singularity-related idea that interests us here is the possibility of an intel-
ligence explosion, particularly the prospect of machine superintelligence. There 
may be those who are persuaded by growth diagrams like the ones in Figure 1 
that another drastic change in growth mode is in the cards, comparable to the 
Agricultural or Industrial Revolution. These folk may then reflect that it is hard 
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to conceive of a scenario in which the world economy’s doubling time shortens 
to mere weeks that does not involve the creation of minds that are much faster 
and more efficient than the familiar biological kind. However, the case for tak-
ing seriously the prospect of a machine intelligence revolution need not rely on 
curve-fitting exercises or extrapolations from past economic growth. As we shall 
see, there are stronger reasons for taking heed.

Great expectations

Machines matching humans in general intelligence—that is, possessing com-
mon sense and an effective ability to learn, reason, and plan to meet complex 
information-processing challenges across a wide range of natural and abstract 
domains—have been expected since the invention of computers in the 1940s. At 
that time, the advent of such machines was often placed some twenty years into 
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Figure 1 Long-term history of world GDP. Plotted on a linear scale, the history of the world 
economy looks like a flat line hugging the x-axis, until it suddenly spikes vertically upward. (a) Even 
when we zoom in on the most recent 10,000 years, the pattern remains essentially one of a single 
90° angle. (b) Only within the past 100 years or so does the curve lift perceptibly above the zero-
level. (The different lines in the plot correspond to different data sets, which yield slightly different 
estimates.6)
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the future.7 Since then, the expected arrival date has been receding at a rate of one 
year per year; so that today, futurists who concern themselves with the possibility 
of artificial general intelligence still often believe that intelligent machines are a 
couple of decades away.8

Two decades is a sweet spot for prognosticators of radical change: near enough 
to be attention-grabbing and relevant, yet far enough to make it possible to sup-
pose that a string of breakthroughs, currently only vaguely imaginable, might 
by then have occurred. Contrast this with shorter timescales: most technologies 
that will have a big impact on the world in five or ten years from now are already 
in limited use, while technologies that will reshape the world in less than fifteen 
years probably exist as laboratory prototypes. Twenty years may also be close to 
the typical duration remaining of a forecaster’s career, bounding the reputational 
risk of a bold prediction.

From the fact that some individuals have overpredicted artificial intelligence in 
the past, however, it does not follow that AI is impossible or will never be devel-
oped.9 The main reason why progress has been slower than expected is that the 
technical difficulties of constructing intelligent machines have proved greater 
than the pioneers foresaw. But this leaves open just how great those difficulties 
are and how far we now are from overcoming them. Sometimes a problem that 
initially looks hopelessly complicated turns out to have a surprisingly simple 
 solution (though the reverse is probably more common).

In the next chapter, we will look at different paths that may lead to human-level 
machine intelligence. But let us note at the outset that however many stops there 
are between here and human-level machine intelligence, the latter is not the final 
destination. The next stop, just a short distance farther along the tracks, is super-
human-level machine intelligence. The train might not pause or even decelerate 
at Humanville Station. It is likely to swoosh right by.

The mathematician I. J. Good, who had served as chief statistician in Alan 
Turing’s code-breaking team in World War II, might have been the first to enun-
ciate the essential aspects of this scenario. In an oft-quoted passage from 1965, he 
wrote:

Let an ultraintelligent machine be defined as a machine that can far surpass all the intel-
lectual activities of any man however clever. Since the design of machines is one of these 
intellectual activities, an ultraintelligent machine could design even better machines; there 
would then unquestionably be an “intelligence explosion,” and the intelligence of man 
would be left far behind. Thus the first ultraintelligent machine is the last invention that 
man need ever make, provided that the machine is docile enough to tell us how to keep it 
under control.10

It may seem obvious now that major existential risks would be associated with 
such an intelligence explosion, and that the prospect should therefore be exam-
ined with the utmost seriousness even if it were known (which it is not) to have but 
a moderately small probability of coming to pass. The pioneers of artificial intel-
ligence, however, notwithstanding their belief in the imminence of human-level 
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AI, mostly did not contemplate the possibility of greater-than-human AI. It is as 
though their speculation muscle had so exhausted itself in conceiving the radical 
possibility of machines reaching human intelligence that it could not grasp the 
corollary—that machines would subsequently become superintelligent.

The AI pioneers for the most part did not countenance the possibility that 
their enterprise might involve risk.11 They gave no lip service—let alone seri-
ous thought—to any safety concern or ethical qualm related to the creation of 
artificial minds and potential computer overlords: a lacuna that astonishes even 
against the background of the era’s not-so-impressive standards of critical tech-
nology assessment.12 We must hope that by the time the enterprise eventually does 
become feasible, we will have gained not only the technological proficiency to 
set off an intelligence explosion but also the higher level of mastery that may be 
 necessary to make the detonation survivable.

But before we turn to what lies ahead, it will be useful to take a quick glance at 
the history of machine intelligence to date.

Seasons of hope and despair

In the summer of 1956 at Dartmouth College, ten scientists sharing an inter-
est in neural nets, automata theory, and the study of intelligence convened for 
a six-week workshop. This Dartmouth Summer Project is often regarded as the 
 cockcrow of artificial intelligence as a field of research. Many of the participants 
would later be recognized as founding figures. The optimistic outlook among the 
delegates is reflected in the proposal submitted to the Rockefeller Foundation, 
which provided funding for the event:

We propose that a 2 month, 10 man study of artificial intelligence be carried out. . . . 
The study is to proceed on the basis of the conjecture that every aspect of learning or 
any other feature of intelligence can in principle be so precisely described that a machine 
can be made to simulate it. An attempt will be made to find how to make machines that 
use language, form abstractions and concepts, solve kinds of problems now reserved for 
humans, and improve themselves. We think that a significant advance can be made in one 
or more of these problems if a carefully selected group of scientists work on it together 
for a summer.

In the six decades since this brash beginning, the field of artificial intelligence has 
been through periods of hype and high expectations alternating with periods of 
setback and disappointment.

The first period of excitement, which began with the Dartmouth meeting, was 
later described by John McCarthy (the event’s main organizer) as the “Look, Ma, 
no hands!” era. During these early days, researchers built systems designed to 
refute claims of the form “No machine could ever do X!” Such skeptical claims were 
common at the time. To counter them, the AI researchers created small systems 
that achieved X in a “microworld” (a well-defined, limited domain that enabled 
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a pared-down version of the performance to be demonstrated), thus providing a 
proof of concept and showing that X could, in principle, be done by machine. One 
such early system, the Logic Theorist, was able to prove most of the theorems in 
the second chapter of Whitehead and Russell’s Principia Mathematica, and even 
came up with one proof that was much more elegant than the original, thereby 
debunking the notion that machines could “only think numerically” and show-
ing that machines were also able to do deduction and to invent logical proofs.13 A 
follow-up program, the General Problem Solver, could in principle solve a wide 
range of formally specified problems.14 Programs that could solve calculus prob-
lems typical of first-year college courses, visual analogy problems of the type that 
appear in some IQ tests, and simple verbal algebra problems were also written.15 
The Shakey robot (so named because of its tendency to tremble during opera-
tion) demonstrated how logical reasoning could be integrated with perception 
and used to plan and control physical activity.16 The ELIZA program showed how 
a computer could impersonate a Rogerian psychotherapist.17 In the mid-seventies, 
the program SHRDLU showed how a simulated robotic arm in a simulated world 
of geometric blocks could follow instructions and answer questions in English 
that were typed in by a user.18 In later decades, systems would be created that 
demonstrated that machines could compose music in the style of various classical 
composers, outperform junior doctors in certain clinical diagnostic tasks, drive 
cars autonomously, and make patentable inventions.19 There has even been an AI 
that cracked original jokes.20 (Not that its level of humor was high—“What do 
you get when you cross an optic with a mental object? An eye-dea”—but children 
reportedly found its puns consistently entertaining.)

The methods that produced successes in the early demonstration systems often 
proved difficult to extend to a wider variety of problems or to harder problem 
instances. One reason for this is the “combinatorial explosion” of possibilities that 
must be explored by methods that rely on something like exhaustive search. Such 
methods work well for simple instances of a problem, but fail when things get a bit 
more complicated. For instance, to prove a theorem that has a 5-line long proof in 
a deduction system with one inference rule and 5 axioms, one could simply enu-
merate the 3,125 possible combinations and check each one to see if it delivers the 
intended conclusion. Exhaustive search would also work for 6- and 7-line proofs. 
But as the task becomes more difficult, the method of exhaustive search soon 
runs into trouble. Proving a theorem with a 50-line proof does not take ten times 
longer than proving a theorem that has a 5-line proof: rather, if one uses exhaus-
tive search, it requires combing through 550 ≈ 8.9 × 1034 possible sequences—which 
is computationally infeasible even with the fastest supercomputers.

To overcome the combinatorial explosion, one needs algorithms that exploit 
structure in the target domain and take advantage of prior knowledge by using 
heuristic search, planning, and flexible abstract representations—capabilities 
that were poorly developed in the early AI systems. The performance of these 
early systems also suffered because of poor methods for handling uncertainty, 
reliance on brittle and ungrounded symbolic representations, data scarcity, and 
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severe hardware limitations on memory capacity and processor speed. By the 
mid-1970s, there was a growing awareness of these problems. The realization that 
many AI projects could never make good on their initial promises led to the onset 
of the first “AI winter”: a period of retrenchment, during which funding decreased 
and skepticism increased, and AI fell out of fashion.

A new springtime arrived in the early 1980s, when Japan launched its Fifth-
Generation Computer Systems Project, a well-funded public–private partner-
ship that aimed to leapfrog the state of the art by developing a massively parallel 
computing architecture that would serve as a platform for artificial intelligence. 
This occurred at peak fascination with the Japanese “post-war economic mir-
acle,” a period when Western government and business leaders anxiously sought 
to divine the formula behind Japan’s economic success in hope of replicating the 
magic at home. When Japan decided to invest big in AI, several other countries 
followed suit.

The ensuing years saw a great proliferation of expert systems. Designed as sup-
port tools for decision makers, expert systems were rule-based programs that 
made simple inferences from a knowledge base of facts, which had been elicited 
from human domain experts and painstakingly hand-coded in a formal lan-
guage. Hundreds of these expert systems were built. However, the smaller systems 
provided little benefit, and the larger ones proved expensive to develop, validate, 
and keep updated, and were generally cumbersome to use. It was impractical to 
acquire a standalone computer just for the sake of running one program. By the 
late 1980s, this growth season, too, had run its course.

The Fifth-Generation Project failed to meet its objectives, as did its counterparts 
in the United States and Europe. A second AI winter descended. At this point, a 
critic could justifiably bemoan “the history of artificial intelligence research to 
date, consisting always of very limited success in particular areas, followed imme-
diately by failure to reach the broader goals at which these initial successes seem 
at first to hint.”21 Private investors began to shun any venture carrying the brand 
of “artificial intelligence.” Even among academics and their funders, “AI” became 
an unwanted epithet.22

Technical work continued apace, however, and by the 1990s, the second AI 
winter gradually thawed. Optimism was rekindled by the introduction of new 
techniques, which seemed to offer alternatives to the traditional logicist paradigm 
(often referred to as “Good Old-Fashioned Artificial Intelligence,” or “GOFAI” 
for short), which had focused on high-level symbol manipulation and which 
had reached its apogee in the expert systems of the 1980s. The newly popular 
techniques, which included neural networks and genetic algorithms, promised 
to overcome some of the shortcomings of the GOFAI approach, in particular 
the “brittleness” that characterized classical AI programs (which typically pro-
duced complete nonsense if the programmers made even a single slightly erro-
neous assumption). The new techniques boasted a more organic performance. 
For example, neural networks exhibited the property of “graceful degradation”: 
a small amount of damage to a neural network typically resulted in a small 
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degradation of its performance, rather than a total crash. Even more importantly, 
neural networks could learn from experience, finding natural ways of general-
izing from examples and finding hidden statistical patterns in their input.23 This 
made the nets good at pattern recognition and classification problems. For exam-
ple, by training a neural network on a data set of sonar signals, it could be taught 
to distinguish the acoustic profiles of submarines, mines, and sea life with bet-
ter accuracy than human experts—and this could be done without anybody first 
having to figure out in advance exactly how the categories were to be defined or 
how different features were to be weighted.

While simple neural network models had been known since the late 1950s, the 
field enjoyed a renaissance after the introduction of the backpropagation algo-
rithm, which made it possible to train multi-layered neural networks.24 Such 
multilayered networks, which have one or more intermediary (“hidden”) layers 
of neurons between the input and output layers, can learn a much wider range 
of functions than their simpler predecessors.25 Combined with the increasingly 
powerful computers that were becoming available, these algorithmic improve-
ments enabled engineers to build neural networks that were good enough to be 
practically useful in many applications.

The brain-like qualities of neural networks contrasted favorably with the rig-
idly logic-chopping but brittle performance of traditional rule-based GOFAI 
 systems—enough so to inspire a new “-ism,” connectionism, which emphasized 
the importance of massively parallel sub-symbolic processing. More than 150,000 
academic papers have since been published on artificial neural networks, and they 
continue to be an important approach in machine learning.

Evolution-based methods, such as genetic algorithms and genetic program-
ming, constitute another approach whose emergence helped end the second AI 
winter. It made perhaps a smaller academic impact than neural nets but was 
widely popularized. In evolutionary models, a population of candidate solutions 
(which can be data structures or programs) is maintained, and new candidate 
solutions are generated randomly by mutating or recombining variants in the 
existing population. Periodically, the population is pruned by applying a selection 
criterion (a fitness function) that allows only the better candidates to survive into 
the next generation. Iterated over thousands of generations, the average quality of 
the solutions in the candidate pool gradually increases. When it works, this kind 
of algorithm can produce efficient solutions to a very wide range of problems—
solutions that may be strikingly novel and unintuitive, often looking more like 
natural structures than anything that a human engineer would design. And in 
principle, this can happen without much need for human input beyond the ini-
tial specification of the fitness function, which is often very simple. In practice, 
however, getting evolutionary methods to work well requires skill and ingenu-
ity, particularly in devising a good representational format. Without an efficient 
way to encode candidate solutions (a genetic language that matches latent struc-
ture in the target domain), evolutionary search tends to meander endlessly in a 
vast search space or get stuck at a local optimum. Even if a good representational 
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format is found, evolution is computationally demanding and is often defeated by 
the combinatorial explosion.

Neural networks and genetic algorithms are examples of methods that stim-
ulated excitement in the 1990s by appearing to offer alternatives to the stagnat-
ing GOFAI paradigm. But the intention here is not to sing the praises of these 
two methods or to elevate them above the many other techniques in machine 
learning. In fact, one of the major theoretical developments of the past twenty 
years has been a clearer realization of how superficially disparate techniques 
can be understood as special cases within a common mathematical framework. 
For example, many types of artificial neural network can be viewed as classi-
fiers that perform a particular kind of statistical calculation (maximum likeli-
hood estimation).26 This perspective allows neural nets to be compared with 
a larger class of algorithms for learning classifiers from examples—“decision 
trees,” “logistic regression models,” “support vector machines,” “naive Bayes,” 
“k-nearest-neighbors regression,” among others.27 In a similar manner, genetic 
algorithms can be viewed as performing stochastic hill-climbing, which is 
again a subset of a wider class of algorithms for optimization. Each of these 
algorithms for building classifiers or for searching a solution space has its own 
profile of strengths and weaknesses which can be studied mathematically. 
Algorithms differ in their processor time and memory space requirements, 
which inductive biases they presuppose, the ease with which externally pro-
duced content can be incorporated, and how transparent their inner workings 
are to a human analyst.

Behind the razzle-dazzle of machine learning and creative problem-solving 
thus lies a set of mathematically well-specified tradeoffs. The ideal is that of the 
perfect Bayesian agent, one that makes probabilistically optimal use of available 
information. This ideal is unattainable because it is too computationally demand-
ing to be implemented in any physical computer (see Box 1). Accordingly, one can 
view artificial intelligence as a quest to find shortcuts: ways of tractably approxi-
mating the Bayesian ideal by sacrificing some optimality or generality while pre-
serving enough to get high performance in the actual domains of interest.

A reflection of this picture can be seen in the work done over the past couple of 
decades on probabilistic graphical models, such as Bayesian networks. Bayesian 
networks provide a concise way of representing probabilistic and conditional 
independence relations that hold in some particular domain. (Exploiting such 
independence relations is essential for overcoming the combinatorial explosion, 
which is as much of a problem for probabilistic inference as it is for logical deduc-
tion.) They also provide important insight into the concept of causality.28

One advantage of relating learning problems from specific domains to the gen-
eral problem of Bayesian inference is that new algorithms that make Bayesian 
inference more efficient will then yield immediate improvements across many 
different areas. Advances in Monte Carlo approximation techniques, for exam-
ple, are directly applied in computer vision, robotics, and computational genet-
ics. Another advantage is that it lets researchers from different disciplines more 
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Box 1 An optimal Bayesian agent

An ideal Bayesian agent starts out with a “prior probability distribution,” a func-
tion that assigns probabilities to each “possible world” (i.e. to each maximally 
specific way the world could turn out to be).29 This prior incorporates an induc-
tive bias such that simpler possible worlds are assigned higher probabilities. (One  
way to formally define the simplicity of a possible world is in terms of its 
 “Kolmogorov complexity,” a measure based on the length of the shortest com-
puter program that generates a complete description of the world.30) The prior 
also incorporates any background knowledge that the programmers wish to give 
to the agent.

As the agent receives new information from its sensors, it updates its prob-
ability distribution by conditionalizing the distribution on the new information 
according to Bayes’ theorem.31 Conditionalization is the mathematical operation 
that sets the new probability of those worlds that are inconsistent with the in-
formation received to zero and renormalizes the probability distribution over 
the remaining possible worlds. The result is a “posterior probability distribution” 
(which the agent may use as its new prior in the next time step). As the agent 
makes observations, its probability mass thus gets concentrated on the shrinking 
set of possible worlds that remain consistent with the evidence; and among these 
possible worlds, simpler ones always have more probability.

Metaphorically, we can think of a probability as sand on a large sheet of paper. 
The paper is partitioned into areas of various sizes, each area corresponding to 
one possible world, with larger areas corresponding to simpler possible worlds. 
Imagine also a layer of sand of even thickness spread across the entire sheet: this 
is our prior probability distribution. Whenever an observation is made that rules 
out some possible worlds, we remove the sand from the corresponding areas of 
the paper and redistribute it evenly over the areas that remain in play. Thus, the 
total amount of sand on the sheet never changes, it just gets concentrated into 
fewer areas as observational evidence accumulates. This is a picture of learning in 
its purest form. (To calculate the probability of a hypothesis, we simply measure 
the amount of sand in all the areas that correspond to the possible worlds in 
which the hypothesis is true.)

So far, we have defined a learning rule. To get an agent, we also need a deci-
sion rule. To this end, we endow the agent with a “utility function” which assigns 
a number to each possible world. The number represents the desirability of 
that world according to the agent’s basic preferences. Now, at each time step, 
the agent selects the action with the highest expected utility.32 (To find the ac-
tion with the highest expected utility, the agent could list all possible actions. It 
could then compute the conditional probability distribution given the action—
the probability distribution that would result from conditionalizing its current 
probability distribution on the observation that the action had just been taken. 
Finally, it could calculate the expected value of the action as the sum of the value 
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Box 1  Continued

of each possible world multiplied by the conditional probability of that world 
given the action.33)

The learning rule and the decision rule together define an “optimality notion” 
for an agent. (Essentially the same optimality notion has been broadly used in 
artificial intelligence, epistemology, philosophy of science, economics, and statis-
tics.34) In reality, it is impossible to build such an agent because it is computation-
ally intractable to perform the requisite calculations. Any attempt to do so suc-
cumbs to a combinatorial explosion just like the one described in our discussion 
of GOFAI. To see why this is so, consider one tiny subset of all possible worlds: 
those that consist of a single computer monitor floating in an endless vacuum. 
The monitor has 1, 000 × 1, 000 pixels, each of which is perpetually either on or 
off. Even this subset of possible worlds is enormously large: the 2(1,000 × 1,000) pos-
sible monitor states outnumber all the computations expected ever to take place 
in the observable universe. Thus, we could not even enumerate all the possible 
worlds in this tiny subset of all possible worlds, let alone perform more elaborate 
computations on each of them individually.

Optimality notions can be of theoretical interest even if they are physically 
unrealizable. They give us a standard by which to judge heuristic approximations, 
and sometimes we can reason about what an optimal agent would do in some 
special case. We will encounter some alternative optimality notions for artificial 
agents in Chapter 12.

easily pool their findings. Graphical models and Bayesian statistics have become 
a shared focus of research in many fields, including machine learning, statisti-
cal physics, bioinformatics, combinatorial optimization, and communication 
 theory.35 A fair amount of the recent progress in machine learning has resulted 
from incorporating formal results originally derived in other academic fields.  
(Machine learning applications have also benefitted enormously from faster 
 computers and greater availability of large data sets.)

State of the art

Artificial intelligence already outperforms human intelligence in many domains. 
Table 1 surveys the state of game-playing computers, showing that AIs now beat 
human champions in a wide range of games.36

These achievements might not seem impressive today. But this is because our 
standards for what is impressive keep adapting to the advances being made. Expert 
chess playing, for example, was once thought to epitomize human intellection. In 
the view of several experts in the late fifties: “If one could devise a successful chess 
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Table 1 Game-playing AI

Checkers Superhuman Arthur Samuel’s checkers program, originally 
written in 1952 and later improved (the  
1955 version incorporating machine learning), 
becomes the first program to learn to play 
a game better than its creator.37 In 1994, 
the program CHINOOK beats the reigning 
human champion, marking the first time a 
program wins an official world championship 
in a game of skill. In 2002, Jonathan Schaeffer 
and his team “solve” checkers, i.e. produce a 
program that always makes the best possible 
move (combining alpha-beta search with a 
database of 39 trillion endgame positions). 
Perfect play by both sides leads to a draw.38

Backgammon Superhuman 1979: The backgammon program BKG by 
Hans Berliner defeats the world champion—
the first computer program to defeat (in an 
exhibition match) a world champion in any 
game—though Berliner later attributes the 
win to luck with the dice rolls.39

1992: The backgammon program TD- 
Gammon by Gerry Tesauro reaches 
championship-level ability, using temporal 
difference learning (a form of reinforcement 
learning) and repeated plays against itself to 
improve.40

In the years since, backgammon programs 
have far surpassed the best human players.41

Traveller TCS Superhuman in 
collaboration 
with human42

In both 1981 and 1982, Douglas Lenat’s 
program Eurisko wins the US championship 
in Traveller TCS (a futuristic naval war game), 
prompting rule changes to block its unortho-
dox strategies.43 Eurisko had heuristics for 
designing its fleet, and it also had heuristics 
for modifying its heuristics.

Othello Superhuman 1997: The program Logistello wins every 
game in a six-game match against world 
champion Takeshi Murakami.44

Chess Superhuman 1997: Deep Blue beats the world chess 
champion, Garry Kasparov. Kasparov claims 
to have seen glimpses of true intelligence and 
creativity in some of the computer’s moves.45 
Since then, chess engines have continued to 
improve.46

Crosswords Expert level 1999: The crossword-solving program Prov-
erb outperforms the average crossword-
solver.47
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2012: The program Dr. Fill, created by Matt 
Ginsberg, scores in the top quartile among 
the otherwise human contestants in the 
American Crossword Puzzle Tournament. 
(Dr. Fill’s performance is uneven. It completes 
perfectly the puzzle rated most difficult 
by humans, yet is stumped by a couple of 
nonstandard puzzles that involved spelling 
backwards or writing answers diagonally.)48

Scrabble Superhuman As of 2002, Scrabble-playing software sur-
passes the best human players.49

Bridge Equal to the 
best

By 2005, contract bridge playing software 
reaches parity with the best human bridge 
players.50

Jeopardy! Superhuman 2010: IBM’s Watson defeats the two all-time-
greatest human Jeopardy! champions, Ken 
Jennings and Brad Rutter.51 Jeopardy! is a tel-
evised game show with trivia questions about 
history, literature, sports, geography, pop 
culture, science, and other topics. Questions 
are presented in the form of clues, and often 
involve wordplay.

Poker Varied Computer poker players remain slightly 
below the best humans for full-ring Texas 
hold ’em but perform at a superhuman level 
in some poker variants.52

FreeCell Superhuman Heuristics evolved using genetic algorithms 
produce a solver for the solitaire game 
FreeCell (which in its generalized form is NP-
complete) that is able to beat high-ranking 
human players.53

Go Very strong 
amateur level

As of 2012, the Zen series of go-playing pro-
grams has reached rank 6 dan in fast games 
(the level of a very strong amateur player), 
using Monte Carlo tree search and machine 
learning techniques.54 Go-playing programs 
have been improving at a rate of about 1 dan/
year in recent years. If this rate of improve-
ment continues, they might beat the human 
world champion in about a decade.

Table 1 Continued

machine, one would seem to have penetrated to the core of human intellectual 
endeavor.”55 This no longer seems so. One sympathizes with John McCarthy, who 
lamented: “As soon as it works, no one calls it AI anymore.”56

There is an important sense, however, in which chess-playing AI turned out 
to be a lesser triumph than many imagined it would be. It was once supposed, 
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perhaps not unreasonably, that in order for a computer to play chess at grandmas-
ter level, it would have to be endowed with a high degree of general intelligence.57 
One might have thought, for example, that great chess playing requires being able 
to learn abstract concepts, think cleverly about strategy, compose flexible plans, 
make a wide range of ingenious logical deductions, and maybe even model one’s 
opponent’s thinking. Not so. It turned out to be possible to build a perfectly fine 
chess engine around a special-purpose algorithm.58 When implemented on the 
fast processors that became available towards the end of the twentieth century, it 
produces very strong play. But an AI built like that is narrow. It plays chess; it can 
do no other.59

In other domains, solutions have turned out to be more complicated than 
initially expected, and progress slower. The computer scientist Donald Knuth 
was struck that “AI has by now succeeded in doing essentially everything that 
requires ‘thinking’ but has failed to do most of what people and animals do 
‘without  thinking’—that, somehow, is much harder!”60 Analyzing visual scenes, 
 recognizing objects, or controlling a robot’s behavior as it interacts with a natural 
environment has proved challenging. Nevertheless, a fair amount of progress has 
been made and continues to be made, aided by steady improvements in hardware.

Common sense and natural language understanding have also turned out to be 
difficult. It is now often thought that achieving a fully human-level performance 
on these tasks is an “AI-complete” problem, meaning that the difficulty of solv-
ing these problems is essentially equivalent to the difficulty of building generally 
human-level intelligent machines.61 In other words, if somebody were to succeed 
in creating an AI that could understand natural language as well as a human 
adult, they would in all likelihood also either already have succeeded in creating 
an AI that could do everything else that human intelligence can do, or they would 
be but a very short step from such a general capability.62

Chess-playing expertise turned out to be achievable by means of a surprisingly 
simple algorithm. It is tempting to speculate that other capabilities—such as gen-
eral reasoning ability, or some key ability involved in programming—might like-
wise be achievable through some surprisingly simple algorithm. The fact that the 
best performance at one time is attained through a complicated mechanism does 
not mean that no simple mechanism could do the job as well or better. It might 
simply be that nobody has yet found the simpler alternative. The Ptolemaic system 
(with the Earth in the center, orbited by the Sun, the Moon, planets, and stars) 
represented the state of the art in astronomy for over a thousand years, and its pre-
dictive accuracy was improved over the centuries by progressively complicating 
the model: adding epicycles upon epicycles to the postulated celestial motions. 
Then the entire system was overthrown by the heliocentric theory of Copernicus, 
which was simpler and—though only after further elaboration by Kepler—more 
predictively accurate.63

Artificial intelligence methods are now used in more areas than it would 
make sense to review here, but mentioning a sampling of them will give an idea 
of the breadth of applications. Aside from the game AIs listed in Table 1, there 
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are hearing aids with algorithms that filter out ambient noise; route-finders that 
display maps and offer navigation advice to drivers; recommender systems that 
suggest books and music albums based on a user’s previous purchases and ratings; 
and medical decision support systems that help doctors diagnose breast cancer, 
recommend treatment plans, and aid in the interpretation of electrocardiograms. 
There are robotic pets and cleaning robots, lawn-mowing robots, rescue robots, 
surgical robots, and over a million industrial robots.64 The world population of 
robots exceeds 10 million.65

Modern speech recognition, based on statistical techniques such as hidden 
Markov models, has become sufficiently accurate for practical use (some frag-
ments of this book were drafted with the help of a speech recognition program). 
Personal digital assistants, such as Apple’s Siri, respond to spoken commands and 
can answer simple questions and execute commands. Optical character recogni-
tion of handwritten and typewritten text is routinely used in applications such as 
mail sorting and digitization of old documents.66

Machine translation remains imperfect but is good enough for many applica-
tions. Early systems used the GOFAI approach of hand-coded grammars that had 
to be developed by skilled linguists from the ground up for each language. Newer 
systems use statistical machine learning techniques that automatically build sta-
tistical models from observed usage patterns. The machine infers the parameters 
for these models by analyzing bilingual corpora. This approach dispenses with 
linguists: the programmers building these systems need not even speak the lan-
guages they are working with.67

Face recognition has improved sufficiently in recent years that it is now used 
at automated border crossings in Europe and Australia. The US Department of 
State operates a face recognition system with over 75 million photographs for visa 
processing. Surveillance systems employ increasingly sophisticated AI and data-
mining technologies to analyze voice, video, or text, large quantities of which are 
trawled from the world’s electronic communications media and stored in giant 
data centers.

Theorem-proving and equation-solving are by now so well established that 
they are hardly regarded as AI anymore. Equation solvers are included in sci-
entific computing programs such as Mathematica. Formal verification methods, 
including automated theorem provers, are routinely used by chip manufacturers 
to verify the behavior of circuit designs prior to production.

The US military and intelligence establishments have been leading the way to 
the large-scale deployment of bomb-disposing robots, surveillance and attack 
drones, and other unmanned vehicles. These still depend mainly on remote 
control by human operators, but work is underway to extend their autonomous 
capabilities.

Intelligent scheduling is a major area of success. The DART tool for automated 
logistics planning and scheduling was used in Operation Desert Storm in 1991 
to such effect that DARPA (the Defense Advanced Research Projects Agency in 
the United States) claims that this single application more than paid back their 
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thirty-year investment in AI.68 Airline reservation systems use sophisticated 
scheduling and pricing systems. Businesses make wide use of AI techniques in 
inventory control systems. They also use automatic telephone reservation systems 
and helplines connected to speech recognition software to usher their hapless 
customers through labyrinths of interlocking menu options.

AI technologies underlie many Internet services. Software polices the world’s 
email traffic, and despite continual adaptation by spammers to circumvent 
the countermeasures being brought against them, Bayesian spam filters have 
largely managed to hold the spam tide at bay. Software using AI components 
is responsible for automatically approving or declining credit card transac-
tions, and continuously monitors account activity for signs of fraudulent use. 
Information retrieval systems also make extensive use of machine learning. 
The Google search engine is, arguably, the greatest AI system that has yet been 
built.

Now, it must be stressed that the demarcation between artificial intelligence 
and software in general is not sharp. Some of the applications listed above might 
be viewed more as generic software applications rather than AI in particular—
though this brings us back to McCarthy’s dictum that when something works 
it is no longer called AI. A more relevant distinction for our purposes is that 
between systems that have a narrow range of cognitive capability (whether they 
be called “AI” or not) and systems that have more generally applicable problem-
solving capacities. Essentially all the systems currently in use are of the former 
type: narrow. However, many of them contain components that might also play 
a role in future artificial general intelligence or be of service in its development— 
components such as classifiers, search algorithms, planners, solvers, and repre-
sentational frameworks.

One high-stakes and extremely competitive environment in which AI sys-
tems operate today is the global financial market. Automated stock-trading 
systems are widely used by major investing houses. While some of these are 
simply ways of automating the execution of particular buy or sell orders issued 
by a human fund manager, others pursue complicated trading strategies that 
adapt to changing market conditions. Analytic systems use an assortment of 
data-mining techniques and time series analysis to scan for patterns and trends 
in securities markets or to correlate historical price movements with external 
variables such as keywords in news tickers. Financial news providers sell news-
feeds that are specially formatted for use by such AI programs. Other systems 
specialize in finding arbitrage opportunities within or between markets, or in 
high-frequency trading that seeks to profit from minute price movements that 
occur over the course of milliseconds (a timescale at which communication 
latencies even for speed-of-light signals in optical fiber cable become significant, 
making it advantageous to locate computers near the exchange). Algorithmic 
high-frequency traders account for more than half of equity shares traded on 
US markets.69 Algorithmic trading has been implicated in the 2010 Flash Crash 
(see Box 2).
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Box 2 The 2010 Flash Crash

By the afternoon of May, 6, 2010, US equity markets were already down 4% 
on worries about the European debt crisis. At 2:32 p.m., a large seller (a mu-
tual fund complex) initiated a sell algorithm to dispose of a large number of the 
 E-Mini S&P 500 futures contracts to be sold off at a sell rate linked to a measure 
of minute-to-minute liquidity on the exchange. These contracts were bought by 
algorithmic high-frequency traders, which were programmed to quickly eliminate 
their temporary long positions by selling the contracts on to other traders. With 
demand from fundamental buyers slacking, the algorithmic traders started to sell 
the E-Minis primarily to other algorithmic traders, which in turn passed them 
on to other algorithmic traders, creating a “hot potato” effect driving up trad-
ing volume— this being interpreted by the sell algorithm as an indicator of high 
liquidity, prompting it to increase the rate at which it was putting E-Mini contracts 
on the market, pushing the downward spiral. At some point, the high-frequency 
traders started withdrawing from the market, drying up liquidity while prices con-
tinued to fall. At 2:45 p.m., trading on the E-Mini was halted by an automatic circuit 
breaker, the exchange’s stop logic functionality. When trading was restarted, a 
mere five seconds later, prices stabilized and soon began to recover most of the 
losses. But for a while, at the trough of the crisis, a trillion dollars had been wiped 
off the market, and spillover effects had led to a substantial number of trades in in-
dividual securities being executed at “absurd” prices, such as one cent or 100,000 
dollars. After the market closed for the day, representatives of the exchanges met 
with regulators and decided to break all trades that had been executed at prices 
60% or more away from their pre-crisis levels (deeming such transactions “clearly 
erroneous” and thus subject to post facto cancellation under existing trade rules).70

The retelling here of this episode is a digression because the computer pro-
grams involved in the Flash Crash were not particularly intelligent or sophisti-
cated, and the kind of threat they created is fundamentally different from the 
concerns we shall raise later in this book in relation to the prospect of machine 
superintelligence. Nevertheless, these events illustrate several useful lessons. 
One is the reminder that interactions between individually simple components 
(such as the sell algorithm and the high-frequency algorithmic trading programs) 
can produce complicated and unexpected effects. Systemic risk can build up in 
a system as new elements are introduced, risks that are not obvious until after 
something goes wrong (and sometimes not even then).71

Another lesson is that smart professionals might give an instruction to a pro-
gram based on a sensible-seeming and normally sound assumption (e.g. that trad-
ing volume is a good measure of market liquidity), and that this can produce 
catastrophic results when the program continues to act on the instruction with 
iron-clad logical consistency even in the unanticipated situation where the as-
sumption turns out to be invalid. The algorithm just does what it does; and unless 

continued
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Box 2  Continued

it is a very special kind of algorithm, it does not care that we clasp our heads and 
gasp in dumbstruck horror at the absurd inappropriateness of its actions. This is 
a theme that we will encounter again.

A third observation in relation to the Flash Crash is that while automa-
tion contributed to the incident, it also contributed to its resolution. The pre- 
preprogrammed stop order logic, which suspended trading when prices moved 
too far out of whack, was set to execute automatically because it had been cor-
rectly anticipated that the triggering events could happen on a timescale too swift 
for humans to respond. The need for pre-installed and automatically executing 
safety functionality—as opposed to reliance on runtime human supervision—
again foreshadows a theme that will be important in our discussion of machine 
superintelligence.72

Opinions about the future of machine intelligence

Progress on two major fronts—towards a more solid statistical and information-
theoretic foundation for machine learning on the one hand, and towards the 
practical and commercial success of various problem-specific or domain-specific 
applications on the other—has restored to AI research some of its lost prestige. 
There may, however, be a residual cultural effect on the AI community of its ear-
lier history that makes many mainstream researchers reluctant to align them-
selves with over-grand ambition. Thus Nils Nilsson, one of the old-timers in the 
field, complains that his present-day colleagues lack the boldness of spirit that 
propelled the pioneers of his own generation:

Concern for “respectability” has had, I think, a stultifying effect on some AI research-
ers. I hear them saying things like, “AI used to be criticized for its flossiness. Now that 
we have made solid progress, let us not risk losing our respectability.” One result of this 
conservatism has been increased concentration on “weak AI”—the variety devoted to 
providing aids to human thought—and away from “strong AI”—the variety that attempts 
to mechanize human-level intelligence.73

Nilsson’s sentiment has been echoed by several others of the founders, including 
Marvin Minsky, John McCarthy, and Patrick Winston.74

The last few years have seen a resurgence of interest in AI, which might yet 
spill over into renewed efforts towards artificial general intelligence (what 
Nilsson calls “strong AI”). In addition to faster hardware, a contemporary pro-
ject would benefit from the great strides that have been made in the many sub-
fields of AI, in software engineering more generally, and in neighboring fields 
such as computational neuroscience. One indication of pent-up demand for 
quality information and education is shown in the response to the free online  
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offering of an introductory course in artificial intelligence at Stanford Uni-
versity in the fall of 2011, organized by Sebastian Thrun and Peter Norvig. Some 
160,000 students from around the world signed up to take it (and 23,000 com-
pleted it).75

Expert opinions about the future of AI vary wildly. There is disagreement about 
timescales as well as about what forms AI might eventually take. Predictions 
about the future development of artificial intelligence, one recent study noted, 
“are as confident as they are diverse.”76

Although the contemporary distribution of belief has not been very carefully 
measured, we can get a rough impression from various smaller surveys and infor-
mal observations. In particular, a series of recent surveys have polled members 
of several relevant expert communities on the question of when they expect 
“human-level machine intelligence” (HLMI) to be developed, defined as “one 
that can carry out most human professions at least as well as a typical human.”77 
Results are shown in Table 2. The combined sample gave the following (median) 
estimate: 10% probability of HLMI by 2022, 50% probability by 2040, and 90% 
probability by 2075. (Respondents were asked to premiss their estimates on the 
assumption that “human scientific activity continues without major negative 
disruption.”)

These numbers should be taken with some grains of salt: sample sizes are quite 
small and not necessarily representative of the general expert population. They 
are, however, in concordance with results from other surveys.78

The survey results are also in line with some recently published interviews with 
about two-dozen researchers in AI-related fields. For example, Nils Nilsson has 
spent a long and productive career working on problems in search, planning, 
knowledge representation, and robotics; he has authored textbooks in artificial 
intelligence; and he recently completed the most comprehensive history of the 
field written to date.79 When asked about arrival dates for HLMI, he offered the 
following opinion:80

10% chance: 2030
50% chance: 2050
90% chance: 2100

Table 2 When will human-level machine intelligence be attained?81

10% 50% 90%

PT-AI 2023 2048 2080

AGI 2022 2040 2065

EETN 2020 2050 2093

TOP100 2024 2050 2070

Combined 2022 2040 2075
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Judging from the published interview transcripts, Professor Nilsson’s probabil-
ity distribution appears to be quite representative of many experts in the area—
though again it must be emphasized that there is a wide spread of opinion: there 
are practitioners who are substantially more boosterish, confidently expecting 
HLMI in the 2020–40 range, and others who are confident either that it will 
never happen or that it is indefinitely far off.82 In addition, some interviewees 
feel that the notion of a “human level” of artificial intelligence is ill-defined or 
misleading, or are for other reasons reluctant to go on record with a quantitative 
prediction.

My own view is that the median numbers reported in the expert survey do 
not have enough probability mass on later arrival dates. A 10% probability of 
HLMI not having been developed by 2075 or even 2100 (after conditionalizing on 
“human scientific activity continuing without major negative disruption”) seems 
too low.

Historically, AI researchers have not had a strong record of being able to pre-
dict the rate of advances in their own field or the shape that such advances would 
take. On the one hand, some tasks, like chess playing, turned out to be achiev-
able by means of surprisingly simple programs; and naysayers who claimed that 
machines would “never” be able to do this or that have repeatedly been proven 
wrong. On the other hand, the more typical errors among practitioners have 
been to underestimate the difficulties of getting a system to perform robustly on 
 real-world tasks, and to overestimate the advantages of their own particular pet 
project or technique.

The survey also asked two other questions of relevance to our inquiry. One 
inquired of respondents about how much longer they thought it would take to 
reach superintelligence assuming human-level machine is first achieved. The 
results are in Table 3.

Another question inquired what they thought would be the overall long-term 
impact for humanity of achieving human-level machine intelligence. The answers 
are summarized in Figure 2.

My own views again differ somewhat from the opinions expressed in the sur-
vey. I assign a higher probability to superintelligence being created relatively soon 
after human-level machine intelligence. I also have a more polarized outlook on 
the consequences, thinking an extremely good or an extremely bad outcome to 
be somewhat more likely than a more balanced outcome. The reasons for this will 
become clear later in the book.

Table 3 How long from human level to superintelligence?

Within 2 years after HLMI Within 30 years after HLMI

TOP100 5% 50%

Combined 10% 75%
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Small sample sizes, selection biases, and—above all—the inherent unreliability 
of the subjective opinions elicited mean that one should not read too much into 
these expert surveys and interviews. They do not let us draw any strong conclu-
sion. But they do hint at a weak conclusion. They suggest that (at least in lieu of 
better data or analysis) it may be reasonable to believe that human-level machine 
intelligence has a fairly sizeable chance of being developed by mid-century, and 
that it has a non-trivial chance of being developed considerably sooner or much 
later; that it might perhaps fairly soon thereafter result in superintelligence; and 
that a wide range of outcomes may have a significant chance of occurring, includ-
ing extremely good outcomes and outcomes that are as bad as human extinc-
tion.84 At the very least, they suggest that the topic is worth a closer look.

0

10

20

30

40

50

Extremely
good

On balance
good

More or less
neutral

On balance
bad

Extremely
bad

(existential
catastrophe)

TOP 100

Combined

Figure 2 Overall long-term impact of HLMI.83



22  |  PATHS TO SUPERINTELLIGENCE

CHAPTER 2

Paths to superintelligence

Machines are currently far inferior to humans in general intelligence. 
Yet one day (we have suggested) they will be superintelligent. How do 
we get from here to there? This chapter explores several conceivable 

technological paths. We look at artificial intelligence, whole brain emulation, 
biological cognition, and human–machine interfaces, as well as networks and 
organizations. We evaluate their different degrees of plausibility as pathways to 
superintelligence. The existence of multiple paths increases the probability that 
the destination can be reached via at least one of them.

We can tentatively define a superintelligence as any intellect that greatly exceeds 
the cognitive performance of humans in virtually all domains of interest.1 We will 
have more to say about the concept of superintelligence in the next chapter, where 
we will subject it to a kind of spectral analysis to distinguish some different pos-
sible forms of superintelligence. But for now, the rough characterization just given 
will suffice. Note that the definition is noncommittal about how the superintelli-
gence is implemented. It is also noncommittal regarding qualia: whether a super-
intelligence would have subjective conscious experience might matter greatly for 
some questions (in particular for some moral questions), but our primary focus 
here is on the causal antecedents and consequences of superintelligence, not on 
the metaphysics of mind.2

The chess program Deep Fritz is not a superintelligence on this definition, 
since Fritz is only smart within the narrow domain of chess. Certain kinds of 
domain-specific superintelligence could, however, be important. When referring 
to superintelligent performance limited to a particular domain, we will note the 
restriction explicitly. For instance, an “engineering superintelligence” would be 
an intellect that vastly outperforms the best current human minds in the domain 
of engineering. Unless otherwise noted, we use the term to refer to systems that 
have a superhuman level of general intelligence.

But how might we create superintelligence? Let us examine some possible paths.
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Artificial intelligence

Readers of this chapter must not expect a blueprint for programming an artificial 
general intelligence. No such blueprint exists yet, of course. And had I been in 
possession of such a blueprint, I most certainly would not have published it in a 
book. (If the reasons for this are not immediately obvious, the arguments in sub-
sequent chapters will make them clear.)

We can, however, discern some general features of the kind of system that 
would be required. It now seems clear that a capacity to learn would be an integral 
feature of the core design of a system intended to attain general intelligence, not 
something to be tacked on later as an extension or an afterthought. The same 
holds for the ability to deal effectively with uncertainty and probabilistic informa-
tion. Some faculty for extracting useful concepts from sensory data and internal 
states, and for leveraging acquired concepts into flexible combinatorial represen-
tations for use in logical and intuitive reasoning, also likely belong among the 
core design features in a modern AI intended to attain general intelligence.

The early Good Old-Fashioned Artificial Intelligence systems did not, for the 
most part, focus on learning, uncertainty, or concept formation, perhaps because 
techniques for dealing with these dimensions were poorly developed at the time. 
This is not to say that the underlying ideas are all that novel. The idea of using 
learning as a means of bootstrapping a simpler system to human-level intelligence 
can be traced back at least to Alan Turing’s notion of a “child machine,” which he 
wrote about in 1950:

Instead of trying to produce a programme to simulate the adult mind, why not rather try 
to produce one which simulates the child’s? If this were then subjected to an appropriate 
course of education one would obtain the adult brain.3

Turing envisaged an iterative process to develop such a child machine:

We cannot expect to find a good child machine at the first attempt. One must experiment 
with teaching one such machine and see how well it learns. One can then try another 
and see if it is better or worse. There is an obvious connection between this process 
and evolution. . . . One may hope, however, that this process will be more expeditious 
than evolution. The survival of the fittest is a slow method for measuring advantages. The 
experimenter, by the exercise of intelligence, should be able to speed it up. Equally impor-
tant is the fact that he is not restricted to random mutations. If he can trace a cause for 
some weakness he can probably think of the kind of mutation which will improve it.4

We know that blind evolutionary processes can produce human-level general 
intelligence, since they have already done so at least once. Evolutionary processes 
with foresight—that is, genetic programs designed and guided by an intelligent 
human programmer—should be able to achieve a similar outcome with far greater 
efficiency. This observation has been used by some philosophers and scientists, 
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including David Chalmers and Hans Moravec, to argue that human-level AI is 
not only theoretically possible but feasible within this century.5 The idea is that 
we can estimate the relative capabilities of evolution and human engineering to 
produce intelligence, and find that human engineering is already vastly superior 
to evolution in some areas and is likely to become superior in the remaining areas 
before too long. The fact that evolution produced intelligence therefore indicates 
that human engineering will soon be able to do the same. Thus, Moravec wrote 
(already back in 1976):

The existence of several examples of intelligence designed under these constraints should 
give us great confidence that we can achieve the same in short order. The situation is 
analogous to the history of heavier than air flight, where birds, bats and insects clearly 
demonstrated the possibility before our culture mastered it.6

One needs to be cautious, though, in what inferences one draws from this line 
of reasoning. It is true that evolution produced heavier-than-air flight, and that 
human engineers subsequently succeeded in doing likewise (albeit by means 
of a very different mechanism). Other examples could also be adduced, such as 
sonar, magnetic navigation, chemical weapons, photoreceptors, and all kinds 
of mechanic and kinetic performance characteristics. However, one could 
equally point to areas where human engineers have thus far failed to match 
evolution: in morphogenesis, self-repair, and the immune defense, for example, 
human efforts lag far behind what nature has accomplished. Moravec’s argu-
ment, therefore, cannot give us “great confidence” that we can achieve human-
level artificial intelligence “in short order.” At best, the evolution of intelligent 
life places an upper bound on the intrinsic difficulty of designing intelligence. 
But this upper bound could be quite far above current human engineering 
capabilities.

Another way of deploying an evolutionary argument for the feasibility of AI is 
via the idea that we could, by running genetic algorithms on sufficiently fast com-
puters, achieve results comparable to those of biological evolution. This version of 
the evolutionary argument thus proposes a specific method whereby intelligence 
could be produced.

But is it true that we will soon have computing power sufficient to recapitu-
late the relevant evolutionary processes that produced human intelligence? The 
answer depends both on how much computing technology will advance over 
the next decades and on how much computing power would be required to run 
genetic algorithms with the same optimization power as the evolutionary process 
of natural selection that lies in our past. Although, in the end, the conclusion we 
get from pursuing this line of reasoning is disappointingly indeterminate, it is 
instructive to attempt a rough estimate (see Box 3). If nothing else, the exercise 
draws attention to some interesting unknowns.

The upshot is that the computational resources required to simply replicate the 
relevant evolutionary processes on Earth that produced human-level intelligence 
are severely out of reach—and will remain so even if Moore’s law were to continue 
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Box 3 What would it take to recapitulate evolution?

Not every feat accomplished by evolution in the course of the development of 
human intelligence is relevant to a human engineer trying to artificially evolve 
machine intelligence. Only a small portion of evolutionary selection on Earth 
has been selection for intelligence. More specifically, the problems that human 
engineers cannot trivially bypass may have been the target of a very small portion 
of total evolutionary selection. For example, since we can run our computers on 
electrical power, we do not have to reinvent the molecules of the cellular energy 
economy in order to create intelligent machines—yet such molecular evolution 
of metabolic pathways might have used up a large part of the total amount of se-
lection power that was available to evolution over the course of Earth’s history.7

One might argue that the key insights for AI are embodied in the structure of 
nervous systems, which came into existence less than a billion years ago.8 If we take 
that view, then the number of relevant “experiments” available to evolution is dras-
tically curtailed. There are some 4–6×1030 prokaryotes in the world today, but only 
1019 insects, and fewer than 1010 humans (while pre-agricultural populations were 
orders of magnitude smaller).9 These numbers are only moderately intimidating.

Evolutionary algorithms, however, require not only variations to select among 
but also a fitness function to evaluate variants, and this is typically the most com-
putationally expensive component. A fitness function for the evolution of arti-
ficial intelligence plausibly requires simulation of neural development, learning, 
and cognition to evaluate fitness. We might thus do better not to look at the raw 
number of organisms with complex nervous systems, but instead to attend to 
the number of neurons in biological organisms that we might need to simulate to 
mimic evolution’s fitness function. We can make a crude estimate of that latter 
quantity by considering insects, which dominate terrestrial animal biomass (with 
ants alone estimated to contribute some 15–20%).10 Insect brain size varies sub-
stantially, with large and social insects sporting larger brains: a honeybee brain has 
just under 106 neurons, a fruit fly brain has 105 neurons, and ants are in between 
with 250,000 neurons.11 The majority of smaller insects may have brains of only a 
few thousand neurons. Erring on the side of conservatively high, if we assigned all 
1019 insects fruit-fly numbers of neurons, the total would be 1024 insect neurons 
in the world. This could be augmented with an additional order of magnitude to 
account for aquatic copepods, birds, reptiles, mammals, etc., to reach 1025. (By 
contrast, in pre-agricultural times there were fewer than 107 humans, with under 
1011 neurons each: thus fewer than 1018 human neurons in total, though humans 
have a higher number of synapses per neuron.)

The computational cost of simulating one neuron depends on the level of 
detail that one includes in the simulation. Extremely simple neuron models use 
about 1,000 floating-point operations per second (FLOPS) to simulate one neu-
ron (in real-time). The electrophysiologically realistic Hodgkin–Huxley model 

continued
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Box 3  Continued

uses 1,200,000 FLOPS. A more detailed multi-compartmental model would 
add another three to four orders of magnitude, while higher-level models that 
abstract systems of neurons could subtract two to three orders of magnitude 
from the simple models.12 If we were to simulate 1025 neurons over a billion years 
of evolution (longer than the existence of nervous systems as we know them), 
and we allow our computers to run for one year, these figures would give us a 
requirement in the range of 1031–1044 FLOPS. For comparison, China’s Tianhe-2, 
the world’s most powerful supercomputer as of September 2013, provides only 
3.39×1016 FLOPS. In recent decades, it has taken approximately 6.7 years for 
commodity computers to increase in power by one order of magnitude. Even a 
century of continued Moore’s law would not be enough to close this gap. Running 
more specialized hardware, or allowing longer run-times, could contribute only a 
few more orders of magnitude.

This figure is conservative in another respect. Evolution achieved human intel-
ligence without aiming at this outcome. In other words, the fitness functions for 
natural organisms do not select only for intelligence and its precursors.13 Even 
environments in which organisms with superior information processing skills 
reap various rewards may not select for intelligence, because improvements to 
intelligence can (and often do) impose significant costs, such as higher energy con-
sumption or slower maturation times, and those costs may outweigh whatever 
benefits are gained from smarter behavior. Excessively deadly environments also 
reduce the value of intelligence: the shorter one’s expected lifespan, the less time 
there will be for increased learning ability to pay off. Reduced selective pressure 
for intelligence slows the spread of intelligence-enhancing innovations, and thus 
the opportunity for selection to favor subsequent innovations that depend on 
them. Furthermore, evolution may wind up stuck in local optima that humans 
would notice and bypass by altering tradeoffs between exploitation and explor-
ation or by providing a smooth progression of increasingly difficult intelligence 
tests.14 And as mentioned earlier, evolution scatters much of its selection power 
on traits that are unrelated to intelligence (such as Red Queen’s races of competi-
tive co-evolution between immune systems and parasites). Evolution continues 
to waste resources producing mutations that have proved consistently lethal, and 
it fails to take advantage of statistical similarities in the effects of different muta-
tions. These are all inefficiencies in natural selection (when viewed as a means 
of evolving intelligence) that it would be relatively easy for a human engineer to 
avoid while using evolutionary algorithms to develop intelligent software.

It is plausible that eliminating inefficiencies like those just described would trim 
many orders of magnitude off the 1031–1044 FLOPS range calculated earlier. Un-
fortunately, it is difficult to know how many orders of magnitude. It is difficult 
even to make a rough estimate—for aught we know, the efficiency savings could 
be five orders of magnitude, or ten, or twenty-five.15



ARTIFICIAL INTELLIGENCE  |  27

for a century (cf. Figure 3). It is plausible, however, that compared with brute-force 
replication of natural evolutionary processes, vast efficiency gains are achievable 
by designing the search process to aim for intelligence, using various obvious 
improvements over natural selection. Yet it is very hard to bound the magnitude 
of those attainable efficiency gains. We cannot even say whether they amount to 
five or to twenty-five orders of magnitude. Absent further elaboration, therefore, 
evolutionary arguments are not able to meaningfully constrain our expectations 
of either the difficulty of building human-level machine intelligence or the time-
scales for such developments.

There is a further complication with these kinds of evolutionary considera-
tions, one that makes it hard to derive from them even a very loose upper bound 
on the difficulty of evolving intelligence. We must avoid the error of inferring, 
from the fact that intelligent life evolved on Earth, that the evolutionary processes 
involved had a reasonably high prior probability of producing intelligence. Such 
an inference is unsound because it fails to take account of the observation selec-
tion effect that guarantees that all observers will find themselves having origi-
nated on a planet where intelligent life arose, no matter how likely or unlikely it 
was for any given such planet to produce intelligence. Suppose, for example, that 
in addition to the systematic effects of natural selection it required an enormous 
amount of lucky coincidence to produce intelligent life—enough so that intelligent 
life evolves on only one planet out of every 1030 planets on which simple replicators 
arise. In that case, when we run our genetic algorithms to try to replicate what nat-
ural evolution did, we might find that we must run some 1030 simulations before 
we find one where all the elements come together in just the right way. This seems 
fully consistent with our observation that life did evolve here on Earth. Only by 

Figure 3 Supercomputer performance. In a narrow sense, “Moore’s law” refers to the obser-
vation that the number of transistors on integrated circuits have for several decades doubled 
approximately every two years. However, the term is often used to refer to the more general 
observation that many performance metrics in computing technology have followed a similarly fast 
exponential trend. Here we plot peak speed of the world’s fastest supercomputer as a  function 
of time (on a logarithmic vertical scale). In recent years, growth in the serial speed of processors 
has stagnated, but increased use of parallelization has enabled the total number of computations 
performed to remain on the trend line.16
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careful and somewhat intricate reasoning—by analyzing instances of convergent 
evolution of intelligence-related traits and engaging with the subtleties of obser-
vation selection theory—can we partially circumvent this epistemological bar-
rier. Unless one takes the trouble to do so, one is not in a position to rule out the 
possibility that the alleged “upper bound” on the computational requirements for 
recapitulating the evolution of intelligence derived in Box 3 might be too low by 
thirty orders of magnitude (or some other such large number).17

Another way of arguing for the feasibility of artificial intelligence is by point-
ing to the human brain and suggesting that we could use it as a template for a 
machine intelligence. One can distinguish different versions of this approach 
based on how closely they propose to imitate biological brain functions. At one 
extreme—that of very close imitation—we have the idea of whole brain emulation, 
which we will discuss in the next subsection. At the other extreme are approaches 
that take their inspiration from the functioning of the brain but do not attempt 
low-level imitation. Advances in neuroscience and cognitive psychology— which 
will be aided by improvements in instrumentation—should eventually uncover 
the general principles of brain function. This knowledge could then guide AI 
efforts. We have already encountered neural networks as an example of a brain-
inspired AI technique. Hierarchical perceptual organization is another idea 
that has been transferred from brain science to machine learning. The study of 
reinforcement learning has been motivated (at least in part) by its role in psy-
chological theories of animal cognition, and reinforcement learning techniques 
(e.g. the “TD-algorithm”) inspired by these theories are now widely used in AI.18 
More cases like these will surely accumulate in the future. Since there is a limited 
number— perhaps a very small number—of distinct fundamental mechanisms 
that operate in the brain, continuing incremental progress in brain science should 
eventually discover them all. Before this happens, though, it is possible that a 
hybrid approach, combining some brain-inspired techniques with some purely 
artificial methods, would cross the finishing line. In that case, the resultant sys-
tem need not be recognizably brain-like even though some brain-derived insights 
were used in its development.

The availability of the brain as template provides strong support for the claim 
that machine intelligence is ultimately feasible. This, however, does not enable us 
to predict when it will be achieved because it is hard to predict the future rate of 
discoveries in brain science. What we can say is that the further into the future 
we look, the greater the likelihood that the secrets of the brain’s functionality will 
have been decoded sufficiently to enable the creation of machine intelligence in 
this manner.

Different people working toward machine intelligence hold different views 
about how promising neuromorphic approaches are compared with approaches 
that aim for completely synthetic designs. The existence of birds demonstrated 
that heavier-than-air flight was physically possible and prompted efforts to build 
flying machines. Yet the first functioning airplanes did not flap their wings. The 
jury is out on whether machine intelligence will be like flight, which humans 
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achieved through an artificial mechanism, or like combustion, which we initially 
mastered by copying naturally occurring fires.

Turing’s idea of designing a program that acquires most of its content by learn-
ing, rather than having it pre-programmed at the outset, can apply equally to 
neuromorphic and synthetic approaches to machine intelligence.

A variation on Turing’s conception of a child machine is the idea of a “seed 
AI.”19 Whereas a child machine, as Turing seems to have envisaged it, would have 
a relatively fixed architecture that simply develops its inherent  potentialities by 
accumulating content, a seed AI would be a more sophisticated  artificial intel-
ligence capable of improving its own architecture. In the early stages of a seed AI, 
such improvements might occur mainly through trial and error,  information 
acquisition, or assistance from the programmers. At its later stages, however, a 
seed AI should be able to understand its own workings sufficiently to  engineer 
new algorithms and computational structures to bootstrap its cognitive per-
formance. This needed understanding could result from the seed AI reaching 
a sufficient level of general intelligence across many domains, or from crossing 
some threshold in a particularly relevant domain such as computer science or 
mathematics.

This brings us to another important concept, that of “recursive self- 
improvement.” A successful seed AI would be able to iteratively enhance itself: 
an early version of the AI could design an improved version of itself, and the 
improved version—being smarter than the original—might be able to design an 
even smarter version of itself, and so forth.20 Under some conditions, such a pro-
cess of recursive self-improvement might continue long enough to result in an 
intelligence explosion—an event in which, in a short period of time, a system’s 
level of intelligence increases from a relatively modest endowment of cognitive 
capabilities (perhaps sub-human in most respects, but with a domain-specific tal-
ent for coding and AI research) to radical superintelligence. We will return to this 
important possibility in Chapter 4, where the dynamics of such an event will be 
analyzed more closely. Note that this model suggests the possibility of surprises: 
attempts to build artificial general intelligence might fail pretty much completely 
until the last missing critical component is put in place, at which point a seed AI 
might become capable of sustained recursive self-improvement.

Before we end this subsection, there is one more thing that we should emphasize, 
which is that an artificial intelligence need not much resemble a human mind. AIs 
could be—indeed, it is likely that most will be—extremely alien. We should expect 
that they will have very different cognitive architectures than biological intelli-
gences, and in their early stages of development they will have very different pro-
files of cognitive strengths and weaknesses (though, as we shall later argue, they 
could eventually overcome any initial weakness). Furthermore, the goal systems 
of AIs could diverge radically from those of human beings. There is no reason to 
expect a generic AI to be motivated by love or hate or pride or other such common 
human sentiments: these complex adaptations would require deliberate expen-
sive effort to recreate in AIs. This is at once a big problem and a big opportunity.  
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We will return to the issue of AI motivation in later chapters, but it is so central to 
the argument in this book that it is worth bearing in mind throughout.

Whole brain emulation

In whole brain emulation (also known as “uploading”), intelligent software would 
be produced by scanning and closely modeling the computational structure 
of a biological brain. This approach thus represents a limiting case of drawing 
inspiration from nature: barefaced plagiarism. Achieving whole brain emulation 
requires the accomplishment of the following steps.

First, a sufficiently detailed scan of a particular human brain is created. This 
might involve stabilizing the brain post-mortem through vitrification (a process 
that turns tissue into a kind of glass). A machine could then dissect the tissue into 
thin slices, which could be fed into another machine for scanning, perhaps by 
an array of electron microscopes. Various stains might be applied at this stage to 
bring out different structural and chemical properties. Many scanning machines 
could work in parallel to process multiple brain slices simultaneously.

Second, the raw data from the scanners is fed to a computer for automated 
image processing to reconstruct the three-dimensional neuronal network that 
implemented cognition in the original brain. In practice, this step might pro-
ceed concurrently with the first step to reduce the amount of high-resolution 
image data stored in buffers. The resulting map is then combined with a library of 
neuro computational models of different types of neurons or of different neuronal 
elements (such as particular kinds of synaptic connectors). Figure 4 shows some 
results of scanning and image processing produced with present-day technology.

In the third stage, the neurocomputational structure resulting from the previ-
ous step is implemented on a sufficiently powerful computer. If completely suc-
cessful, the result would be a digital reproduction of the original intellect, with 
memory and personality intact. The emulated human mind now exists as soft-
ware on a computer. The mind can either inhabit a virtual reality or interface with 
the external world by means of robotic appendages.

The whole brain emulation path does not require that we figure out how human 
cognition works or how to program an artificial intelligence. It requires only that 
we understand the low-level functional characteristics of the basic computational 
elements of the brain. No fundamental conceptual or theoretical breakthrough is 
needed for whole brain emulation to succeed.

Whole brain emulation does, however, require some rather advanced enabling 
technologies. There are three key prerequisites: (1) scanning: high-throughput 
microscopy with sufficient resolution and detection of relevant properties; (2) 
translation: automated image analysis to turn raw scanning data into an inter-
preted three-dimensional model of relevant neurocomputational elements; and 
(3) simulation: hardware powerful enough to implement the resultant compu-
tational structure (see Table 4). (In comparison with these more challenging 
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steps, the construction of a basic virtual reality or a robotic embodiment with 
an audiovisual input channel and some simple output channel is relatively 
easy. Simple yet minimally adequate I/O seems feasible already with present 
technology.23)

There is good reason to think that the requisite enabling technologies are 
attainable, though not in the near future. Reasonable computational models 
of many types of neuron and neuronal processes already exist. Image recogni-
tion software has been developed that can trace axons and dendrites through 
a stack of two-dimensional images (though reliability needs to be improved). 
And there are imaging tools that provide the necessary resolution—with a 
scanning tunneling microscope it is possible to “see” individual atoms, which 
is a far higher resolution than needed. However, although present knowledge 
and capabilities suggest that there is no in-principle barrier to the develop-
ment of the requisite enabling technologies, it is clear that a very great deal of 
incremental technical progress would be needed to bring human whole brain 
emulation within reach.24 For example, microscopy technology would need 
not just sufficient resolution but also sufficient throughput. Using an atomic-
resolution scanning tunneling microscope to image the needed surface area 
would be far too slow to be practicable. It would be more plausible to use a 
lower-resolution electron microscope, but this would require new methods for 

Figure 4 Reconstructing 3D neuro-
anatomy from electron microscope 
images. Upper left: A typical electron 
micrograph showing cross-sections 
of neuronal matter—dendrites and 
axons. Upper right: Volume image of 
rabbit retinal neural tissue acquired 
by serial block-face scanning electron 
microscopy.21  Individual 2D images 
have been stacked into a cube (with a 
side of approximately 11 µm). Bottom: 
Reconstruction of a subset of the 
neuronal projections filling a volume 
of neuropil, generated by an auto-
mated segmentation algorithm.22



Table 4 Capabilities needed for whole brain emulation

Scanning Pre-processing/fixation Preparing brains appropriately, 
retaining relevant microstruc-
ture and state

Physical handling Methods of manipulating fixed 
brains and tissue pieces before, 
during, and after scanning

Imaging Volume Capability to scan entire brain 
volumes in reasonable time 
and expense

Resolution Scanning at sufficient resolution 
to enable reconstruction

Functional information Ability for scanning to detect 
the functionally relevant prop-
erties of tissue

Translation Image processing Geometric 
 adjustment

Handling distortions due to 
scanning imperfections

Data interpolation Handling missing data

Noise removal Improving scan quality

Tracing Detecting structure and 
 processing it into a consistent 
3D model of the tissue

Scan 
 interpretation

Cell type identification Identifying cell types

Synapse identification Identifying synapses and their 
connectivity

Parameter estimation Estimating functionally relevant 
parameters of cells, synapses, 
and other entities

Databasing Storing the resulting inventory 
in an efficient way

Software model 
of neural system

Mathematical model Model of entities and their 
behavior

Efficient 
 implementation

Implementation of model

Simulation Storage Storage of original model and 
current state

Bandwidth Efficient interprocessor 
 communication

CPU Processor power to run 
simulation

Body simulation Simulation of body enabling 
 interaction with virtual environ-
ment or actual environment 
via robot

Environment simulation Virtual environment for virtual 
body
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preparing and staining cortical tissue to make visible relevant details such as 
synaptic fine structure. A great expansion of neurocomputational libraries and 
major improvements in automated image processing and scan interpretation 
would also be needed.

In general, whole brain emulation relies less on theoretical insight and more 
on technological capability than artificial intelligence. Just how much technol-
ogy is required for whole brain emulation depends on the level of abstraction at 
which the brain is emulated. In this regard there is a tradeoff between insight 
and technology. In general, the worse our scanning equipment and the feebler 
our computers, the less we could rely on simulating low-level chemical and elec-
trophysiological brain processes, and the more theoretical understanding would 
be needed of the computational architecture that we are seeking to emulate in 
order to create more abstract representations of the relevant functionalities.25 
Conversely, with sufficiently advanced scanning technology and abundant com-
puting power, it might be possible to brute-force an emulation even with a fairly 
limited understanding of the brain. In the unrealistic limiting case, we could 
imagine emulating a brain at the level of its elementary particles using the quan-
tum mechanical Schrödinger equation. Then one could rely entirely on existing 
knowledge of physics and not at all on any biological model. This extreme case, 
however, would place utterly impracticable demands on computational power 
and data acquisition. A far more plausible level of emulation would be one that 
incorporates individual neurons and their connectivity matrix, along with some 
of the structure of their dendritic trees and maybe some state variables of indi-
vidual synapses. Neurotransmitter molecules would not be simulated individu-
ally, but their fluctuating concentrations would be modeled in a coarse-grained 
manner.

To assess the feasibility of whole brain emulation, one must understand the 
criterion for success. The aim is not to create a brain simulation so detailed and 
accurate that one could use it to predict exactly what would have happened in 
the original brain if it had been subjected to a particular sequence of stimuli. 
Instead, the aim is to capture enough of the computationally functional prop-
erties of the brain to enable the resultant emulation to perform intellectual 
work. For this purpose, much of the messy biological detail of a real brain is 
irrelevant.

A more elaborate analysis would distinguish between different levels of emula-
tion success based on the extent to which the information-processing functional-
ity of the emulated brain has been preserved. For example, one could distinguish 
among (1) a high-fidelity emulation that has the full set of knowledge, skills, 
capacities, and values of the emulated brain; (2) a distorted emulation whose dis-
positions are significantly non-human in some ways but which is mostly able to 
do the same intellectual labor as the emulated brain; and (3) a generic emulation 
(which might also be distorted) that is somewhat like an infant, lacking the skills 
or memories that had been acquired by the emulated adult brain but with the 
capacity to learn most of what a normal human can learn.26
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While it appears ultimately feasible to produce a high-fidelity emulation, it 
seems quite likely that the first whole brain emulation that we would achieve if 
we went down this path would be of a lower grade. Before we would get things to 
work perfectly, we would probably get things to work imperfectly. It is also pos-
sible that a push toward emulation technology would lead to the creation of some 
kind of neuromorphic AI that would adapt some neurocomputational principles 
discovered during emulation efforts and hybridize them with synthetic methods, 
and that this would happen before the completion of a fully functional whole 
brain emulation. The possibility of such a spillover into neuromorphic AI, as we 
shall see in a later chapter, complicates the strategic assessment of the desirability 
of seeking to expedite emulation technology.

How far are we currently from achieving a human whole brain emulation? One 
recent assessment presented a technical roadmap and concluded that the prereq-
uisite capabilities might be available around mid-century, though with a large 
uncertainty interval.27 Figure 5 depicts the major milestones in this roadmap. The 
apparent simplicity of the map may be deceptive, however, and we should be care-
ful not to understate how much work remains to be done. No brain has yet been 
emulated. Consider the humble model organism Caenorhabditis elegans, which 
is a transparent roundworm, about 1 mm in length, with 302 neurons. The com-
plete connectivity matrix of these neurons has been known since the mid-1980s, 
when it was laboriously mapped out by means of slicing, electron microscopy, and 

Figure 5 Whole brain emulation roadmap. Schematic of inputs, activities, and milestones.28
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hand-labeling of specimens.29 But knowing merely which neurons are connected 
with which is not enough. To create a brain emulation one would also need to 
know which synapses are excitatory and which are inhibitory; the strength of the 
connections; and various dynamical properties of axons, synapses, and dendritic 
trees. This information is not yet available even for the small nervous system of 
C. elegans (although it may now be within range of a targeted moderately sized 
research project).30 Success at emulating a tiny brain, such as that of C. elegans, 
would give us a better view of what it would take to emulate larger brains.

At some point in the technology development process, once techniques are 
available for automatically emulating small quantities of brain tissue, the problem 
reduces to one of scaling. Notice “the ladder” at the right side of Figure 5. This 
ascending series of boxes represents a final sequence of advances which can com-
mence after preliminary hurdles have been cleared. The stages in this sequence 
correspond to whole brain emulations of successively more neurologically sophis-
ticated model organisms—for example, C. elegans → honeybee → mouse → rhesus 
monkey → human. Because the gaps between these rungs—at least after the first 
step—are mostly quantitative in nature and due mainly (though not entirely) to the 
differences in size of the brains to be emulated, they should be tractable through a 
relatively straightforward scale-up of scanning and simulation capacity.31

Once we start ascending this final ladder, the eventual attainment of human 
whole brain emulation becomes more clearly foreseeable.32 We can thus expect 
to get some advance warning before arrival at human-level machine intelligence 
along the whole brain emulation path, at least if the last among the requisite 
en abling technologies to reach sufficient maturity is either high-throughput scan-
ning or the computational power needed for real-time simulation. If, however, 
the last enabling technology to fall into place is neurocomputational modeling, 
then the transition from unimpressive prototypes to a working human emula-
tion could be more abrupt. One could imagine a scenario in which, despite abun-
dant scanning data and fast computers, it is proving difficult to get our neuronal 
models to work right. When finally the last glitch is ironed out, what was previ-
ously a completely dysfunctional system—analogous perhaps to an unconscious 
brain undergoing a grand mal seizure—might snap into a coherent wakeful state. 
In this case, the key advance would not be heralded by a series of functioning 
animal emulations of increasing magnitude (provoking newspaper headlines of 
correspondingly escalating font size). Even for those paying attention it might be 
difficult to tell in advance of success just how many flaws remained in the neuro-
computational models at any point and how long it would take to fix them, even 
up to the eve of the critical breakthrough. (Once a human whole brain emulation 
has been achieved, further potentially explosive developments would take place; 
but we postpone discussion of this until Chapter 4.)

Surprise scenarios are thus imaginable for whole brain emulation even if all the 
relevant research were conducted in the open. Nevertheless, compared with the AI 
path to machine intelligence, whole brain emulation is more likely to be preceded 
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by clear omens since it relies more on concrete observable technologies and is 
not wholly based on theoretical insight. We can also say, with greater confidence 
than for the AI path, that the emulation path will not succeed in the near future 
(within the next fifteen years, say) because we know that several challenging pre-
cursor technologies have not yet been developed. By contrast, it seems likely that 
somebody could in principle sit down and code a seed AI on an ordinary present-
day personal computer; and it is conceivable—though unlikely—that somebody 
somewhere will get the right insight for how to do this in the near future.

Biological cognition

A third path to greater-than-current-human intelligence is to enhance the func-
tioning of biological brains. In principle, this could be achieved without tech-
nology, through selective breeding. Any attempt to initiate a classical large-scale 
eugenics program, however, would confront major political and moral hurdles. 
Moreover, unless the selection were extremely strong, many generations would be 
required to produce substantial results. Long before such an initiative would bear 
fruit, advances in biotechnology will allow much more direct control of human 
genetics and neurobiology, rendering otiose any human breeding program. We 
will therefore focus on methods that hold the potential to deliver results faster, on 
the timescale of a few generations or less.

Our individual cognitive capacities can be strengthened in various ways, 
including by such traditional methods as education and training. Neurological 
development can be promoted by low-tech interventions such as optimizing 
maternal and infant nutrition, removing lead and other neurotoxic pollutants 
from the environment, eradicating parasites, ensuring adequate sleep and exer-
cise, and preventing diseases that affect the brain.33 Improvements in cognition 
can certainly be obtained through each of these means, though the magnitudes 
of the gains are likely to be modest, especially in populations that are already 
reasonably well-nourished and -schooled. We will certainly not achieve superin-
telligence by any of these means, but they might help on the margin, particularly 
by lifting up the deprived and expanding the catchment of global talent. (Lifelong 
depression of intelligence due to iodine deficiency remains widespread in many 
impoverished inland areas of the world—an outrage given that the condition can 
be prevented by fortifying table salt at a cost of a few cents per person and year.34)

Biomedical enhancements could give bigger boosts. Drugs already exist that 
are alleged to improve memory, concentration, and mental energy in at least some 
subjects.35 (Work on this book was fueled by coffee and nicotine chewing gum.) 
While the efficacy of the present generation of smart drugs is variable, marginal, 
and generally dubious, future nootropics might offer clearer benefits and fewer 
side effects.36 However, it seems implausible, on both neurological and evolution-
ary grounds, that one could by introducing some chemical into the brain of a 
healthy person spark a dramatic rise in intelligence.37 The cognitive functioning 
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of a human brain depends on a delicate orchestration of many factors, especially 
during the critical stages of embryo development—and it is much more likely that 
this self-organizing structure, to be enhanced, needs to be carefully balanced, 
tuned, and cultivated rather than simply flooded with some extraneous potion.

Manipulation of genetics will provide a more powerful set of tools than psy-
chopharmacology. Consider again the idea of genetic selection: instead of trying 
to implement a eugenics program by controlling mating patterns, one could use 
selection at the level of embryos or gametes.38 Pre-implantation genetic diagnosis 
has already been used during in vitro fertilization procedures to screen embryos 
produced for monogenic disorders such as Huntington’s disease and for predis-
position to some late-onset diseases such as breast cancer. It has also been used for 
sex selection and for matching human leukocyte antigen type with that of a sick 
sibling, who can then benefit from a cord-blood stem cell donation when the new 
baby is born.39 The range of traits that can be selected for or against will expand 
greatly over the next decade or two. A strong driver of progress in behavioral 
genetics is the rapidly falling cost of genotyping and gene sequencing. Genome-
wide complex trait analysis, using studies with vast numbers of subjects, is just 
now starting to become feasible and will greatly increase our knowledge of the 
genetic architectures of human cognitive and behavioral traits.40 Any trait with 
a non-negligible heritability—including cognitive capacity—could then become 
susceptible to selection.41 Embryo selection does not require a deep understand-
ing of the causal pathways by which genes, in complicated interplay with environ-
ments, produce phenotypes: it requires only (lots of) data on the genetic correlates 
of the traits of interest.

It is possible to calculate some rough estimates of the magnitude of the gains 
obtainable in different selection scenarios.42 Table 5 shows expected increases 
in intelligence resulting from various amounts of selection, assuming complete 
information about the common additive genetic variants underlying the narrow-
sense heritability of intelligence. (With partial information, the effectiveness of 
selection would be reduced, though not quite to the extent one might naively 

Table 5 Maximum IQ gains from selecting among a set of embryos43 

Selection IQ points gained

1 in 2 4.2

1 in 10 11.5

1 in 100 18.8

1 in 1000 24.3

5 generations of 1 in 10 < 65 (b/c diminishing returns)

10 generations of 1 in 10 < 130 (b/c diminishing returns)

Cumulative limits (additive variants optimized 
for cognition)

100 + (< 300 (b/c diminishing returns))
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expect.44) Unsurprisingly, selecting between larger numbers of embryos produces 
larger gains, but there are steeply diminishing returns: selection between 100 
embryos does not produce a gain anywhere near fifty times as large as that which 
one would get from selection between 2 embryos.45

Interestingly, the diminishment of returns is greatly abated when the selection is 
spread over multiple generations. Thus, repeatedly selecting the top 1 in 10 over ten 
generations (where each new generation consists of the offspring of those selected 
in the previous generation) will produce a much greater increase in the trait value 
than a one-off selection of 1 in 100. The problem with sequential selection, of course, 
is that it takes longer. If each generational step takes twenty or thirty years, then 
even just five successive generations would push us well into the twenty-second 
century. Long before then, more direct and powerful modes of genetic engineering  
(not to mention machine intelligence) will most likely be available.

There is, however, a complementary technology, one which, once it has been 
developed for use in humans, would greatly potentiate the enhancement power 
of pre-implantation genetic screening: namely, the derivation of viable sperm and 
eggs from embryonic stem cells.46 The techniques for this have already been used 
to produce fertile offspring in mice and gamete-like cells in humans. Substantial 
scientific challenges remain, however, in translating the animal results to humans 
and in avoiding epigenetic abnormalities in the derived stem cell lines. According 
to one expert, these challenges might put human application “10 or even 50 years 
in the future.”47

With stem cell-derived gametes, the amount of selection power available to 
a couple could be greatly increased. In current practice, an in vitro fertiliza-
tion procedure typically involves the creation of fewer than ten embryos. With 
stem cell-derived gametes, a few donated cells might be turned into a virtually 
unlimited number of gametes that could be combined to produce embryos, which 
could then be genotyped or sequenced, and the most promising one chosen for 
implantation. Depending on the cost of preparing and screening each individual 
embryo, this technology could yield a severalfold increase in the selective power 
available to couples using in vitro fertilization.

More importantly still, stem cell-derived gametes would allow multiple genera-
tions of selection to be compressed into less than a human maturation period, by 
enabling iterated embryo selection. This is a procedure that would consist of the 
following steps:48

 1 Genotype and select a number of embryos that are higher in desired genetic 
characteristics.

 2 Extract stem cells from those embryos and convert them to sperm and ova, 
maturing within six months or less.49

 3 Cross the new sperm and ova to produce embryos.
 4 Repeat until large genetic changes have been accumulated.

In this manner, it would be possible to accomplish ten or more generations of 
selection in just a few years. (The procedure would be time-consuming and 



BIOLOGICAL COGNITION  |  39

expensive; however, in principle, it would need to be done only once rather than 
repeated for each birth. The cell lines established at the end of the procedure could 
be used to generate very large numbers of enhanced embryos.)

As Table 5 indicates, the average level of intelligence among individuals con-
ceived in this manner could be very high, possibly equal to or somewhat above 
that of the most intelligent individual in the historical human population. A 
world that had a large population of such individuals might (if it had the culture, 
education, communications infrastructure, etc., to match) constitute a collective 
superintelligence.

The impact of this technology will be dampened and delayed by several fac-
tors. There is the unavoidable maturational lag while the finally selected embryos 
grow into adult human beings: at least twenty years before an enhanced child 
reaches full productivity, longer still before such children come to constitute a 
substantial segment of the labor force. Furthermore, even after the technology has 
been perfected, adoption rates will probably start out low. Some countries might 
prohibit its use altogether, on moral or religious grounds.50 Even where selection 
is allowed, many couples will prefer the natural way of conceiving. Willingness to 
use IVF, however, would increase if there were clearer benefits associated with the 
procedure— such as a virtual guarantee that the child would be highly talented and 
free from genetic predispositions to disease. Lower health care costs and higher 
expected lifetime earnings would also argue in favor of genetic selection. As use 
of the procedure becomes more common, particularly among social elites, there 
might be a cultural shift toward parenting norms that present the use of selection 
as the thing that responsible enlightened couples do. Many of the initially reluc-
tant might join the bandwagon in order to have a child that is not at a disadvantage 
relative to the enhanced children of their friends and colleagues. Some countries 
might offer inducements to encourage their citizens to take advantage of genetic 
selection in order to increase the country’s stock of human capital, or to increase 
long-term social stability by selecting for traits like docility, obedience, submis-
siveness, conformity, risk-aversion, or cowardice, outside of the ruling clan.

Effects on intellectual capacity would also depend on the extent to which the 
available selection power would be used for enhancing cognitive traits (Table 6). 
Those who do opt to use some form of embryo selection would have to choose how 
to allocate the selection power at their disposal, and intelligence would to some 
extent be in competition with other desired attributes, such as health, beauty, per-
sonality, or athleticism. Iterated embryo selection, by offering such a large amount 
of selection power, would alleviate some of these tradeoffs, enabling simultaneous 
strong selection for multiple traits. However, this procedure would tend to disrupt 
the normal genetic relationship between parents and child, something that could 
negatively affect demand in many cultures.51

With further advances in genetic technology, it may become possible to syn-
thesize genomes to specification, obviating the need for large pools of embryos. 
DNA synthesis is already a routine and largely automated biotechnology, though 
it is not yet feasible to synthesize an entire human genome that could be used in 
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a reproductive context (not least because of still-unresolved difficulties in getting 
the epigenetics right).54 But once this technology has matured, an embryo could 
be designed with the exact preferred combination of genetic inputs from each 
parent. Genes that are present in neither of the parents could also be spliced in, 
including alleles that are present with low frequency in the population but which 
may have significant positive effects on cognition.55

One intervention that becomes possible when human genomes can be synthe-
sized is genetic “spell-checking” of an embryo. (Iterated embryo selection might 
also allow an approximation of this.) Each of us currently carries a mutational 
load, with perhaps hundreds of mutations that reduce the efficiency of various 
cellular processes.56 Each individual mutation has an almost negligible effect 
(whence it is only slowly removed from the gene pool), yet in combination such 
mutations may exact a heavy toll on our functioning.57 Individual differences in 
intelligence might to a significant extent be attributable to variations in the num-
ber and nature of such slightly deleterious alleles that each of us carries. With gene 
synthesis we could take the genome of an embryo and construct a version of that 
genome free from the genetic noise of accumulated mutations. If one wished to 
speak provocatively, one could say that individuals created from such proofread 
genomes might be “more human” than anybody currently alive, in that they would 
be less distorted expressions of human form. Such people would not all be carbon 
copies, because humans vary genetically in ways other than by carrying different 
deleterious mutations. But the phenotypical manifestation of a proofread genome 
may be an exceptional physical and mental constitution, with elevated function-
ing in polygenic trait dimensions like intelligence, health, hardiness, and appear-
ance.58 (A loose analogy could be made with composite faces, in which the defects 
of the superimposed individuals are averaged out: see Figure 6.)

Figure 6 Composite faces as a metaphor for spell-checked genomes. Each of the central pic-
tures was produced by superimposing photographs of sixteen different individuals (residents 
of Tel Aviv). Composite faces are often judged to be more beautiful than any of the individual 
faces of which they are composed, as idiosyncratic imperfections are averaged out. Analogously, 
by removing individual mutations, proofread genomes may produce people closer to “Platonic 
 ideals.” Such individuals would not all be genetically identical, because many genes come in  multiple 
equally functional alleles. Proofreading would only eliminate variance arising from deleterious 
mutations.59
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Other potential biotechnological techniques might also be relevant. Human 
reproductive cloning, once achieved, could be used to replicate the genome of 
exceptionally talented individuals. Uptake would be limited by the preference of 
most prospective parents to be biologically related to their children, yet the prac-
tice could nevertheless come to have non-negligible impact because (1) even a rel-
atively small increase in the number of exceptionally talented people might have 
a significant effect; and (2) it is possible that some state would embark on a larger-
scale eugenics program, perhaps by paying surrogate mothers. Other kinds of 
genetic engineering—such as the design of novel synthetic genes or insertion into 
the genome of promoter regions and other elements to control gene expression—
might also become important over time. Even more exotic possibilities may exist, 
such as vats full of complexly structured cultured cortical tissue, or “uplifted” 
transgenic animals (perhaps some large-brained mammal such as the whale or 
elephant, enriched with human genes). These latter ones are wholly speculative, 
but over a longer time frame they perhaps cannot be completely discounted.

So far we have discussed germline interventions, ones that would be done 
on gametes or embryos. Somatic gene enhancements, by bypassing the genera-
tion cycle, could in principle produce impacts more quickly. However, they are 
technologically much more challenging. They require that the modified genes 
be inserted into a large number of cells in the living body—including, in the 
case of cognitive enhancement, the brain. Selecting among existing egg cells or 
embryos, in contrast, requires no gene insertion. Even such germline therapies as 
do involve modifying the genome (such as proofreading the genome or splicing in 
rare alleles) are far easier to implement at the gamete or the embryo stage, where 
one is dealing with a small number of cells. Furthermore, germline interven-
tions on embryos can probably achieve greater effects than somatic interventions 
on adults, because the former would be able to shape early brain development 
whereas the latter would be limited to tweaking an existing structure. (Some of 
what could be done through somatic gene therapy might also be achievable by 
pharmacological means.)

Focusing therefore on germline interventions, we must take into account the 
generational lag delaying any large impact on the world.60 Even if the technol-
ogy were perfected today and immediately put to use, it would take more than 
two decades for a genetically enhanced brood to reach maturity. Furthermore, 
with human applications there is normally a delay of at least one decade between 
proof of concept in the laboratory and clinical application, because of the need 
for extensive studies to determine safety. The simplest forms of genetic selec-
tion, however, could largely abrogate the need for such testing, since they would 
use standard fertility treatment techniques and genetic information to choose 
between embryos that might otherwise have been selected by chance.

Delays could also result from obstacles rooted not in a fear of failure (demand for 
safety testing) but in fear of success—demand for regulation driven by concerns 
about the moral permissibility of genetic selection or its wider social implications. 
Such concerns are likely to be more influential in some countries than in others, 
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owing to differing cultural, historical, and religious contexts. Post-war Germany, 
for example, has chosen to give a wide berth to any reproductive practices that 
could be perceived to be even in the remotest way aimed at enhancement, a stance 
that is understandable given the particularly dark history of atrocities connected 
to the eugenics movement in that country. Other Western countries are likely to 
take a more liberal approach. And some countries—perhaps China or Singapore, 
both of which have long-term population policies—might not only permit but 
actively promote the use of genetic selection and genetic engineering to enhance 
the intelligence of their populations once the technology to do so is available.

Once the example has been set, and the results start to show, holdouts will have 
strong incentives to follow suit. Nations would face the prospect of becoming cog-
nitive backwaters and losing out in economic, scientific, military, and prestige 
contests with competitors that embrace the new human enhancement technolo-
gies. Individuals within a society would see places at elite schools being filled with 
genetically selected children (who may also on average be prettier, healthier, and 
more conscientious) and will want their own offspring to have the same advan-
tages. There is some chance that a large attitudinal shift could take place over a 
relatively short time, perhaps in as little as a decade, once the technology is proven 
to work and to provide a substantial benefit. Opinion surveys in the United States 
reveal a dramatic shift in public approval of in vitro fertilization after the birth 
of the first “test tube baby,” Louise Brown, in 1978. A few years earlier, only 18% 
of Americans said they would personally use IVF to treat infertility; yet in a poll 
taken shortly after the birth of Louise Brown, 53% said they would do so, and the 
number has continued to rise.61 (For comparison, in a poll taken in 2004, 28% 
of Americans approved of embryo selection for “strength or intelligence,” 58% 
approved of it for avoiding adult-onset cancer, and 68% approved of it to avoid 
fatal childhood disease.62)

If we add up the various delays—say five to ten years to gather the information 
needed for significantly effective selection among a set of IVF embryos (possi-
bly much longer before stem cell-derived gametes are available for use in human 
reproduction), ten years to build significant uptake, and twenty to twenty-five 
years for the enhanced generation to reach an age where they start becoming pro-
ductive, we find that germline enhancements are unlikely to have a significant 
impact on society before the middle of this century. From that point onward, how-
ever, the intelligence of significant segments of the adult population may begin to 
be boosted by genetic enhancements. The speed of the ascent would then greatly 
accelerate as cohorts conceived using more powerful next-generation genetic 
technologies (in particular stem cell-derived gametes and iterative embryo selec-
tion) enter the labor force.

With the full development of the genetic technologies described above (setting 
aside the more exotic possibilities such as intelligence in cultured neural tissue), 
it might be possible to ensure that new individuals are on average smarter than 
any human who has yet existed, with peaks that rise higher still. The potential 
of biological enhancement is thus ultimately high, probably sufficient for the 
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attainment of at least weak forms of superintelligence. This should not be sur-
prising. After all, dumb evolutionary processes have dramatically amplified the 
intelligence in the human lineage even compared with our close relatives the great 
apes and our own humanoid ancestors; and there is no reason to suppose Homo 
sapiens to have reached the apex of cognitive effectiveness attainable in a bio-
logical system. Far from being the smartest possible biological species, we are 
probably better thought of as the stupidest possible biological species capable of 
starting a technological civilization—a niche we filled because we got there first, 
not because we are in any sense optimally adapted to it.

Progress along the biological path is clearly feasible. The generational lag in 
germline interventions means that progress could not be nearly as sudden and 
abrupt as in scenarios involving machine intelligence. (Somatic gene therapies 
and pharmacological interventions could theoretically skip the generational lag, 
but they seem harder to perfect and are less likely to produce dramatic effects.) The 
ultimate potential of machine intelligence is, of course, vastly greater than that 
of organic intelligence. (One can get some sense of the magnitude of the gap by 
considering the speed differential between electronic components and nerve cells: 
even today’s transistors operate on a timescale ten million times shorter than that 
of biological neurons.) However, even comparatively moderate enhancements of 
biological cognition could have important consequences. In particular, cognitive 
enhancement could accelerate science and technology, including progress toward 
more potent forms of biological intelligence amplification and machine intelli-
gence. Consider how the rate of progress in the field of artificial intelligence would 
change in a world where Average Joe is an intellectual peer of Alan Turing or John 
von Neumann, and where millions of people tower far above any intellectual giant 
of the past.63

A discussion of the strategic implications of cognitive enhancement will have 
to await a later chapter. But we can summarize this section by noting three con-
clusions: (1) at least weak forms of superintelligence are achievable by means 
of biotechnological enhancements; (2) the feasibility of cognitively enhanced 
humans adds to the plausibility that advanced forms of machine intelligence are 
feasible—because even if we were fundamentally unable to create machine intel-
ligence (which there is no reason to suppose), machine intelligence might still be 
within reach of cognitively enhanced humans; and (3) when we consider scenarios 
stretching significantly into the second half of this century and beyond, we must 
take into account the probable emergence of a generation of genetically enhanced 
populations—voters, inventors, scientists—with the magnitude of enhancement 
escalating rapidly over subsequent decades.

Brain–computer interfaces

It is sometimes proposed that direct brain–computer interfaces, particularly 
implants, could enable humans to exploit the fortes of digital computing—perfect 



BRAIN – COMPUTER INTERFACES  |  45

recall, speedy and accurate arithmetic calculation, and high-bandwidth data 
transmission—enabling the resulting hybrid system to radically outperform the 
unaugmented brain.64 But although the possibility of direct connections between 
human brains and computers has been demonstrated, it seems unlikely that such 
interfaces will be widely used as enhancements any time soon.65

To begin with, there are significant risks of medical complications—including 
infections, electrode displacement, hemorrhage, and cognitive decline—when 
implanting electrodes in the brain. Perhaps the most vivid illustration to date of 
the benefits that can be obtained through brain stimulation is the treatment of 
patients with Parkinson’s disease. The Parkinson’s implant is relatively simple: 
it does not really communicate with the brain but simply supplies a stimulat-
ing electric current to the subthalamic nucleus. A demonstration video shows a 
subject slumped in a chair, completely immobilized by the disease, then suddenly 
springing to life when the current is switched on: the subject now moves his arms, 
stands up and walks across the room, turns around and performs a pirouette. Yet 
even behind this especially simple and almost miraculously successful procedure, 
there lurk negatives. One study of Parkinson patients who had received deep brain 
implants showed reductions in verbal fluency, selective attention, color naming, 
and verbal memory compared with controls. Treated subjects also reported more 
cognitive complaints.66 Such risks and side effects might be tolerable if the proced-
ure is used to alleviate severe disability. But in order for healthy subjects to vol-
unteer themselves for neurosurgery, there would have to be some very substantial 
enhancement of normal functionality to be gained.

This brings us to the second reason to doubt that superintelligence will be 
achieved through cyborgization, namely that enhancement is likely to be far 
more difficult than therapy. Patients who suffer from paralysis might benefit from 
an implant that replaces their severed nerves or activates spinal motion pattern 
generators.67 Patients who are deaf or blind might benefit from artificial coch-
leae and retinas.68 Patients with Parkinson’s disease or chronic pain might ben-
efit from deep brain stimulation that excites or inhibits activity in a particular 
area of the brain.69 What seems far more difficult to achieve is a high-bandwidth 
direct interaction between brain and computer to provide substantial increases 
in intelligence of a form that could not be more readily attained by other means. 
Most of the potential benefits that brain implants could provide in healthy sub-
jects could be obtained at far less risk, expense, and inconvenience by using our 
regular motor and sensory organs to interact with computers located outside of 
our bodies. We do not need to plug a fiber optic cable into our brains in order to 
access the Internet. Not only can the human retina transmit data at an impressive 
rate of nearly 10 million bits per second, but it comes pre-packaged with a massive 
amount of dedicated wetware, the visual cortex, that is highly adapted to extract-
ing meaning from this information torrent and to interfacing with other brain 
areas for further processing.70 Even if there were an easy way of pumping more 
information into our brains, the extra data inflow would do little to increase the 
rate at which we think and learn unless all the neural machinery necessary for 
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making sense of the data were similarly upgraded. Since this includes almost all of 
the brain, what would really be needed is a “whole brain prosthesis”—which is just 
another way of saying artificial general intelligence. Yet if one had a human-level 
AI, one could dispense with neurosurgery: a computer might as well have a metal 
casing as one of bone. So this limiting case just takes us back to the AI path, which 
we have already examined.

Brain–computer interfacing has also been proposed as a way to get informa-
tion out of the brain, for purposes of communicating with other brains or with 
machines.71 Such uplinks have helped patients with locked-in syndrome to com-
municate with the outside world by enabling them to move a cursor on a screen 
by thought.72 The bandwidth attained in such experiments is low: the patient 
painstakingly types out one slow letter after another at a rate of a few words per 
minute. One can readily imagine improved versions of this technology—perhaps 
a next-generation implant could plug into Broca’s area (a region in the frontal 
lobe involved in language production) and pick up internal speech.73 But whilst 
such a technology might assist some people with disabilities induced by stroke or 
muscular degeneration, it would hold little appeal for healthy subjects. The func-
tionality it would provide is essentially that of a microphone coupled with speech 
recognition software, which is already commercially available—minus the pain, 
inconvenience, expense, and risks associated with neurosurgery (and minus at 
least some of the hyper-Orwellian overtones of an intracranial listening device). 
Keeping our machines outside of our bodies also makes upgrading easier.

But what about the dream of bypassing words altogether and establishing a 
connection between two brains that enables concepts, thoughts, or entire areas 
of expertise to be “downloaded” from one mind to another? We can download 
large files to our computers, including libraries with millions of books and arti-
cles, and this can be done over the course of seconds: could something similar be 
done with our brains? The apparent plausibility of this idea probably derives from 
an incorrect view of how information is stored and represented in the brain. As 
noted, the rate-limiting step in human intelligence is not how fast raw data can be 
fed into the brain but rather how quickly the brain can extract meaning and make 
sense of the data. Perhaps it will be suggested that we transmit meanings directly, 
rather than package them into sensory data that must be decoded by the recipient. 
There are two problems with this. The first is that brains, by contrast to the kinds 
of program we typically run on our computers, do not use standardized data stor-
age and representation formats. Rather, each brain develops its own idiosyncratic 
representations of higher-level content. Which particular neuronal assemblies 
are recruited to represent a particular concept depends on the unique experi-
ences of the brain in question (along with various genetic factors and stochastic 
physiological processes). Just as in artificial neural nets, meaning in biological 
neural networks is likely represented holistically in the structure and activity pat-
terns of sizeable overlapping regions, not in discrete memory cells laid out in neat 
arrays.74 It would therefore not be possible to establish a simple mapping between 
the neurons in one brain and those in another in such a way that thoughts could 
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automatically slide over from one to the other. In order for the thoughts of one 
brain to be intelligible to another, the thoughts need to be decomposed and pack-
aged into symbols according to some shared convention that allows the symbols 
to be correctly interpreted by the receiving brain. This is the job of language.

In principle, one could imagine offloading the cognitive work of articulation 
and interpretation to an interface that would somehow read out the neural states 
in the sender’s brain and somehow feed in a bespoke pattern of activation to the 
receiver’s brain. But this brings us to the second problem with the cyborg scenario. 
Even setting aside the (quite immense) technical challenge of how to reliably read 
and write simultaneously from perhaps billions of individually addressable neu-
rons, creating the requisite interface is probably an AI-complete problem. The 
interface would need to include a component able (in real-time) to map firing 
patterns in one brain onto semantically equivalent firing patterns in the other 
brain. The detailed multilevel understanding of the neural computation needed to 
accomplish such a task would seem to directly enable neuromorphic AI.

Despite these reservations, the cyborg route toward cognitive enhancement is 
not entirely without promise. Impressive work on the rat hippocampus has dem-
onstrated the feasibility of a neural prosthesis that can enhance performance in a 
simple working-memory task.75 In its present version, the implant collects input 
from a dozen or two electrodes located in one area (“CA3”) of the hippocampus 
and projects onto a similar number of neurons in another area (“CA1”). A micro-
processor is trained to discriminate between two different firing patterns in the 
first area (corresponding to two different memories, “right lever” or “left lever”) 
and to learn how these patterns are projected into the second area. This prosthe-
sis can not only restore function when the normal neural connection between 
the two neural areas is blockaded, but by sending an especially clear token of a 
particular memory pattern to the second area it can enhance the performance 
on the memory task beyond what the rat is normally capable of. While a techni-
cal tour de force by contemporary standards, the study leaves many challenging 
questions unanswered: How well does the approach scale to greater numbers of 
memories? How well can we control the combinatorial explosion that otherwise 
threatens to make learning the correct mapping infeasible as the number of input 
and output neurons is increased? Does the enhanced performance on the test task 
come at some hidden cost, such as reduced ability to generalize from the particu-
lar stimulus used in the experiment, or reduced ability to unlearn the association 
when the environment changes? Would the test subjects still somehow benefit 
even if—unlike rats—they could avail themselves of external memory aids such 
as pen and paper? And how much harder would it be to apply a similar method 
to other parts of the brain? Whereas the present prosthesis takes advantage of the 
relatively simple feed-forward structure of parts of the hippocampus (basically 
serving as a unidirectional bridge between areas CA3 and CA1), other structures 
in the cortex involve convoluted feedback loops which greatly increase the com-
plexity of the wiring diagram and, presumably, the difficulty of deciphering the 
functionality of any embedded group of neurons.
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One hope for the cyborg route is that the brain, if permanently implanted with 
a device connecting it to some external resource, would over time learn an effec-
tive mapping between its own internal cognitive states and the inputs it receives 
from, or the outputs accepted by, the device. Then the implant itself would not 
need to be intelligent; rather, the brain would intelligently adapt to the interface, 
much as the brain of an infant gradually learns to interpret the signals arriving 
from receptors in its eyes and ears.76 But here again one must question how much 
would really be gained. Suppose that the brain’s plasticity were such that it could 
learn to detect patterns in some new input stream arbitrary projected onto some 
part of the cortex by means of a brain–computer interface: why not project the 
same information onto the retina instead, as a visual pattern, or onto the coch-
lea as sounds? The low-tech alternative avoids a thousand complications, and in 
either case the brain could deploy its pattern-recognition mechanisms and plas-
ticity to learn to make sense of the information.

Networks and organizations

Another conceivable path to superintelligence is through the gradual enhance-
ment of networks and organizations that link individual human minds with one 
another and with various artifacts and bots. The idea here is not that this would 
enhance the intellectual capacity of individuals enough to make them superintel-
ligent, but rather that some system composed of individuals thus networked and 
organized might attain a form of superintelligence—what in the next chapter we 
will elaborate as “collective superintelligence.”77

Humanity has gained enormously in collective intelligence over the course of 
history and prehistory. The gains come from many sources, including innova-
tions in communications technology, such as writing and printing, and above 
all the introduction of language itself; increases in the size of the world popula-
tion and the density of habitation; various improvements in organizational tech-
niques and epistemic norms; and a gradual accumulation of institutional capital. 
In general terms, a system’s collective intelligence is limited by the abilities of its 
member minds, the overheads in communicating relevant information between 
them, and the various distortions and inefficiencies that pervade human organi-
zations. If communication overheads are reduced (including not only equipment 
costs but also response latencies, time and attention burdens, and other factors), 
then larger and more densely connected organizations become feasible. The same 
could happen if fixes are found for some of the bureaucratic deformations that 
warp organizational life—wasteful status games, mission creep, concealment or 
falsification of information, and other agency problems. Even partial solutions to 
these problems could pay hefty dividends for collective intelligence.

The technological and institutional innovations that could contribute to the 
growth of our collective intelligence are many and various. For example, sub-
sidized prediction markets might foster truth-seeking norms and improve 



NETWORKS AND ORGANIzATIONS  |  49

forecasting on contentious scientific and social issues.78 Lie detectors (should it 
prove feasible to make ones that are reliable and easy to use) could reduce the 
scope for deception in human affairs.79 Self-deception detectors might be even 
more powerful.80 Even without newfangled brain technologies, some forms of 
deception might become harder to practice thanks to increased availability of 
many kinds of data, including reputations and track records, or the promulga-
tion of strong epistemic norms and rationality culture. Voluntary and involun-
tary surveillance will amass vast amounts of information about human behavior. 
Social networking sites are already used by over a billion people to share personal 
details: soon, these people might begin uploading continuous life recordings from 
microphones and video cameras embedded in their smart phones or eyeglass 
frames. Automated analysis of such data streams will enable many new applica-
tions (sinister as well as benign, of course).81

Growth in collective intelligence may also come from more general organi-
zational and economic improvements, and from enlarging the fraction of the 
world’s population that is educated, digitally connected, and integrated into 
global intellectual culture.82

The Internet stands out as a particularly dynamic frontier for innovation and 
experimentation. Most of its potential may still remain unexploited. Continuing 
development of an intelligent Web, with better support for deliberation, de- 
biasing, and judgment aggregation, might make large contributions to increasing 
the collective intelligence of humanity as a whole or of particular groups.

But what of the seemingly more fanciful idea that the Internet might one day 
“wake up”? Could the Internet become something more than just the backbone 
of a loosely integrated collective superintelligence—something more like a vir-
tual skull housing an emerging unified super-intellect? (This was one of the ways 
that superintelligence could arise according to Vernor Vinge’s influential 1993 
essay, which coined the term “technological singularity.”83) Against this one could  
object that machine intelligence is hard enough to achieve through arduous 
engineering, and that it is incredible to suppose that it will arise spontaneously.  
However, the story need not be that some future version of the Internet suddenly 
becomes superintelligent by mere happenstance. A more plausible version of the 
scenario would be that the Internet accumulates improvements through the work 
of many people over many years—work to engineer better search and information 
filtering algorithms, more powerful data representation formats, more capable 
autonomous software agents, and more efficient protocols governing the inter-
actions between such bots—and that myriad incremental improvements even-
tually create the basis for some more unified form of web intelligence. It seems 
at least conceivable that such a web-based cognitive system, supersaturated with 
computer power and all other resources needed for explosive growth save for one 
crucial ingredient, could, when the final missing constituent is dropped into the 
cauldron, blaze up with superintelligence. This type of scenario, though, con-
verges into another possible path to superintelligence, that of artificial general 
intelligence, which we have already discussed.
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Summary

The fact that there are many paths that lead to superintelligence should increase 
our confidence that we will eventually get there. If one path turns out to be 
blocked, we can still progress.

That there are multiple paths does not entail that there are multiple destina-
tions. Even if significant intelligence amplification were first achieved along one 
of the non-machine-intelligence paths, this would not render machine intelli-
gence irrelevant. Quite the contrary: enhanced biological or organizational intel-
ligence would accelerate scientific and technological developments, potentially 
hastening the arrival of more radical forms of intelligence amplification such as 
whole brain emulation and AI.

This is not to say that it is a matter of indifference how we get to machine super-
intelligence. The path taken to get there could make a big difference to the even-
tual outcome. Even if the ultimate capabilities that are obtained do not depend 
much on the trajectory, how those capabilities will be used—how much control 
we humans have over their disposition—might well depend on details of our 
approach. For example, enhancements of biological or organizational intelligence 
might increase our ability to anticipate risk and to design machine superintelli-
gence that is safe and beneficial. (A full strategic assessment involves many com-
plexities, and will have to await Chapter 14.)

True superintelligence (as opposed to marginal increases in current levels of 
intelligence) might plausibly first be attained via the AI path. There are, however, 
many fundamental uncertainties along this path. This makes it difficult to rigor-
ously assess how long the path is or how many obstacles there are along the way. 
The whole brain emulation path also has some chance of being the quickest route 
to superintelligence. Since progress along this path requires mainly incremental 
technological advances rather than theoretical breakthroughs, a strong case can 
be made that it will eventually succeed. It seems fairly likely, however, that even if 
progress along the whole brain emulation path is swift, artificial intelligence will 
nevertheless be first to cross the finishing line: this is because of the possibility of 
neuromorphic AIs based on partial emulations.

Biological cognitive enhancements are clearly feasible, particularly ones based 
on genetic selection. Iterated embryo selection currently seems like an especially 
promising technology. Compared with possible breakthroughs in machine intel-
ligence, however, biological enhancements would be relatively slow and gradual. 
They would, at best, result in relatively weak forms of superintelligence (more on 
this shortly).

The clear feasibility of biological enhancement should increase our confidence 
that machine intelligence is ultimately achievable, since enhanced human sci-
entists and engineers will be able to make more and faster progress than their 
au naturel counterparts. Especially in scenarios in which machine intelligence 
is delayed beyond mid-century, the increasingly cognitively enhanced cohorts 
 coming onstage will play a growing role in subsequent developments.
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Brain–computer interfaces look unlikely as a source of superintelligence. 
Improvements in networks and organizations might result in weakly superintelli-
gent forms of collective intelligence in the long run; but more likely, they will play 
an enabling role similar to that of biological cognitive enhancement, gradually 
increasing humanity’s effective ability to solve intellectual problems. Compared 
with biological enhancements, advances in networks and organization will make 
a difference sooner—in fact, such advances are occurring continuously and are 
having a significant impact already. However, improvements in networks and 
organizations may yield narrower increases in our problem-solving capacity than 
will improvements in biological cognition—boosting “collective intelligence” 
rather than “quality intelligence,” to anticipate a distinction we are about to intro-
duce in the next chapter.
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CHAPTER 3

Forms of superintelligence

So what, exactly, do we mean by “superintelligence”? While we do not 
wish to get bogged down in terminological swamps, something needs 
to be said to clarify the conceptual ground. This chapter identifies 

three different forms of superintelligence, and argues that they are, in a 
practically relevant sense, equivalent. We also show that the potential for 
intelligence in a machine substrate is vastly greater than in a biological sub-
strate. Machines have a number of fundamental advantages which will give 
them overwhelming superiority. Biological humans, even if enhanced, will 
be outclassed.

Many machines and nonhuman animals already perform at superhuman lev-
els in narrow domains. Bats interpret sonar signals better than man, calculators 
outperform us in arithmetic, and chess programs beat us in chess. The range of 
specific tasks that can be better performed by software will continue to expand. 
But although specialized information processing systems will have many uses, 
there are additional profound issues that arise only with the prospect of machine 
intellects that have enough general intelligence to substitute for humans across 
the board.

As previously indicated, we use the term “superintelligence” to refer to 
intellects that greatly outperform the best current human minds across many 
very general cognitive domains. This is still quite vague. Different kinds of 
system with rather disparate performance attributes could qualify as super-
intelligences under this definition. To advance the analysis, it is helpful to 
disaggregate this simple notion of superintelligence by distinguishing dif-
ferent bundles of intellectual super-capabilities. There are many ways in 
which such decomposition could be done. Here we will differentiate between 
three forms: speed superintelligence, collective superintelligence, and quality 
superintelligence.
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Speed superintelligence

A speed superintelligence is an intellect that is just like a human mind but faster. 
This is conceptually the easiest form of superintelligence to analyze.1 We can 
define speed superintelligence as follows:

Speed superintelligence: A system that can do all that a human intellect can do, but much 
faster.

By “much” we here mean something like “multiple orders of magnitude.” But 
rather than try to expunge every remnant of vagueness from the definition, we 
will entrust the reader with interpreting it sensibly.2

The simplest example of speed superintelligence would be a whole brain emula-
tion running on fast hardware.3 An emulation operating at a speed of ten thou-
sand times that of a biological brain would be able to read a book in a few seconds 
and write a PhD thesis in an afternoon. With a speedup factor of a million, an 
emulation could accomplish an entire millennium of intellectual work in one 
working day.4

To such a fast mind, events in the external world appear to unfold in slow 
motion. Suppose your mind ran at 10,000×. If your fleshly friend should happen 
to drop his teacup, you could watch the porcelain slowly descend toward the car-
pet over the course of several hours, like a comet silently gliding through space  
toward an assignation with a far-off planet; and, as the anticipation of the com-
ing crash tardily propagates through the folds of your friend’s gray matter and 
from thence out into his peripheral nervous system, you could observe his body 
gradually assuming the aspect of a frozen oops—enough time for you not only 
to order a replacement cup but also to read a couple of scientific papers and 
take a nap.

Because of this apparent time dilation of the material world, a speed superin-
telligence would prefer to work with digital objects. It could live in virtual reality 
and deal in the information economy. Alternatively, it could interact with the 
physical environment by means of nanoscale manipulators, since limbs at such 
small scales could operate faster than macroscopic appendages. (The characteris-
tic frequency of a system tends to be inversely proportional to its length scale.5) A 
fast mind might commune mainly with other fast minds rather than with brady-
telic, molasses-like humans.

The speed of light becomes an increasingly important constraint as minds get 
faster, since faster minds face greater opportunity costs in the use of their time for 
traveling or communicating over long distances.6 Light is roughly a million times 
faster than a jet plane, so it would take a digital agent with a mental speedup of 
1,000,000× about the same amount of subjective time to travel across the globe as 
it does a contemporary human journeyer. Dialing somebody long distance would 
take as long as getting there “in person,” though it would be cheaper as a call would  
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require less bandwidth. Agents with large mental speedups who want to converse 
extensively might find it advantageous to move near one another. Extremely fast 
minds with need for frequent interaction (such as members of a work team) may 
take up residence in computers located in the same building to avoid frustrating 
latencies.

Collective superintelligence

Another form of superintelligence is a system achieving superior performance by 
aggregating large numbers of smaller intelligences:

Collective superintelligence: A system composed of a large number of smaller intellects 
such that the system’s overall performance across many very general domains vastly outstrips 
that of any current cognitive system.

Collective superintelligence is less conceptually clear-cut than speed superintel-
ligence.7 However, it is more familiar empirically. While we have no experience 
with human-level minds that differ significantly in clock speed, we do have ample 
experience with collective intelligence, systems composed of various numbers 
of human-level components working together with various degrees of efficiency. 
Firms, work teams, gossip networks, advocacy groups, academic communities, 
countries, even humankind as a whole, can—if we adopt a somewhat abstract 
perspective—be viewed as loosely defined “systems” capable of solving classes of 
intellectual problems. From experience, we have some sense of how easily differ-
ent tasks succumb to the efforts of organizations of various size and composition.

Collective intelligence excels at solving problems that can be readily broken 
into parts such that solutions to sub-problems can be pursued in parallel and veri-
fied independently. Tasks like building a space shuttle or operating a hamburger 
franchise offer myriad opportunities for division of labor: different engineers 
work on different components of the spacecraft; different staffs operate differ-
ent restaurants. In academia, the rigid division of researchers, students, journals, 
grants, and prizes into separate self-contained disciplines—though unconducive 
to the type of work represented by this book—might (only in a conciliatory and 
mellow frame of mind) be viewed as a necessary accommodation to the practi-
calities of allowing large numbers of diversely motivated individuals and teams to 
contribute to the growth of human knowledge while working relatively indepen-
dently, each plowing their own furrow.

A system’s collective intelligence could be enhanced by expanding the number 
or the quality of its constituent intellects, or by improving the quality of their 
organization.8 To obtain a collective superintelligence from any present-day collec-
tive intelligence would require a very great degree of enhancement. The resulting 
system would need to be capable of vastly outperforming any current collective 
intelligence or other cognitive system across many very general domains. A new 
conference format that lets scholars exchange information more effectively, or 
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a new collaborative information-filtering algorithm that better predicted users’ 
ratings of books and movies, would clearly not on its own amount to anything 
approaching collective superintelligence. Nor would a 50% increase in the world 
population, or an improvement in pedagogical method that enabled students to 
complete a school day in four hours instead of six. Some far more extreme growth 
of humanity’s collective cognitive capacity would be required to meet the crite-
rion of collective superintelligence.

Note that the threshold for collective superintelligence is indexed to the per-
formance levels of the present—that is, the early twenty-first century. Over the 
course of human prehistory, and again over the course of human history, human-
ity’s collective intelligence has grown by very large factors. World population, for 
example, has increased by at least a factor of a thousand since the Pleistocene.9 On 
this basis alone, current levels of human collective intelligence could be regarded 
as approaching superintelligence relative to a Pleistocene baseline. Some improve-
ments in communications technologies—especially spoken language, but perhaps 
also cities, writing, and printing—could also be argued to have, individually or in 
combination, provided super-sized boosts, in the sense that if another innovation 
of comparable impact to our collective intellectual problem-solving capacity were 
to happen, it would result in collective superintelligence.10

A certain kind of reader will be tempted at this point to interject that modern 
society does not seem so particularly intelligent. Perhaps some unwelcome politi-
cal decision has just been made in the reader’s home country, and the apparent 
unwisdom of that decision now looms large in the reader’s mind as evidence of 
the mental incapacity of the modern era. And is it not the case that contemporary 
humanity is idolizing material consumption, depleting natural resources, pollut-
ing the environment, decimating species diversity, all the while failing to remedy 
screaming global injustices and neglecting paramount humanistic or spiritual 
values? However, setting aside the question of how modernity’s shortcomings 
stack up against the not-so-inconsiderable failings of earlier epochs, nothing in 
our definition of collective superintelligence implies that a society with greater 
collective intelligence is necessarily better off. The definition does not even imply 
that the more collectively intelligent society is wiser. We can think of wisdom as 
the ability to get the important things approximately right. It is then possible to 
imagine an organization composed of a very large cadre of very efficiently coordi-
nated knowledge workers, who collectively can solve intellectual problems across 
many very general domains. This organization, let us suppose, can operate most 
kinds of businesses, invent most kinds of technologies, and optimize most kinds 
of processes. Even so, it might get a few key big-picture issues entirely wrong—
for instance, it may fail to take proper precautions against existential risks—and 
as a result pursue a short explosive growth spurt that ends ingloriously in total 
collapse. Such an organization could have a very high degree of collective intel-
ligence; if sufficiently high, the organization is a collective superintelligence. We 
should resist the temptation to roll every normatively desirable attribute into 
one giant amorphous concept of mental functioning, as though one could never 
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find one admirable trait without all the others being equally present. Instead, we 
should recognize that there can exist instrumentally powerful information pro-
cessing systems—intelligent systems—that are neither inherently good nor reli-
ably wise. But we will revisit this issue in Chapter 7.

Collective superintelligence could be either loosely or tightly integrated. 
To illustrate a case of loosely integrated collective superintelligence, imagine a 
planet, MegaEarth, which has the same level of communication and coordination 
technologies that we currently have on the real Earth but with a population one 
million times as large. With such a huge population, the total intellectual work-
force on MegaEarth would be correspondingly larger than on our planet. Suppose 
that a scientific genius of the caliber of a Newton or an Einstein arises at least 
once for every 10 billion people: then on MegaEarth there would be 700,000 such 
geniuses living contemporaneously, alongside proportionally vast multitudes of 
slightly lesser talents. New ideas and technologies would be developed at a furious 
pace, and global civilization on MegaEarth would constitute a loosely integrated 
collective superintelligence.11

If we gradually increase the level of integration of a collective intelligence, it 
may eventually become a unified intellect—a single large “mind” as opposed to a 
mere assemblage of loosely interacting smaller human minds.12 The inhabitants of 
MegaEarth could take steps in that direction by improving communications and 
coordination technologies and by developing better ways for many individuals to 
work on any hard intellectual problem together. A collective superintelligence could 
thus, after gaining sufficiently in integration, become a “quality superintelligence.”

Quality superintelligence

We can distinguish a third form of superintelligence.

Quality superintelligence: A system that is at least as fast as a human mind and vastly 
qualitatively smarter.

As with collective intelligence, intelligence quality is also a somewhat murky con-
cept; and in this case the difficulty is compounded by our lack of experience with 
any variations in intelligence quality above the upper end of the present human 
distribution. We can, however, get some grasp of the notion by considering some 
related cases.

First, we can expand the range of our reference points by considering non-
human animals, which have intelligence of lower quality. (This is not meant as 
a speciesist remark. A zebrafish has a quality of intelligence that is excellently 
adapted to its ecological needs; but the relevant perspective here is a more anthro-
pocentric one: our concern is with performance on humanly relevant complex 
cognitive tasks.) Nonhuman animals lack complex structured language; they 
are capable of no or only rudimentary tool use and tool construction; they are 
severely restricted in their ability to make long-term plans; and they have very 
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limited abstract reasoning ability. Nor are these limitations fully explained by 
a lack of speed or of collective intelligence among nonhuman animal minds. In 
terms of raw computational power, human brains are probably inferior to those 
of some large animals, including elephants and whales. And although human-
ity’s complex technological civilization would be impossible without our massive 
advantage in collective intelligence, not all distinctly human cognitive capabili-
ties depend on collective intelligence. Many are highly developed even in small, 
isolated hunter–gatherer bands.13 And many are not nearly as highly developed 
among highly organized nonhuman animals, such as chimpanzees and dolphins 
intensely trained by human instructors, or ants living in their own large and well-
ordered societies. Evidently, the remarkable intellectual achievements of Homo 
sapiens are to a significant extent attributable to specific features of our brain 
architecture, features that depend on a unique genetic endowment not shared 
by other animals. This observation can help us illustrate the concept of quality 
superintelligence: it is intelligence of quality at least as superior to that of human 
intelligence as the quality of human intelligence is superior to that of elephants’, 
dolphins’, or chimpanzees’.

A second way to illustrate the concept of quality superintelligence is by noting 
the domain-specific cognitive deficits that can afflict individual humans, particu-
larly deficits that are not caused by general dementia or other conditions asso-
ciated with wholesale destruction of the brain’s neurocomputational resources. 
Consider, for example, individuals with autism spectrum disorders who may 
have striking deficits in social cognition while functioning well in other cogni-
tive domains; or individuals with congenital amusia, who are unable to hum or 
recognize simple tunes yet perform normally in most other respects. Many other 
examples could be adduced from the neuropsychiatric literature, which is replete 
with case studies of patients suffering narrowly circumscribed deficits caused by 
genetic abnormalities or brain trauma. Such examples show that normal human 
adults have a range of remarkable cognitive talents that are not simply a function 
of possessing a sufficient amount of general neural processing power or even a suf-
ficient amount of general intelligence: specialized neural circuitry is also needed. 
This observation suggests the idea of possible but non-realized cognitive talents, 
talents that no actual human possesses even though other intelligent systems—
ones with no more computing power than the human brain—that did have those 
talents would gain enormously in their ability to accomplish a wide range of stra-
tegically relevant tasks.

Accordingly, by considering nonhuman animals and human individuals with 
domain-specific cognitive deficits, we can form some notion of different qualities 
of intelligence and the practical difference they make. Had Homo sapiens lacked 
(for instance) the cognitive modules that enable complex linguistic represen-
tations, it might have been just another simian species living in harmony with 
nature. Conversely, were we to gain some new set of modules giving an advantage 
comparable to that of being able to form complex linguistic representations, we 
would become superintelligent.
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Direct and indirect reach

Superintelligence in any of these forms could, over time, develop the technology 
necessary to create any of the others. The indirect reaches of these three forms of 
superintelligence are therefore equal. In that sense, the indirect reach of current 
human intelligence is also in the same equivalence class, under the supposition 
that we are able eventually to create some form of superintelligence. Yet there 
is a sense in which the three forms of superintelligence are much closer to one 
another: any one of them could create other forms of superintelligence more rap-
idly than we can create any form of superintelligence from our present starting 
point.

The direct reaches of the three different forms of superintelligence are harder to 
compare. There may be no definite ordering. Their respective capabilities depend 
on the degree to which they instantiate their respective advantages—how fast a 
speed superintelligence is, how qualitatively superior a quality superintelligence 
is, and so forth. At most, we might say that, ceteris paribus, speed superintelligence 
excels at tasks requiring the rapid execution of a long series of steps that must be 
performed sequentially while collective superintelligence excels at tasks admit-
ting of analytic decomposition into parallelizable sub-tasks and tasks demand-
ing the combination of many different perspectives and skill sets. In some vague 
sense, quality superintelligence would be the most capable form of all, inasmuch 
as it could grasp and solve problems that are, for all practical purposes, beyond 
the direct reach of speed superintelligence and collective superintelligence.14

In some domains, quantity is a poor substitute for quality. One solitary genius 
working out of a cork-lined bedroom can write In Search of Lost Time. Could 
an equivalent masterpiece be produced by recruiting an office building full of 
 literary hacks?15 Even within the range of present human variation we see that 
some functions benefit greatly from the labor of one brilliant mastermind as 
opposed to the joint efforts of myriad mediocrities. If we widen our purview to 
include superintelligent minds, we must countenance a likelihood of there being 
intellectual problems solvable only by superintelligence and intractable to any 
ever-so-large collective of non-augmented humans.

There might thus be some problems that are solvable by a quality superintel-
ligence, and perhaps by a speed superintelligence, yet which a loosely integrated 
collective superintelligence cannot solve (other than by first amplifying its own 
intelligence).16 We cannot clearly see what all these problems are, but we can 
characterize them in general terms.17 They would tend to be problems involv-
ing multiple complex interdependencies that do not permit of independently 
verifiable solution steps: problems that therefore cannot be solved in a piecemeal 
fashion, and that might require qualitatively new kinds of understanding or new 
representational frameworks that are too deep or too complicated for the cur-
rent edition of mortals to discover or use effectively. Some types of artistic crea-
tion and strategic cognition might fall into this category. Some types of scientific 
breakthrough, perhaps, likewise. And one can speculate that the tardiness and 
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wobbliness of humanity’s progress on many of the “eternal problems” of philoso-
phy are due to the unsuitability of the human cortex for philosophical work. On 
this view, our most celebrated philosophers are like dogs walking on their hind 
legs—just barely attaining the threshold level of performance required for engag-
ing in the activity at all.18

Sources of advantage for digital intelligence

Minor changes in brain volume and wiring can have major consequences, as we 
see when we compare the intellectual and technological achievements of humans 
with those of other apes. The far greater changes in computing resources and 
architecture that machine intelligence will enable will probably have conse-
quences that are even more profound. It is difficult, perhaps impossible, for us to 
form an intuitive sense of the aptitudes of a superintelligence; but we can at least 
get an inkling of the space of possibilities by looking at some of the advantages 
open to digital minds. The hardware advantages are easiest to appreciate:

•	 Speed of computational elements. Biological neurons operate at a peak speed of about 
200 Hz, a full seven orders of magnitude slower than a modern microprocessor 
(~ 2 GHz).19 As a consequence, the human brain is forced to rely on massive paral-
lelization and is incapable of rapidly performing any computation that requires a 
large number of sequential operations.20 (Anything the brain does in under a second 
cannot use much more than a hundred sequential operations—perhaps only a few 
dozen.) Yet many of the most practically important algorithms in programming and 
computer science are not easily parallelizable. Many cognitive tasks could be per-
formed far more efficiently if the brain’s native support for parallelizable pattern-
matching algorithms were complemented by, and integrated with, support for fast 
sequential processing.

•	 Internal communication speed. Axons carry action potentials at speeds of 120 m/s or 
less, whereas electronic processing cores can communicate optically at the speed of 
light (300,000,000 m/s).21 The sluggishness of neural signals limits how big a biological 
brain can be while functioning as a single processing unit. For example, to achieve a 
round-trip latency of less than 10 ms between any two elements in a system, biologi-
cal brains must be smaller than 0.11 m3. An electronic system, on the other hand, 
could be 6.1×1017 m3, about the size of a dwarf planet: eighteen orders of magnitude 
larger.22

•	 Number of computational elements. The human brain has somewhat fewer than 100 
billion neurons.23 Humans have about three and a half times the brain size of chim-
panzees (though only one-fifth the brain size of sperm whales).24 The number of 
neurons in a biological creature is most obviously limited by cranial volume and 
metabolic constraints, but other factors may also be significant for larger brains 
(such as cooling, development time, and signal-conductance delays—see the previ-
ous point). By contrast, computer hardware is indefinitely scalable up to very high 
physical limits.25 Supercomputers can be warehouse-sized or larger, with additional 
remote capacity added via high-speed cables.26
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•	 Storage capacity. Human working memory is able to hold no more than some four 
or five chunks of information at any given time.27 While it would be misleading to 
compare the size of human working memory directly with the amount of RAM in a 
digital computer, it is clear that the hardware advantages of digital intelligences will 
make it possible for them to have larger working memories. This might enable such 
minds to intuitively grasp complex relationships that humans can only fumblingly 
handle via plodding calculation.28 Human long-term memory is also limited, though 
it is unclear whether we manage to exhaust its storage capacity during the course 
of an ordinary lifetime—the rate at which we accumulate information is so slow. 
(On one estimate, the adult human brain stores about one billion bits—a couple 
of orders of magnitude less than a low-end smartphone.29) Both the amount of 
information stored and the speed with which it can be accessed could thus be vastly 
greater in a machine brain than in a biological brain.

•	 Reliability, lifespan, sensors, etc. Machine intelligences might have various other hard-
ware advantages. For example, biological neurons are less reliable than transistors.30 
Since noisy computing necessitates redundant encoding schemes that use multiple 
elements to encode a single bit of information, a digital brain might derive some 
efficiency gains from the use of reliable high-precision computing elements. Brains 
become fatigued after a few hours of work and start to permanently decay after 
a few decades of subjective time; microprocessors are not subject to these limita-
tions. Data flow into a machine intelligence could be increased by adding millions of 
sensors. Depending on the technology used, a machine might have reconfigurable 
hardware that can be optimized for changing task requirements, whereas much of 
the brain’s architecture is fixed from birth or only slowly changeable (though the 
details of synaptic connectivity can change over shorter timescales, like days).31

At present, the computational power of the biological brain still compares favor-
ably with that of digital computers, though top-of-the-line supercomputers are 
attaining levels of performance that are within the range of plausible estimates of 
the brain’s processing power.32 But hardware is rapidly improving, and the ulti-
mate limits of hardware performance are vastly higher than those of biological 
computing substrates.

Digital minds will also benefit from major advantages in software:

•	 Editability. It is easier to experiment with parameter variations in software than in 
neural wetware. For example, with a whole brain emulation one could easily trial 
what happens if one adds more neurons in a particular cortical area or if one in-
creases or decreases their excitability. Running such experiments in living biological 
brains would be far more difficult.

•	 Duplicability. With software, one can quickly make arbitrarily many high-fidelity cop-
ies to fill the available hardware base. Biological brains, by contrast, can be repro-
duced only very slowly; and each new instance starts out in a helpless state, remem-
bering nothing of what its parents learned in their lifetimes.

•	 Goal coordination. Human collectives are replete with inefficiencies arising from the 
fact that it is nearly impossible to achieve complete uniformity of purpose among the 
members of a large group—at least until it becomes feasible to induce docility on a 
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large scale by means of drugs or genetic selection. A “copy clan” (a group of identical 
or almost identical programs sharing a common goal) would avoid such coordination 
problems.

•	 Memory sharing. Biological brains need extended periods of training and mentorship 
whereas digital minds could acquire new memories and skills by swapping data files. 
A population of a billion copies of an AI program could synchronize their databases 
periodically, so that all the instances of the program know everything that any in-
stance learned during the previous hour. (Direct memory transfer requires stand-
ardized representational formats. Easy swapping of high-level cognitive content 
would therefore not be possible between just any pair of machine intelligences. In 
particular, it would not be possible among first-generation whole brain emulations.)

•	 New modules, modalities, and algorithms. Visual perception seems to us easy and ef-
fortless, quite unlike solving textbook geometry problems—this despite the fact 
that it takes a massive amount of computation to reconstruct, from the two- 
dimensional patterns of stimulation on our retinas, a three-dimensional representa-
tion of a world populated with recognizable objects. The reason this seems easy 
is that we have dedicated low-level neural machinery for processing visual infor-
mation. This low-level processing occurs unconsciously and automatically, without 
draining our mental energy or conscious attention. Music perception, language use, 
social cognition, and other forms of information processing that are “natural” for us 
humans seem to be likewise supported by dedicated neurocomputational modules. 
An artificial mind that had such specialized support for other cognitive domains that 
have become important in the contemporary world—such as engineering, com-
puter programming, and business strategy—would have big advantages over minds 
like ours that have to rely on clunky general-purpose cognition to think about such 
things. New algorithms may also be developed to take advantage of the distinct af-
fordances of digital hardware, such as its support for fast serial processing.

The ultimately attainable advantages of machine intelligence, hardware and soft-
ware combined, are enormous.33 But how rapidly could those potential advan-
tages be realized? That is the question to which we now turn.
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CHAPTER 4

The kinetics of an 
intelligence explosion

Once machines attain some form of human-equivalence in general rea-
soning ability, how long will it then be before they attain radical super-
intelligence? Will this be a slow, gradual, protracted transition? Or will 

it be sudden, explosive? This chapter analyzes the kinetics of the transition to 
superintelligence as a function of optimization power and system recalcitrance. 
We consider what we know or may reasonably surmise about the behavior of 
these two factors in the neighborhood of human-level general intelligence.

Timing and speed of the takeoff

Given that machines will eventually vastly exceed biology in general intelligence, 
but that machine cognition is currently vastly narrower than human cognition, 
one is led to wonder how quickly this usurpation will take place. The question we 
are asking here must be sharply distinguished from the question we considered in 
Chapter 1 about how far away we currently are from developing a machine with 
human-level general intelligence. Here the question is instead, if and when such a 
machine is developed, how long will it be from then until a machine becomes radi-
cally superintelligent? Note that one could think that it will take quite a long time 
until machines reach the human baseline, or one might be agnostic about how 
long that will take, and yet have a strong view that once this happens, the further 
ascent into strong superintelligence will be very rapid.

It can be helpful to think about these matters schematically, even though 
doing so involves temporarily ignoring some qualifications and complicating 
details. Consider, then, a diagram that plots the intellectual capability of the most 
advanced machine intelligence system as a function of time (Figure 7).

A horizontal line labeled “human baseline” represents the effective intellec-
tual capabilities of a representative human adult with access to the information 



TIMING AND SPEED OF THE TAKEOFF  |  63

sources and technological aids currently available in developed countries. At pre-
sent, the most advanced AI system is far below the human baseline on any rea-
sonable metric of general intellectual ability. At some point in future, a machine 
might reach approximate parity with this human baseline (which we take to be 
fixed—anchored to the year 2014, say, even if the capabilities of human individu-
als should have increased in the intervening years): this would mark the onset 
of the takeoff. The capabilities of the system continue to grow, and at some later 
point the system reaches parity with the combined intellectual capability of all 
of humanity (again anchored to the present): what we may call the “civilization 
baseline”. Eventually, if the system’s abilities continue to grow, it attains “strong 
superintelligence”—a level of intelligence vastly greater than contemporary 
humanity’s combined intellectual wherewithal. The attainment of strong super-
intelligence marks the completion of the takeoff, though the system might con-
tinue to gain in capacity thereafter. Sometime during the takeoff phase, the system 
may pass a landmark which we can call “the crossover”, a point beyond which 
the system’s further improvement is mainly driven by the system’s own actions 
rather than by work performed upon it by others.1 (The possible existence of such 
a crossover will become important in the subsection on optimization power and 
explosivity, later in this chapter.)

With this picture in mind, we can distinguish three classes of transition 
 scenarios—scenarios in which systems progress from human-level intelligence to 
superintelligence—based on their steepness; that is to say, whether they represent 
a slow, fast, or moderate takeoff.

Slow

A slow takeoff is one that occurs over some long temporal interval, such as 
decades or centuries. Slow takeoff scenarios offer excellent opportunities for 

strong 
superintelligence

System 
capability

Time

crossover

now time until 
takeo�

takeo� 
duration

human baseline

civilization 

Figure 7 Shape of the takeoff. It is important to distinguish between these questions: “Will a 
takeoff occur, and if so, when?” and “If and when a takeoff does occur, how steep will it be?” One 
might hold, for example, that it will be a very long time before a takeoff occurs, but that when it 
does it will proceed very quickly. Another relevant question (not illustrated in this figure) is, “How 
large a fraction of the world economy will participate in the takeoff?” These questions are related 
but distinct.
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human political processes to adapt and respond. Different approaches can be 
tried and tested in sequence. New experts can be trained and credentialed. 
Grassroots campaigns can be mobilized by groups that feel they are being dis-
advantaged by unfolding developments. If it appears that new kinds of secure 
infrastructure or mass surveillance of AI researchers is needed, such systems 
could be developed and deployed. Nations fearing an AI arms race would have 
time to try to negotiate treaties and design enforcement mechanisms. Most 
preparations undertaken before onset of the slow takeoff would be rendered 
obsolete as better solutions would gradually become visible in the light of the 
dawning era.

Fast

A fast takeoff occurs over some short temporal interval, such as minutes, hours, 
or days. Fast takeoff scenarios offer scant opportunity for humans to deliberate. 
Nobody need even notice anything unusual before the game is already lost. In a 
fast takeoff scenario, humanity’s fate essentially depends on preparations previously 
put in place. At the slowest end of the fast takeoff scenario range, some simple 
human actions might be possible, analogous to flicking open the “nuclear suitcase”; 
but any such action would either be elementary or have been planned and pre-
programmed in advance.

Moderate

A moderate takeoff is one that occurs over some intermediary temporal interval, 
such as months or years. Moderate takeoff scenarios give humans some chance to 
respond but not much time to analyze the situation, to test different approaches, or 
to solve complicated coordination problems. There is not enough time to develop 
or deploy new systems (e.g. political systems, surveillance regimes, or computer 
network security protocols), but extant systems could be applied to the new 
challenge.

During a slow takeoff, there would be plenty of time for the news to get out. In 
a moderate takeoff, by contrast, it is possible that developments would be kept 
secret as they unfold. Knowledge might be restricted to a small group of insiders, 
as in a covert state-sponsored military research program. Commercial projects, 
small academic teams, and “nine hackers in a basement” outfits might also be 
clandestine—though, if the prospect of an intelligence explosion were “on the 
radar” of state intelligence agencies as a national security priority, then the most 
promising private projects would seem to have a good chance of being under sur-
veillance. The host state (or a dominant foreign power) would then have the option 
of nationalizing or shutting down any project that showed signs of commencing 
takeoff. Fast takeoffs would happen so quickly that there would not be much time 
for word to get out or for anybody to mount a meaningful reaction if it did. But an 
outsider might intervene before the onset of the takeoff if they believed a particu-
lar project to be closing in on success.
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Moderate takeoff scenarios could lead to geopolitical, social, and economic tur-
bulence as individuals and groups jockey to position themselves to gain from the 
unfolding transformation. Such upheaval, should it occur, might impede efforts 
to orchestrate a well-composed response; alternatively, it might enable solutions 
more radical than calmer circumstances would permit. For instance, in a moder-
ate takeoff scenario where cheap and capable emulations or other digital minds 
gradually flood labor markets over a period of years, one could imagine mass pro-
tests by laid-off workers pressuring governments to increase unemployment ben-
efits or institute a living wage guarantee to all human citizens, or to levy special 
taxes or impose minimum wage requirements on employers who use emulation 
workers. In order for any relief derived from such policies to be more than fleet-
ing, support for them would somehow have to be cemented into permanent power 
structures. Similar issues can arise if the takeoff is slow rather than moderate, but 
the disequilibrium and rapid change in moderate scenarios may present special 
opportunities for small groups to wield disproportionate influence.

It might appear to some readers that of these three types of scenario, the slow 
takeoff is the most probable, the moderate takeoff is less probable, and the fast 
takeoff is utterly implausible. It could seem fanciful to suppose that the world 
could be radically transformed and humanity deposed from its position as apex 
cogitator over the course of an hour or two. No change of such moment has 
ever occurred in human history, and its nearest parallels—the Agricultural and 
Industrial Revolutions—played out over much longer timescales (centuries to 
millennia in the former case, decades to centuries in the latter). So the base rate 
for the kind of transition entailed by a fast or medium takeoff scenario, in terms 
of the speed and magnitude of the postulated change, is zero: it lacks precedent 
outside myth and religion.2

Nevertheless, this chapter will present some reasons for thinking that the slow 
transition scenario is improbable. If and when a takeoff occurs, it will likely be 
explosive.

To begin to analyze the question of how fast the takeoff will be, we can conceive 
of the rate of increase in a system’s intelligence as a (monotonically increasing) 
function of two variables: the amount of “optimization power”, or quality-
weighted design effort, that is being applied to increase the system’s intelligence, 
and the responsiveness of the system to the application of a given amount of such 
optimization power. We might term the inverse of responsiveness “recalcitrance”, 
and write:

Rate of change in intelligence =
Optimizatioon power

Recalcitrance

Pending some specification of how to quantify intelligence, design effort, and 
recalcitrance, this expression is merely qualitative. But we can at least observe 
that a system’s intelligence will increase rapidly if either a lot of skilled effort is 
applied to the task of increasing its intelligence and the system’s intelligence is 
not too hard to increase or there is a non-trivial design effort and the system’s 
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recalcitrance is low (or both). If we know how much design effort is going into 
improving a particular system, and the rate of improvement this effort produces, 
we could calculate the system’s recalcitrance.

Further, we can observe that the amount of optimization power devoted to 
improving some system’s performance varies between systems and over time. A 
system’s recalcitrance might also vary depending on how much the system has 
already been optimized. Often, the easiest improvements are made first, leading to 
diminishing returns (increasing recalcitrance) as low-hanging fruits are depleted. 
However, there can also be improvements that make further improvements easier, 
leading to improvement cascades. The process of solving a jigsaw puzzle starts out 
simple—it is easy to find the corners and the edges. Then recalcitrance goes up as 
subsequent pieces are harder to fit. But as the puzzle nears completion, the search 
space collapses and the process gets easier again.

To proceed in our inquiry, we must therefore analyze how recalcitrance and 
optimization power might vary in the critical time periods during the takeoff. 
This will occupy us over the next few pages.

Recalcitrance

Let us begin with recalcitrance. The outlook here depends on the type of the sys-
tem under consideration. For completeness, we first cast a brief glance at the recal-
citrance that would be encountered along paths to superintelligence that do not 
involve advanced machine intelligence. We find that recalcitrance along those 
paths appears to be fairly high. That done, we will turn to the main case, which is 
that the takeoff involves machine intelligence; and there we find that recalcitrance 
at the critical juncture seems low.

Non-machine intelligence paths

Cognitive enhancement via improvements in public health and diet has steeply 
diminishing returns.3 Big gains come from eliminating severe nutritional defi-
ciencies, and the most severe deficiencies have already been largely eliminated 
in all but the poorest countries. Only girth is gained by increasing an already 
adequate diet. Education, too, is now probably subject to diminishing returns. 
The fraction of talented individuals in the world who lack access to quality educa-
tion is still substantial, but declining.

Pharmacological enhancers might deliver some cognitive gains over the com-
ing decades. But after the easiest fixes have been accomplished—perhaps sus-
tainable increases in mental energy and ability to concentrate, along with better 
control over the rate of long-term memory consolidation—subsequent gains will 
be increasingly hard to come by. Unlike diet and public health approaches, how-
ever, improving cognition through smart drugs might get easier before it gets 
harder. The field of neuropharmacology still lacks much of the basic knowledge 
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that would be needed to competently intervene in the healthy brain. Neglect of 
enhancement medicine as a legitimate area of research may be partially to blame 
for this current backwardness. If neuroscience and pharmacology continue to 
progress for a while longer without focusing on cognitive enhancement, then 
maybe there would be some relatively easy gains to be had when at last the devel-
opment of nootropics becomes a serious priority.4

Genetic cognitive enhancement has a U-shaped recalcitrance profile similar to 
that of nootropics, but with larger potential gains. Recalcitrance starts out high 
while the only available method is selective breeding sustained over many genera-
tions, something that is obviously difficult to accomplish on a globally significant 
scale. Genetic enhancement will get easier as technology is developed for cheap 
and effective genetic testing and selection (and particularly when iterated embryo 
selection becomes feasible in humans). These new techniques will make it possible 
to tap the pool of existing human genetic variation for intelligence-enhancing 
alleles. As the best existing alleles get incorporated into genetic enhancement 
packages, however, further gains will get harder to come by. The need for more 
innovative approaches to genetic modification may then increase recalcitrance. 
There are limits to how quickly things can progress along the genetic enhance-
ment path, most notably the fact that germline interventions are subject to an 
inevitable maturational lag: this strongly counteracts the possibility of a fast or 
moderate takeoff.5 That embryo selection can only be applied in the context of in 
vitro fertilization will slow its rate of adoption: another limiting factor.

The recalcitrance along the brain–computer path seems initially very high. In 
the unlikely event that it somehow becomes easy to insert brain implants and 
to achieve high-level functional integration with the cortex, recalcitrance might 
plummet. In the long run, the difficulty of making progress along this path would 
be similar to that involved in improving emulations or AIs, since the bulk of the 
brain–computer system’s intelligence would eventually reside in the computer 
part.

The recalcitrance for making networks and organizations in general more effi-
cient is high. A vast amount of effort is going into overcoming this recalcitrance, 
and the result is an annual improvement of humanity’s total capacity by perhaps 
no more than a couple of percent.6 Furthermore, shifts in the internal and external 
environment mean that organizations, even if efficient at one time, soon become 
ill-adapted to their new circumstances. Ongoing reform effort is thus required 
even just to prevent deterioration. A step change in the rate of gain in average 
organizational efficiency is perhaps conceivable, but it is hard to see how even 
the most radical scenario of this kind could produce anything faster than a slow 
takeoff, since organizations operated by humans are confined to work on human 
timescales. The Internet continues to be an exciting frontier with many oppor-
tunities for enhancing collective intelligence, with a recalcitrance that seems at 
the moment to be in the moderate range—progress is somewhat swift but a lot of 
effort is going into making this progress happen. It may be expected to increase as 
low-hanging fruits (such as search engines and email) are depleted.
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Emulation and AI paths

The difficulty of advancing toward whole brain emulation is difficult to estimate. 
Yet we can point to a specific future milestone: the successful emulation of an 
insect brain. That milestone stands on a hill, and its conquest would bring into 
view much of the terrain ahead, allowing us to make a decent guess at the recal-
citrance of scaling up the technology to human whole brain emulation. (A suc-
cessful emulation of a small-mammal brain, such as that of a mouse, would give 
an even better vantage point that would allow the distance remaining to a human 
whole brain emulation to be estimated with a high degree of precision.) The path 
toward artificial intelligence, by contrast, may feature no such obvious milestone 
or early observation point. It is entirely possible that the quest for artificial intel-
ligence will appear to be lost in dense jungle until an unexpected breakthrough 
reveals the finishing line in a clearing just a few short steps away.

Recall the distinction between these two questions: How hard is it to attain 
roughly human levels of cognitive ability? And how hard is it to get from there 
to superhuman levels? The first question is mainly relevant for predicting how 
long it will be before the onset of a takeoff. It is the second question that is key to 
assessing the shape of the takeoff, which is our aim here. And though it might be 
tempting to suppose that the step from human level to superhuman level must be 
the harder one—this step, after all, takes place “at a higher altitude” where capac-
ity must be superadded to an already quite capable system—this would be a very 
unsafe assumption. It is quite possible that recalcitrance falls when a machine 
reaches human parity.

Consider first whole brain emulation. The difficulties involved in creating 
the first human emulation are of a quite different kind from those involved in 
enhancing an existing emulation. Creating a first emulation involves huge tech-
nological challenges, particularly in regard to developing the requisite scanning 
and image interpretation capabilities. This step might also require considerable 
amounts of physical capital—an industrial-scale machine park with hundreds 
of high-throughput scanning machines is not implausible. By contrast, enhanc-
ing the quality of an existing emulation involves tweaking algorithms and data 
structures: essentially a software problem, and one that could turn out to be much 
easier than perfecting the imaging technology needed to create the original tem-
plate. Programmers could easily experiment with tricks like increasing the neu-
ron count in different cortical areas to see how it affects performance.7 They also 
could work on code optimization and on finding simpler computational models 
that preserve the essential functionality of individual neurons or small networks 
of neurons. If the last technological prerequisite to fall into place is either scan-
ning or translation, with computing power being relatively abundant, then not 
much attention might have been given during the development phase to imple-
mentational efficiency, and easy opportunities for computational efficiency sav-
ings might be available. (More fundamental architectural reorganization might 
also be possible, but that takes us off the emulation path and into AI territory.)
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Another way to improve the code base once the first emulation has been pro-
duced is to scan additional brains with different or superior skills and talents. 
Productivity growth would also occur as a consequence of adapting organiza-
tional structures and workflows to the unique attributes of digital minds. Since 
there is no precedent in the human economy of a worker who can be literally 
copied, reset, run at different speeds, and so forth, managers of the first emulation 
cohort would find plenty of room for innovation in managerial practices.

After initially plummeting when human whole brain emulation becomes 
possible, recalcitrance may rise again. Sooner or later, the most glaring imple-
mentational inefficiencies will have been optimized away, the most promising 
algorithmic variations will have been tested, and the easiest opportunities for 
organizational innovation will have been exploited. The template library will have 
expanded so that acquiring more brain scans would add little benefit over work-
ing with existing templates. Since a template can be multiplied, each copy can be 
individually trained in a different field, and this can be done at electronic speed, 
it might be that the number of brains that would need to be scanned in order 
to capture most of the potential economic gains is small. Possibly a single brain 
would suffice.

Another potential cause of escalating recalcitrance is the possibility that emu-
lations or their biological supporters will organize to support regulations restrict-
ing the use of emulation workers, limiting emulation copying, prohibiting certain 
kinds of experimentation with digital minds, instituting workers’ rights and a 
minimum wage for emulations, and so forth. It is equally possible, however, that 
political developments would go in the opposite direction, contributing to a fall in 
recalcitrance. This might happen if initial restraint in the use of emulation labor 
gives way to unfettered exploitation as competition heats up and the economic 
and strategic costs of occupying the moral high ground become clear.

As for artificial intelligence (non-emulation machine intelligence), the diffi-
culty of lifting a system from human-level to superhuman intelligence by means 
of algorithmic improvements depends on the attributes of the particular system. 
Different architectures might have very different recalcitrance.

In some situations, recalcitrance could be extremely low. For example, if 
human-level AI is delayed because one key insight long eludes programmers, then 
when the final breakthrough occurs, the AI might leapfrog from below to radi-
cally above human level without even touching the intermediary rungs. Another 
situation in which recalcitrance could turn out to be extremely low is that of an AI 
system that can achieve intelligent capability via two different modes of process-
ing. To illustrate this possibility, suppose an AI is composed of two subsystems, 
one possessing domain-specific problem-solving techniques, the other possess-
ing general-purpose reasoning ability. It could then be the case that while the sec-
ond subsystem remains below a certain capacity threshold, it contributes nothing 
to the system’s overall performance, because the solutions it generates are always 
inferior to those generated by the domain-specific subsystem. Suppose now that a 
small amount of optimization power is applied to the general-purpose subsystem 
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and that this produces a brisk rise in the capacity of that subsystem. At first, we 
observe no increase in the overall system’s performance, indicating that recalci-
trance is high. Then, once the capacity of the general-purpose subsystem crosses 
the threshold where its solutions start to beat those of the domain-specific sub-
system, the overall system’s performance suddenly begins to improve at the same 
brisk pace as the general-purpose subsystem, even as the amount of optimization 
power applied stays constant: the system’s recalcitrance has plummeted.

It is also possible that our natural tendency to view intelligence from an anthro-
pocentric perspective will lead us to underestimate improvements in sub-human 
systems, and thus to overestimate recalcitrance. Eliezer Yudkowsky, an AI theo-
rist who has written extensively on the future of machine intelligence, puts the 
point as follows:

AI might make an apparently sharp jump in intelligence purely as the result of anthropo-
morphism, the human tendency to think of “village idiot” and “Einstein” as the extreme 
ends of the intelligence scale, instead of nearly indistinguishable points on the scale of 
minds-in-general. Everything dumber than a dumb human may appear to us as simply 
“dumb”. One imagines the “AI arrow” creeping steadily up the scale of intelligence, moving 
past mice and chimpanzees, with AIs still remaining “dumb” because AIs cannot speak 
fluent language or write science papers, and then the AI arrow crosses the tiny gap from 
infra-idiot to ultra-Einstein in the course of one month or some similarly short period.8 
(See Fig. 8.)

The upshot of these several considerations is that it is difficult to predict how 
hard it will be to make algorithmic improvements in the first AI that reaches 
a roughly human level of general intelligence. There are at least some possible 
circumstances in which algorithm-recalcitrance is low. But even if algorithm- 
recalcitrance is very high, this would not preclude the overall recalcitrance of the 
AI in question from being low. For it might be easy to increase the intelligence of 
the system in other ways than by improving its algorithms. There are two other 
factors that can be improved: content and hardware.

First, consider content improvements. By “content” we here mean those parts 
of a system’s software assets that do not make up its core algorithmic architecture. 
Content might include, for example, databases of stored percepts, specialized skills 

Figure 8 A less anthropomorphic scale? The gap between a dumb and a clever person may 
appear large from an anthropocentric perspective, yet in a less parochial view the two have nearly 
indistinguishable minds.9 It will almost certainly prove harder and take longer to build a machine 
intelligence that has a general level of smartness comparable to that of a village idiot than to 
improve such a system so that it becomes much smarter than any human.

Mouse Village idiot

Chimp Einstein

AI
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libraries, and inventories of declarative knowledge. For many kinds of system, the 
distinction between algorithmic architecture and content is very unsharp; nev-
ertheless, it will serve as a rough-and-ready way of pointing to one potentially 
important source of capability gains in a machine intelligence. An alternative way 
of expressing much the same idea is by saying that a system’s intellectual problem-
solving capacity can be enhanced not only by making the system cleverer but also 
by expanding what the system knows.

Consider a contemporary AI system such as TextRunner (a research project 
at the University of Washington) or IBM’s Watson (the system that won the 
Jeopardy! quiz show). These systems can extract certain pieces of semantic infor-
mation by analyzing text. Although these systems do not understand what they 
read in the same sense or to the same extent as a human does, they can neverthe-
less extract significant amounts of information from natural language and use 
that information to make simple inferences and answer questions. They can also 
learn from experience, building up more extensive representations of a concept 
as they encounter additional instances of its use. They are designed to operate for 
much of the time in unsupervised mode (i.e. to learn hidden structure in unla-
beled data in the absence of error or reward signal, without human guidance) and 
to be fast and scalable. TextRunner, for instance, works with a corpus of 500 mil-
lion web pages.10

Now imagine a remote descendant of such a system that has acquired the ability 
to read with as much understanding as a human ten-year-old but with a reading 
speed similar to that of TextRunner. (This is probably an AI-complete problem.) 
So we are imagining a system that thinks much faster and has much better mem-
ory than a human adult, but knows much less, and perhaps the net effect of this is 
that the system is roughly human-equivalent in its general problem-solving abil-
ity. But its content recalcitrance is very low—low enough to precipitate a takeoff. 
Within a few weeks, the system has read and mastered all the content contained 
in the Library of Congress. Now the system knows much more than any human 
being and thinks vastly faster: it has become (at least) weakly superintelligent.

A system might thus greatly boost its effective intellectual capability by absorb-
ing pre-produced content accumulated through centuries of human science and 
civilization: for instance, by reading through the Internet. If an AI reaches human 
level without previously having had access to this material or without having been 
able to digest it, then the AI’s overall recalcitrance will be low even if it is hard to 
improve its algorithmic architecture.

Content-recalcitrance is a relevant concept for emulations, too. A high-speed 
emulation has an advantage not only because it can complete the same tasks 
as biological humans more quickly, but also because it can accumulate more 
timely content, such as task-relevant skills and expertise. In order to tap the full 
potential of fast content accumulation, however, a system needs to have a cor-
respondingly large memory capacity. There is little point in reading an entire 
library if you have forgotten all about the aardvark by the time you get to the aba-
lone. While an AI system is likely to have adequate memory capacity, emulations 
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would inherit some of the capacity limitations of their human templates. They 
may therefore need architectural enhancements in order to become capable of 
unbounded learning.

So far we have considered the recalcitrance of architecture and of content—that 
is, how difficult it would be to improve the software of a machine intelligence that 
has reached human parity. Now let us look at a third way of boosting the per-
formance of machine intelligence: improving its hardware. What would be the 
recalcitrance for hardware-driven improvements?

Starting with intelligent software (emulation or AI) one can amplify collective 
intelligence simply by using additional computers to run more instances of the 
program.11 One could also amplify speed intelligence by moving the program to 
faster computers. Depending on the degree to which the program lends itself to 
parallelization, speed intelligence could also be amplified by running the pro-
gram on more processors. This is likely to be feasible for emulations, which have 
a highly parallelized architecture; but many AI programs, too, have important 
subroutines that can benefit from massive parallelization. Amplifying quality 
intelligence by increasing computing power might also be possible, but that case 
is less straightforward.12

The recalcitrance for amplifying collective or speed intelligence (and possibly 
quality intelligence) in a system with human-level software is therefore likely to be 
low. The only difficulty involved is gaining access to additional computing power. 
There are several ways for a system to expand its hardware base, each relevant over 
a different timescale.

In the short term, computing power should scale roughly linearly with funding: 
twice the funding buys twice the number of computers, enabling twice as many 
instances of the software to be run simultaneously. The emergence of cloud com-
puting services gives a project the option to scale up its computational resources 
without even having to wait for new computers to be delivered and installed, 
though concerns over secrecy might favor the use of in-house computers. (In cer-
tain scenarios, computing power could also be obtained by other means, such as 
by commandeering botnets.13) Just how easy it would be to scale the system by a 
given factor depends on how much computing power the initial system uses. A 
system that initially runs on a PC could be scaled by a factor of thousands for a 
mere million dollars. A program that runs on a supercomputer would be far more 
expensive to scale.

In the slightly longer term, the cost of acquiring additional hardware may be 
driven up as a growing portion of the world’s installed capacity is being used to 
run digital minds. For instance, in a competitive market-based emulation scen-
ario, the cost of running one additional copy of an emulation should rise to be 
roughly equal to the income generated by the marginal copy, as investors bid up 
the price for existing computing infrastructure to match the return they expect 
from their investment (though if only one project has mastered the technology 
it might gain a degree of monopsony power in the computing power market and 
therefore pay a lower price).
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Over a somewhat longer timescale, the supply of computing power will grow 
as new capacity is installed. A demand spike would spur production in existing 
semiconductor foundries and stimulate the construction of new plants. (A one-
off performance boost, perhaps amounting to one or two orders of magnitude, 
might also be obtainable by using customized microprocessors.14) Above all, the 
rising wave of technology improvements will pour increasing volumes of compu-
tational power into the turbines of the thinking machines. Historically, the rate of 
improvement of computing technology has been described by the famous Moore’s 
law, which in one of its variations states that computing power per dollar doubles 
every 18 months or so.15 Although one cannot bank on this rate of improvement 
continuing up to the development of human-level machine intelligence, yet until 
fundamental physical limits are reached there will remain room for advances in 
computing technology.

There are thus reasons to expect that hardware recalcitrance will not be very 
high. Purchasing more computing power for the system once it proves its mettle 
by attaining human-level intelligence might easily add several orders of magni-
tude of computing power (depending on how hardware-frugal the project was 
before expansion). Chip customization might add one or two orders of magni-
tude. Other means of expanding the hardware base, such as building more facto-
ries and advancing the frontier of computing technology, take longer—normally 
several years, though this lag would be radically compressed once machine super-
intelligence revolutionizes manufacturing and technology development.

In summary, we can talk about the likelihood of a hardware overhang: when 
human-level software is created, enough computing power may already be avail-
able to run vast numbers of copies at great speed. Software recalcitrance, as 
discussed above, is harder to assess but might be even lower than hardware recalci-
trance. In particular, there may be content overhang in the form of pre-made con-
tent (e.g. the Internet) that becomes available to a system once it reaches human 
parity. Algorithm overhang—pre-designed algorithmic enhancements—is also 
possible but perhaps less likely. Software improvements (whether in algorithms 
or content) might offer orders of magnitude of potential performance gains that 
could be fairly easily accessed once a digital mind attains human parity, on top of 
the performance gains attainable by using more or better hardware.

Optimization power and explosivity

Having examined the question of recalcitrance we must now turn to the other 
half of our schematic equation, optimization power. To recall: Rate of change in 
Intelligence = Optimization power/Recalcitrance. As reflected in this schematic, 
a fast takeoff does not require that recalcitrance during the transition phase be 
low. A fast takeoff could also result if recalcitrance is constant or even moderately 
increasing, provided the optimization power being applied to improving the sys-
tem’s performance grows sufficiently rapidly. As we shall now see, there are good 
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grounds for thinking that the applied optimization power will increase during 
the transition, at least in the absence of a deliberate measures to prevent this from 
happening.

We can distinguish two phases. The first phase begins with the onset of the 
takeoff, when the system reaches the human baseline for individual intelligence. 
As the system’s capability continues to increase, it might use some or all of that 
capability to improve itself (or to design a successor system—which, for present 
purposes, comes to the same thing). However, most of the optimization power 
applied to the system still comes from outside the system, either from the work 
of programmers and engineers employed within the project or from such work 
done by the rest of the world as can be appropriated and used by the project.16 If 
this phase drags out for any significant period of time, we can expect the amount 
of optimization power applied to the system to grow. Inputs both from inside the 
project and from the outside world are likely to increase as the promise of the cho-
sen approach becomes manifest. Researchers may work harder, more research-
ers may be recruited, and more computing power may be purchased to expedite 
progress. The increase could be especially dramatic if the development of human-
level machine intelligence takes the world by surprise, in which case what was 
previously a small research project might suddenly become the focus of intense 
research and development efforts around the world (though some of those efforts 
might be channeled into competing projects).

A second growth phase will begin if at some point the system has acquired so 
much capability that most of the optimization power exerted on it comes from 
the system itself (marked by the variable level labeled “crossover” in Figure 7). 
This fundamentally changes the dynamic, because any increase in the system’s 
capability now translates into a proportional increase in the amount of optimi-
zation power being applied to its further improvement. If recalcitrance remains 
constant, this feedback dynamic produces exponential growth (see Box 4). The 
doubling constant depends on the scenario but might be extremely short—mere 
seconds in some scenarios—if growth is occurring at electronic speeds, which 
might happen as a result of algorithmic improvements or the exploitation of an 
overhang of content or hardware.17 Growth that is driven by physical construc-
tion, such as the production of new computers or manufacturing equipment, 
would require a somewhat longer timescale (but still one that might be very short 
compared with the current growth rate of the world economy).

It is thus likely that the applied optimization power will increase during the 
transition: initially because humans try harder to improve a machine intelligence 
that is showing spectacular promise, later because the machine intelligence itself 
becomes capable of driving further progress at digital speeds. This would create 
a real possibility of a fast or medium takeoff even if recalcitrance were constant or 
slightly increasing around the human baseline.18 Yet we saw in the previous subsec-
tion that there are factors that could lead to a big drop in recalcitrance around 
the human baseline level of capability. These factors include, for example, the 
possibility of rapid hardware expansion once a working software mind has been 
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Box 4 On the kinetics of an intelligence explosion

We can write the rate of change in intelligence as the ratio between the optimiza-
tion power applied to the system and the system’s recalcitrance:

d
dt
I
=
ℜ
O

.

The amount of optimization power acting on a system is the sum of whatever 
optimization power the system itself contributes and the optimization power 
exerted from without. For example, a seed AI might be improved through a 
combination of its own efforts and the efforts of a human programming team, 
and perhaps also the efforts of the wider global community of researchers mak-
ing continuous advances in the semiconductor industry, computer science, and 
related fields:19

O O O O= + +system project world .

A seed AI starts out with very limited cognitive capacities. At the outset, there-
fore, Osystem is small.20 What about Oproject and Oworld ? There are cases in which 
a single project has more relevant capability than the rest of the world com-
bined—the Manhattan project, for instance, brought a very large fraction of the 
world’s best physicists to Los Alamos to work on the atomic bomb. More com-
monly, any one project contains only a small fraction of the world’s total relevant 
research capability. But even when the outside world has a greater total amount 
of relevant research capability than any one project, Oproject may nevertheless 
exceed Oworld , since much of the outside world’s capability is not be focused on 
the particular system in question. If a project begins to look promising—which 
will happen when a system passes the human baseline if not before—it might 
 attract additional investment, increasing Oproject . If the project’s accomplishments 
are public, Oworld might also rise as the progress inspires greater interest in ma-
chine intelligence generally and as various powers scramble to get in on the 
game. During the transition phase, therefore, total optimization power applied 
to improving a cognitive system is likely to increase as the capability of the system 
increases.21

As the system’s capabilities grow, there may come a point at which the op-
timization power generated by the system itself starts to dominate the opti-
mization power applied to it from outside (across all significant dimensions of 
improvement):

O O Osystem project world> + .

This crossover is significant because beyond this point, further improvement 
to the system’s capabilities contributes strongly to increasing the total opti-
mization power applied to improving the system. We thereby enter a regime 

continued
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Box 4  Continued

of strong recursive self-improvement. This leads to explosive growth of the 
system’s capability under a fairly wide range of different shapes of the recalci-
trance curve.

To illustrate, consider first a scenario in which recalcitrance is constant, so that 
the rate of increase in an AI’s intelligence is equal to the optimization power being  
applied. Assume that all the optimization power that is applied comes from the  
AI itself and that the AI applies all its intelligence to the task of amplifying its own 
intelligence, so that Osystem = I.22  We then have

d
dt k
I I= .

Solving this simple differential equation yields the exponential function

I=Aet/k .

But recalcitrance being constant is a rather special case. Recalcitrance might 
well decline around the human baseline, due to one or more of the factors 
mentioned in the previous subsection, and remain low around the crossover 
and some distance beyond (perhaps until the system eventually approaches 
fundamental physical limits). For example, suppose that the optimization power 
applied to the system is roughly constant (i.e. O Oproject world+ ≈ c) prior to the 
system becoming capable of contributing substantially to its own design, and that 
this leads to the system doubling in capacity every 18 months. (This would be 
roughly in line with historical improvement rates from Moore’s law combined 
with software advances.23) This rate of improvement, if achieved by means of 
roughly constant optimization power, entails recalcitrance declining as the in-
verse of the system power:

d
dt

cI
I

I= =
1/

c .

If recalcitrance continues to fall along this hyperbolic pattern, then when the AI  
reaches the crossover point the total amount of optimization power applied to 
improving the AI has doubled. We then have

d
dt

c+I I
I

I I= = +
( )

( ) .
1/

c

The next doubling occurs 7.5 months later. Within 17.9 months, the system’s 
capacity has grown a thousandfold, thus obtaining speed superintelligence 
 (Figure 9).

This particular growth trajectory has a positive singularity at t = 18 months. In  
reality, the assumption that recalcitrance is constant would cease to hold as the 
system began to approach the physical limits to information processing, if not 
sooner.
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attained; the possibility of algorithmic improvements; the possibility of scanning 
additional brains (in the case of whole brain emulation); and the possibility of 
rapidly incorporating vast amounts of content by digesting the Internet (in the 
case of artificial intelligence).24

These observations notwithstanding, the shape of the recalcitrance curve in 
the relevant region is not yet well characterized. In particular, it is unclear how 
difficult it would be to improve the software quality of a human-level emulation 
or AI. The difficulty of expanding the hardware power available to a system is also 
not clear. Whereas today it would be relatively easy to increase the computing 
power available to a small project by spending a thousand times more on comput-
ing power or by waiting a few years for the price of computers to fall, it is possible 
that the first machine intelligence to reach the human baseline will result from a 
large project involving pricey supercomputers, which cannot be cheaply scaled, 
and that Moore’s law will by then have expired. For these reasons, although a fast 
or medium takeoff looks more likely, the possibility of a slow takeoff cannot be 
excluded.25

Box 4  Continued

These two scenarios are intended for illustration only; many other trajectories 
are possible, depending on the shape of the recalcitrance curve. The claim is sim-
ply that the strong feedback loop that sets in around the crossover point tends 
strongly to make the takeoff faster than it would otherwise have been.

Figure 9 One simple model of an intelligence explosion.
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CHAPTER 5

Decisive strategic 
advantage

A question distinct from, but related to, the question of kinetics is 
whether there will there be one superintelligent power or many? Might 
an intelligence explosion propel one project so far ahead of all others as 

to make it able to dictate the future? Or will progress be more uniform, unfurl-
ing across a wide front, with many projects participating but none securing an 
overwhelming and permanent lead?

The preceding chapter analyzed one key parameter in determining the size 
of the gap that might plausibly open up between a leading power and its near-
est competitors— namely, the speed of the transition from human to strongly 
superhuman intelligence. This suggests a first-cut analysis. If the takeoff is fast 
(completed over the course of hours, days, or weeks) then it is unlikely that two 
independent projects would be taking off concurrently: almost certainty, the first 
project would have completed its takeoff before any other project would have 
started its own. If the takeoff is slow (stretching over many years or decades) then 
there could plausibly be multiple projects undergoing takeoffs concurrently, so 
that although the projects would by the end of the transition have gained enor-
mously in capability, there would be no time at which any project was far enough 
ahead of the others to give it an overwhelming lead. A takeoff of moderate speed 
is poised in between, with either condition a possibility: there might or might not 
be more than one project undergoing the takeoff at the same time.1

Will one machine intelligence project get so far ahead of the competition that 
it gets a decisive strategic advantage—that is, a level of technological and other 
advantages sufficient to enable it to achieve complete world domination? If a pro-
ject did obtain a decisive strategic advantage, would it use it to suppress competi-
tors and form a singleton (a world order in which there is at the global level a single 
decision-making agency)? And if there is a winning project, how “large” would 
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it be—not in terms of physical size or budget but in terms of how many people’s 
desires would be controlling its design? We will consider these questions in turn.

Will the frontrunner get a decisive strategic 
advantage?

One factor influencing the width of the gap between frontrunner and followers 
is the rate of diffusion of whatever it is that gives the leader a competitive advan-
tage. A frontrunner might find it difficult to gain and maintain a large lead if 
followers can easily copy the frontrunner’s ideas and innovations. Imitation cre-
ates a headwind that disadvantages the leader and benefits laggards, especially if 
intellectual property is weakly protected. A frontrunner might also be especially 
vulnerable to expropriation, taxation, or being broken up under anti-monopoly 
regulation.

It would be a mistake, however, to assume that this headwind must increase 
monotonically with the gap between frontrunner and followers. Just as a rac-
ing cyclist who falls too far behind the competition is no longer shielded from 
the wind by the cyclists ahead, so a technology follower who lags sufficiently 
behind the cutting edge might find it hard to assimilate the advances being 
made at the frontier.2 The gap in understanding and capability might have 
grown too large. The leader might have migrated to a more advanced technol-
ogy platform, making subsequent innovations untransferable to the primitive 
platforms used by laggards. A sufficiently pre-eminent leader might have the 
ability to stem information leakage from its research programs and its sensi-
tive installations, or to sabotage its competitors’ efforts to develop their own 
advanced capabilities.

If the frontrunner is an AI system, it could have attributes that make it easier 
for it to expand its capabilities while reducing the rate of diffusion. In human-run 
organizations, economies of scale are counteracted by bureaucratic inefficiencies 
and agency problems, including difficulties in keeping trade secrets.3 These prob-
lems would presumably limit the growth of a machine intelligence project so long 
as it is operated by humans. An AI system, however, might avoid some of these 
scale diseconomies, since the AI’s modules (in contrast to human workers) need 
not have individual preferences that diverge from those of the system as a whole. 
Thus, the AI system could avoid a sizeable chunk of the inefficiencies arising from 
agency problems in human enterprises. The same advantage—having perfectly 
loyal parts—would also make it easier for an AI system to pursue long-range clan-
destine goals. An AI would have no disgruntled employees ready to be poached by 
competitors or bribed into becoming informants.4

We can get a sense of the distribution of plausible gaps in development times by 
looking at some historical examples (see Box 5). It appears that lags in the range 
of a few months to a few years are typical of strategically significant technology 
projects.
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Box 5 Technology races: some historical examples

Over long historical timescales, there has been an increase in the rate at which 
knowledge and technology diffuse around the globe. As a result, the temporal 
gaps between technology leaders and nearest followers have narrowed.

China managed to maintain a monopoly on silk production for over two thou-
sand years. Archeological finds suggest that production might have begun around 
3000 bc, or even earlier.5 Sericulture was a closely held secret. Revealing the 
techniques was punishable by death, as was exporting silkworms or their eggs 
outside China. The Romans, despite the high price commanded by imported silk 
cloth in their empire, never learnt the art of silk manufacture. Not until around 
ad 300 did a Japanese expedition manage to capture some silkworm eggs along 
with four young Chinese girls, who were forced to divulge the art to their abduc-
tors.6 Byzantium joined the club of producers in ad 522. The story of porcelain-
making also features long lags. The craft was practiced in China during the Tang 
Dynasty around ad 600 (and might have been in use as early as ad 200), but 
was mastered by Europeans only in the eighteenth century.7 Wheeled vehicles 
appeared in several sites across Europe and Mesopotamia around 3500 bc but 
reached the Americas only in post-Columbian times.8 On a grander scale, the hu-
man species took tens of thousands of years to spread across most of the globe, 
the Agricultural Revolution thousands of years, the Industrial Revolution only 
hundreds of years, and an Information Revolution could be said to have spread 
globally over the course of decades—though, of course, these transitions are not 
necessarily of equal profundity. (The Dance Dance Revolution video game spread 
from Japan to Europe and North America in just one year!)

Technological competition has been quite extensively studied, particularly in 
the contexts of patent races and arms races.9 It is beyond the scope of our inves-
tigation to review this literature here. However, it is instructive to look at some 
examples of strategically significant technology races in the twentieth century 
(see Table 7).

With regard to these six technologies, which were regarded as strategically 
important by the rivaling superpowers because of their military or symbolic 
significance, the gaps between leader and nearest laggard were (very approxi-
mately) 49 months, 36 months, 4 months, 1 month, 4 months, and 60 months, 
respectively—longer than the duration of a fast takeoff and shorter than the 
duration of a slow takeoff.10 In many cases, the laggard’s project benefitted from 
espionage and publicly available information. The mere demonstration of the 
feasibility of an invention can also encourage others to develop it independently; 
and fear of falling behind can spur the efforts to catch up.

Perhaps closer to the case of AI are mathematical inventions that do not re-
quire the development of new physical infrastructure. Often these are published 
in the academic literature and can thus be regarded as universally available; 
but in some cases, when the discovery appears to offer a strategic advantage, 
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Box 5  Continued

 publication is delayed. For example, two of the most important ideas in public-
key cryptography are the Diffie–Hellman key exchange protocol and the RSA 
encryption scheme. These were discovered by the academic community in 1976 
and 1978, respectively, but it has later been confirmed that they were known 
by cryptographers at the UK’s communications security group since the early 
1970s.20 Large software projects might offer a closer analogy with AI projects, 
but it is harder to give crisp examples of typical lags because software is usually 
rolled out in incremental installments and the functionalities of competing sys-
tems are often not directly comparable.

It is possible that globalization and increased surveillance will reduce typi-
cal lags between competing technology projects. Yet there is likely to be a lower 
bound on how short the average lag could become (in the absence of deliberate 
coordination).21 Even absent dynamics that lead to snowball effects, some projects 
will happen to end up with better research staff, leadership, and infrastructure, or 
will just stumble upon better ideas. If two projects pursue alternative approaches, 
one of which turns out to work better, it may take the rival project many months 
to switch to the superior approach even if it is able to closely monitor what the 
forerunner is doing.

Combining these observations with our earlier discussion of the speed of the 
takeoff, we can conclude that it is highly unlikely that two projects would be close 
enough to undergo a fast takeoff concurrently; for a medium takeoff, it could eas-
ily go either way; and for a slow takeoff, it is highly likely that several projects 
would undergo the process in parallel. But the analysis needs a further step. The 
key question is not how many projects undergo a takeoff in tandem, but how many 
projects emerge on the yonder side sufficiently tightly clustered in capability that 
none of them has a decisive strategic advantage. If the takeoff process is relatively 
slow to begin and then gets faster, the distance between competing projects would 
tend to grow. To return to our bicycle metaphor, the situation would be analogous 
to a pair of cyclists making their way up a steep hill, one trailing some distance 
behind the other—the gap between them then expanding as the frontrunner 
reaches the peak and starts accelerating down the other side.

Consider the following medium takeoff scenario. Suppose it takes a project one 
year to increase its AI’s capability from the human baseline to a strong superintel-
ligence, and that one project enters this takeoff phase with a six-month lead over 
the next most advanced project. The two projects will be undergoing a takeoff 
concurrently. It might seem, then, that neither project gets a decisive strategic 
advantage. But that need not be so. Suppose it takes nine months to advance from 
the human baseline to the crossover point, and another three months from there 
to strong superintelligence. The frontrunner then attains strong superintelligence 
three months before the following project even reaches the crossover point. This 
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would give the leading project a decisive strategic advantage and the opportunity 
to parlay its lead into permanent control by disabling the competing projects and 
establishing a singleton. (Note that the concept of a singleton is an abstract one: 
a singleton could be democracy, a tyranny, a single dominant AI, a strong set of 
global norms that include effective provisions for their own enforcement, or even 
an alien overlord—its defining characteristic being simply that it is some form of 
agency that can solve all major global coordination problems. It may, but need 
not, resemble any familiar form of human governance.22)

Since there is an especially strong prospect of explosive growth just after the 
crossover point, when the strong positive feedback loop of optimization power 
kicks in, a scenario of this kind is a serious possibility, and it increases the chances 
that the leading project will attain a decisive strategic advantage even if the takeoff 
is not fast.

How large will the successful project be?

Some paths to superintelligence require great resources and are therefore likely to 
be the preserve of  large well-funded projects. Whole brain emulation, for instance, 
requires many different kinds of expertise and lots of equipment. Biological intel-
ligence enhancements and brain–computer interfaces would also have a large 
scale factor: while a small biotech firm might invent one or two drugs, achieving 
superintelligence along one of these paths (if doable at all) would likely require 
many inventions and many tests, and therefore the backing of an industrial sec-
tor or a well-funded national program. Achieving collective superintelligence by 
making organizations and networks more efficient requires even more extensive 
input, involving much of the world economy.

The AI path is more difficult to assess. Perhaps it would require a very large 
research program; perhaps it could be done by a small group. A lone hacker scen-
ario cannot be excluded either. Building a seed AI might require insights and 
algorithms developed over many decades by the scientific community around the 
world. But it is possible that the last critical breakthrough idea might come from 
a single individual or a small group that succeeds in putting everything together. 
This scenario is less realistic for some AI architectures than others. A system that 
has a large number of parts that need to be tweaked and tuned to work effectively 
together, and then painstakingly loaded with custom-made cognitive content, is 
likely to require a larger project. But if a seed AI could be instantiated as a simple 
system, one whose construction depends only on getting a few basic principles 
right, then the feat might be within the reach of a small team or an individual. 
The likelihood of the final breakthrough being made by a small project increases 
if most previous progress in the field has been published in the open literature or 
made available as open source software.

We must distinguish the question of how big will be the project that directly 
engineers the system from the question of how big the group will be that controls 
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whether, how, and when the system is created. The atomic bomb was created pri-
marily by a group of scientists and engineers. (The Manhattan Project employed 
about 130,000 people at its peak, the vast majority of whom were construction 
workers or building operators.23) These technical experts, however, were con-
trolled by the US military, which was directed by the US government, which was 
ultimately accountable to the American electorate, which at the time constituted 
about one-tenth of the adult world population.24

Monitoring

Given the extreme security implications of superintelligence, governments would 
likely seek to nationalize any project on their territory that they thought close 
to achieving a takeoff. A powerful state might also attempt to acquire projects 
located in other countries through espionage, theft, kidnapping, bribery, threats, 
military conquest, or any other available means. A powerful state that cannot 
acquire a foreign project might instead destroy it, especially if the host country 
lacks an effective deterrent. If global governance structures are strong by the time 
a breakthrough begins to look imminent, it is possible that promising projects 
would be placed under international control.

An important question, therefore, is whether national or international author-
ities will see an intelligence explosion coming. At present, intelligence agencies 
do not appear to be looking very hard for promising AI projects or other forms 
of potentially explosive intelligence amplification.25 If they are indeed not pay-
ing (much) attention, this is presumably due to the widely shared perception 
that there is no prospect whatever of imminent superintelligence. If and when 
it becomes a common belief among prestigious scientists that there is a substan-
tial chance that superintelligence is just around the corner, the major intelligence 
agencies of the world would probably start to monitor groups and individuals who 
seem to be engaged in relevant research. Any project that began to show sufficient 
progress could then be promptly nationalized. If political elites were persuaded 
by the seriousness of the risk, civilian efforts in sensitive areas might be regulated 
or outlawed.

How difficult would such monitoring be? The task is easier if the goal is only to 
keep track of the leading project. In that case, surveillance focusing on the several 
best-resourced projects may be sufficient. If the goal is instead to prevent any work 
from taking place (at least outside of specially authorized institutions) then sur-
veillance would have to be more comprehensive, since many small projects and 
individuals are in a position to make at least some progress.

It would be easier to monitor projects that require significant amounts of physi-
cal capital, as would be the case with a whole brain emulation project. Artificial 
intelligence research, by contrast, requires only a personal computer, and would 
therefore be more difficult to monitor. Some of the theoretical work could be done 
with pen and paper. Even so, it would not be too difficult to identify most capable 
individuals with a serious long-standing interest in artificial general intelligence 
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research. Such individuals usually leave visible trails. They may have published 
academic papers, presented at conferences, posted on Internet forums, or earned 
degrees from leading computer science departments. They may also have had 
communications with other AI researchers, allowing them to be identified by 
mapping the social graph.

Projects designed from the outset to be secret could be more difficult to detect. 
An ordinary software development project could serve as a front.26 Only careful 
analysis of the code being produced would reveal the true nature of what the pro-
ject was trying to accomplish. Such analysis would require a lot of (highly skilled) 
manpower, whence only a small number of suspect projects could be scrutinized 
at this level. The task would become much easier if effective lie detection technol-
ogy had been developed and could be routinely used in this kind of surveillance.27

Another reason states might fail to catch precursor developments is the inher-
ent difficulty of forecasting some types of breakthrough. This is more relevant 
to AI research than to whole brain emulation development, since for the latter 
the key breakthrough is more likely to be preceded by a clear gradient of steady 
advances.

It is also possible that intelligence agencies and other government bureaucracies 
have a certain clumsiness or rigidity that might prevent them from understand-
ing the significance of some developments that might be clear to some outside 
groups. Barriers to official understanding of a potential intelligence explosion 
might be especially steep. It is conceivable, for example, that the topic will become 
inflamed with religious or political controversies, rendering it taboo for officials in 
some countries. The topic might become associated with some discredited figure 
or with charlatanry and hype in general, hence shunned by respected scientists 
and other establishment figures. (As we saw in Chapter 1, something like this has 
already happened twice: recall the two “AI winters.”) Industry groups might lobby 
to prevent aspersions being cast on profitable business areas; academic communi-
ties might close ranks to marginalize those who voice concerns about long-term 
consequences of the science that is being done.28

Consequently, a total intelligence failure cannot be ruled out. Such a failure is 
especially likely if breakthroughs should occur in the nearer future, before the 
issue has risen to public prominence. And even if intelligence agencies get it right, 
political leaders might not listen or act on the advice. Getting the Manhattan 
Project started took an extraordinary effort by several visionary physicists, 
including especially Mark Oliphant and Leó Szilárd: the latter persuaded Eugene 
Wigner to persuade Albert Einstein to put his name on a letter to persuade 
President Franklin D. Roosevelt to look into the matter. Even after the project 
reached its full scale, Roosevelt remained skeptical of its workability and signifi-
cance, as did his successor Harry Truman.

For better or worse, it would probably be harder for a small group of activists 
to affect the outcome of an intelligence explosion if big players, such as states, 
are taking active part. Opportunities for private individuals to reduce the overall 
amount of existential risk from a potential intelligence explosion are therefore 
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greatest in scenarios in which big players remain relatively oblivious to the issue, 
or in which the early efforts of activists make a major difference to whether, when, 
which, or with what attitude big players enter the game. Activists seeking maxi-
mum expected impact may therefore wish to focus most of their planning on such 
high-leverage scenarios, even if they believe that scenarios in which big players 
end up calling all the shots are more probable.

International collaboration

International coordination is more likely if global governance structures gen-
erally get stronger. Coordination might also be more likely if the significance 
of an intelligence explosion is widely appreciated ahead of time and if effective 
monitoring of all serious projects is feasible. Even if monitoring is infeasible, 
however, international cooperation would still be possible. Many countries 
could band together to support a joint project. If such a joint project were suf-
ficiently well resourced, it could have a good chance of being the first to reach 
the goal, especially if any rival project had to be small and secretive to elude 
detection.

There are precedents of large-scale successful multinational scientific collabo-
rations, such as the International Space Station, the Human Genome Project, and 
the Large Hadron Collider.29 However, the major motivation for collaboration 
in those cases was cost-sharing. (In the case of the International Space Station, 
fostering a collaborative spirit between Russia and the United States was itself 
an important goal.30) Achieving similar collaboration on a project that has enor-
mous security implications would be more difficult. A country that believed it 
could achieve a breakthrough unilaterally might be tempted to go it alone rather 
than subordinate its efforts to a joint project. A country might also refrain from 
joining an international collaboration from fear that other participants might 
siphon off collaboratively generated insights and use them to accelerate a covert 
national project.

An international project would thus need to overcome major security chal-
lenges, and a fair amount of trust would probably be needed to get it started, 
trust that may take time to develop. Consider that even after the thaw in relations 
between the United States and the Soviet Union following Gorbachev’s ascent 
to power, arms reduction efforts—which could be greatly in the interests of 
both superpowers—had a fitful beginning. Gorbachev was seeking steep reduc-
tions in nuclear arms but negotiations stalled on the issue of Reagan’s Strategic 
Defense Initiative (“Star Wars”), which the Kremlin strenuously opposed. 
At the Reykjavík Summit meeting in 1986, Reagan proposed that the United 
States would share with the Soviet Union the technology that would be devel-
oped under the Strategic Defense Initiative, so that both countries could enjoy 
protection against accidental launches and against smaller nations that might 
develop nuclear weapons. Yet Gorbachev was not persuaded by this apparent 
win–win proposition. He viewed the gambit as a ruse, refusing to credit the 
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notion that the Americans would share the fruits of their most advanced mili-
tary research at a time when they were not even willing to share with the Soviets 
their technology for milking cows.31 Regardless of whether Reagan was in fact 
sincere in his offer of superpower collaboration, mistrust made the proposal a 
non-starter.

Collaboration is easier to achieve between allies, but even there it is not auto-
matic. When the Soviet Union and the United States were allied against Germany 
during World War II, the United States concealed its atomic bomb project from 
the Soviet Union. The United States did collaborate on the Manhattan Project 
with Britain and Canada.32 Similarly, the United Kingdom concealed its suc-
cess in breaking the German Enigma code from the Soviet Union, but shared 
it—albeit with some difficulty—with the United States.33 This suggests that in 
order to achieve international collaboration on some technology that is of pivotal 
importance for national security, it might be necessary to have built beforehand a 
close and trusting relationship.

We will return in Chapter 14 to the desirability and feasibility of international 
collaboration in the development of intelligence amplification technologies.

From decisive strategic advantage to singleton

Would a project that obtained a decisive strategic advantage choose to use it to 
form a singleton?

Consider a vaguely analogous historical situation. The United States developed 
nuclear weapons in 1945. It was the sole nuclear power until the Soviet Union 
developed the atom bomb in 1949. During this interval—and for some time 
thereafter— the United States may have had, or been in a position to achieve, a 
decisive military advantage.

The United States could then, theoretically, have used its nuclear monopoly to 
create a singleton. One way in which it could have done so would have been by 
embarking on an all-out effort to build up its nuclear arsenal and then threaten-
ing (and if necessary, carrying out) a nuclear first strike to destroy the industrial 
capacity of any incipient nuclear program in the USSR and any other country 
tempted to develop a nuclear capability.

A more benign course of action, which might also have had a chance of work-
ing, would have been to use its nuclear arsenal as a bargaining chip to negotiate 
a strong international government—a veto-less United Nations with a nuclear 
monopoly and a mandate to take all necessary actions to prevent any country 
from developing its own nuclear weapons.

Both of these approaches were proposed at the time. The hardline approach of 
launching or threatening a first strike was advocated by some prominent intel-
lectuals such as Bertrand Russell (who had long been active in anti-war move-
ments and who would later spend decades campaigning against nuclear weapons) 
and John von Neumann (co-creator of game theory and one of the architects of 
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US nuclear strategy).34 Perhaps it is a sign of civilizational progress that the very 
idea of threatening a nuclear first strike today seems borderline silly or morally 
obscene.

A version of the benign approach was tried in 1946 by the United States in the 
form of the Baruch plan. The proposal involved the USA giving up its temporary 
nuclear monopoly. Uranium and thorium mining and nuclear technology would 
be placed under the control of an international agency operating under the aus-
pices of the United Nations. The proposal called for the permanent members of 
the Security Council to give up their vetoes in matters related to nuclear weapons 
in order to prevent any great power found to be in breach of the accord from veto-
ing the imposition of remedies.35 Stalin, seeing that the Soviet Union and its allies 
could be easily outvoted in both the Security Council and the General Assembly, 
rejected the proposal. A frosty atmosphere of mutual suspicion descended on the 
relations between the former wartime allies, mistrust that soon solidified into 
the Cold War. As had been widely predicted, a costly and extremely dangerous 
nuclear arms race followed.

Many factors might dissuade a human organization with a decisive strategic 
advantage from creating a singleton. These include non-aggregative or bounded 
utility functions, non-maximizing decision rules, confusion and uncertainty, 
coordination problems, and various costs associated with a takeover. But what if 
it were not a human organization but a superintelligent artificial agent that came 
into possession of a decisive strategic advantage? Would the aforementioned fac-
tors be equally effective at inhibiting an AI from attempting to seize power? Let 
us briefly run through the list of factors and consider how they might apply in 
this case.

Human individuals and human organizations typically have preferences over 
resources that are not well represented by an “unbounded aggregative utility 
function.” A human will typically not wager all her capital for a fifty–fifty chance 
of doubling it. A state will typically not risk losing all its territory for a ten percent 
chance of a tenfold expansion. For individuals and governments, there are dimin-
ishing returns to most resources. The same need not hold for AIs. (We will return 
to the problem of AI motivation in subsequent chapters.) An AI might therefore 
be more likely to pursue a risky course of action that has some chance of giving it 
control of the world.

Humans and human-run organizations may also operate with decision pro-
cesses that do not seek to maximize expected utility. For example, they may 
allow for fundamental risk aversion, or “satisficing” decision rules that focus on 
meeting adequacy thresholds, or “deontological” side-constraints that proscribe 
certain kinds of action regardless of how desirable their consequences. Human 
decision makers often seem to be acting out an identity or a social role rather than 
seeking to maximize the achievement of some particular objective. Again, this 
need not apply to artificial agents.

Bounded utility functions, risk aversion, and non-maximizing decision 
rules may combine synergistically with strategic confusion and uncertainty. 
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Revolutions, even when they succeed in overthrowing the existing order, often 
fail to produce the outcome that their instigators had promised. This tends to 
stay the hand of a human agent if the contemplated action is irreversible, norm-
breaking, and lacking precedent. A superintelligence might perceive the situation 
more clearly and therefore face less strategic confusion and uncertainty about 
the outcome should it attempt to use its apparent decisive strategic advantage to 
consolidate its dominant position.

Another major factor that can inhibit groups from exploiting a potentially 
decisive strategic advantage is the problem of internal coordination. Members of 
a conspiracy that is in a position to seize power must worry not only about being 
infiltrated from the outside, but also about being overthrown by some smaller 
coalition of insiders. If a group consists of a hundred people, and a majority of 
sixty can take power and disenfranchise the non-conspirators, what is then to 
stop a thirty-five-strong subset of these sixty from disenfranchising the other 
twenty-five? And then maybe a subset of twenty disenfranchising the other fif-
teen? Each of the original hundred might have good reason to uphold certain 
established norms to prevent the general unraveling that could result from any 
attempt to change the social contract by means of a naked power grab. This prob-
lem of internal coordination would not apply to an AI system that constitutes a 
single unified agent.36

Finally, there is the issue of cost. Even if the United States could have used 
its nuclear monopoly to establish a singleton, it might not have been able to do 
so without incurring substantial costs. In the case of a negotiated agreement to 
place nuclear weapons under the control of a reformed and strengthened United 
Nations, these costs might have been relatively small; but the costs—moral, eco-
nomic, political, and human—of actually attempting world conquest through the 
waging of nuclear war would have been almost unthinkably large, even during 
the period of nuclear monopoly. With sufficient technological superiority, how-
ever, these costs would be far smaller. Consider, for example, a scenario in which 
one nation had such a vast technological lead that it could safely disarm all other 
nations at the press of a button, without anybody dying or being injured, and with 
almost no damage to infrastructure or to the environment. With such almost 
magical technological superiority, a first strike would be a lot more tempting. Or 
consider an even greater level of technological superiority which might enable 
the frontrunner to cause other nations to voluntarily lay down their arms, not by 
threatening them with destruction but simply by persuading a great majority of 
their populations by means of an extremely effectively designed advertising and 
propaganda campaign extolling the virtues of global unity. If this were done with 
the intention to benefit everybody, for instance by replacing national rivalries and 
arms races with a fair, representative, and effective world government, it is not 
clear that there would be even a cogent moral objection to the leveraging of a tem-
porary strategic advantage into a permanent singleton.

Various considerations thus point to an increased likelihood that a future power 
with superintelligence that obtained a sufficiently large strategic advantage would 
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actually use it to form a singleton. The desirability of such an outcome depends, 
of course, on the nature of the singleton that would be created and also on what 
the future of intelligent life would look like in alternative multipolar scenarios. 
We will revisit those questions in later chapters. But first let us take a closer look 
at why and how a superintelligence would be powerful and effective at achieving 
outcomes in the world.
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CHAPTER 6

Cognitive superpowers

Suppose that a digital superintelligent agent came into being, and that for 
some reason it wanted to take control of the world: would it be able to do 
so? In this chapter we consider some powers that a superintelligence could 

develop and what they may enable it to do. We outline a takeover scenario that 
illustrates how a superintelligent agent, starting as mere software, could estab-
lish itself as a singleton. We also offer some remarks on the relation between 
power over nature and power over other agents.

The principal reason for humanity’s dominant position on Earth is that our 
brains have a slightly expanded set of faculties compared with other animals.1 
Our greater intelligence lets us transmit culture more efficiently, with the result 
that knowledge and technology accumulates from one generation to the next. By 
now sufficient content has accumulated to make possible space flight, H-bombs, 
genetic engineering, computers, factory farms, insecticides, the international 
peace movement, and all the accouterments of modern civilization. Geologists 
have started referring to the present era as the Anthropocene in recognition of the 
distinctive biotic, sedimentary, and geochemical signatures of human  activities.2 
On one estimate, we appropriate 24% of the planetary ecosystem’s net primary 
production.3 And yet we are far from having reached the physical limits of 
technology.

These observations make it plausible that any type of entity that developed a 
much greater than human level of intelligence would be potentially extremely 
powerful. Such entities could accumulate content much faster than us and invent 
new technologies on a much shorter timescale. They could also use their intel-
ligence to strategize more effectively than we can.

Let us consider some of the capabilities that a superintelligence could have and 
how it could use them.
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Functionalities and superpowers

It is important not to anthropomorphize superintelligence when thinking about 
its potential impacts. Anthropomorphic frames encourage unfounded expecta-
tions about the growth trajectory of a seed AI and about the psychology, motiva-
tions, and capabilities of a mature superintelligence.

For example, a common assumption is that a superintelligent machine would 
be like a very clever but nerdy human being. We imagine that the AI has book 
smarts but lacks social savvy, or that it is logical but not intuitive and creative. 
This idea probably originates in observation: we look at present-day computers 
and see that they are good at calculation, remembering facts, and at following the 
letter of instructions while being oblivious to social contexts and subtexts, norms, 
emotions, and politics. The association is strengthened when we observe that the 
people who are good at working with computers tend themselves to be nerds. So 
it is natural to assume that more advanced computational intelligence will have 
similar attributes, only to a higher degree.

This heuristic might retain some validity in the early stages of development of 
a seed AI. (There is no reason whatever to suppose that it would apply to emula-
tions or to cognitively enhanced humans.) In its immature stage, what is later 
to become a superintelligent AI might still lack many skills and talents that 
come naturally to a human; and the pattern of such a seed AI’s strengths and 
weaknesses might indeed bear some vague resemblance to an IQ nerd. The most 
essential characteristic of a seed AI, aside from being easy to improve (having 
low recalcitrance), is being good at exerting optimization power to amplify a 
system’s intelligence: a skill which is presumably closely related to doing well in 
mathematics, programming, engineering, computer science research, and other 
such “nerdy” pursuits. However, even if a seed AI does have such a nerdy capa-
bility profile at one stage of its development, this does not entail that it will grow 
into a similarly limited mature superintelligence. Recall the distinction between 
direct and indirect reach. With sufficient skill at intelligence amplification, all 
other intellectual abilities are within a system’s indirect reach: the system can 
develop new cognitive modules and skills as needed—including empathy, politi-
cal acumen, and any other powers stereotypically wanting in computer-like 
personalities.

Even if we recognize that a superintelligence can have all the skills and talents 
we find in the human distribution, along with other talents that are not found 
among humans, the tendency toward anthropomorphizing can still lead us to 
underestimate the extent to which a machine superintelligence could exceed the 
human level of performance. Eliezer Yudkowsky, as we saw in an earlier chapter, 
has been particularly emphatic in condemning this kind of misconception: our 
intuitive concepts of “smart” and “stupid” are distilled from our experience of 
variation over the range of human thinkers, yet the differences in cognitive abil-
ity within this human cluster are trivial in comparison to the differences between 
any human intellect and a superintelligence.4
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Chapter 3 reviewed some of the potential sources of advantage for machine 
intelligence. The magnitudes of the advantages are such as to suggest that rather 
than thinking of a superintelligent AI as smart in the sense that a scientific genius 
is smart compared with the average human being, it might be closer to the mark 
to think of such an AI as smart in the sense that an average human being is smart 
compared with a beetle or a worm.

It would be convenient if we could quantify the cognitive caliber of an arbitrary 
cognitive system using some familiar metric, such as IQ scores or some version of 
the Elo ratings that measure the relative abilities of players in two-player games 
such as chess. But these metrics are not useful in the context of superhuman arti-
ficial general intelligence. We are not interested in how likely a superintelligence 
is to win at a game of chess. As for IQ scores, they are informative only insofar 
as we have some idea of how they correlate with practically relevant outcomes.5 
For example, we have data that show that people with an IQ of 130 are more likely 
than those with an IQ of 90 to excel in school and to do well in a wide range of cog-
nitively demanding jobs. But suppose we could somehow establish that a certain 
future AI will have an IQ of 6,455: then what? We would have no idea of what such 
an AI could actually do. We would not even know that such an AI had as much 
general intelligence as a normal human adult—perhaps the AI would instead have 
a bundle of special-purpose algorithms enabling it to solve typical intelligence 
test questions with superhuman efficiency but not much else.

Some recent efforts have been made to develop measurements of cognitive 
capacity that could be applied to a wider range of information-processing sys-
tems, including artificial intelligences.6 Work in this direction, if it can overcome 
various technical difficulties, may turn out to be quite useful for some scientific 
purposes including AI development. For purposes of the present investigation, 
however, its usefulness would be limited since we would remain unenlightened 
about what a given superhuman performance score entails for actual ability to 
achieve practically important outcomes in the world.

It will therefore serve our purposes better to list some strategically important 
tasks and then to characterize hypothetical cognitive systems in terms of whether 
they have or lack whatever skills are needed to succeed at these tasks. See Table 8. 
We will say that a system that sufficiently excels at any of the tasks in this table has 
a corresponding superpower.

A full-blown superintelligence would greatly excel at all of these tasks and 
would thus have the full panoply of all six superpowers. Whether there is a prac-
tically significant possibility of a domain-limited intelligence that has some of 
the superpowers but remains unable for a significant period of time to acquire 
all of them is not clear. Creating a machine with any one of these superpowers 
appears to be an AI-complete problem. Yet it is conceivable that, for example, a 
collective superintelligence consisting of a sufficiently large number of human-
like biological or electronic minds would have, say, the economic productivity 
superpower but lack the strategizing superpower. Likewise, it is conceivable that 
a specialized engineering AI could be built that has the technology research 
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superpower while completely lacking skills in other areas. This is more plau-
sible if there exists some particular technological domain such that virtuosity 
within that domain would be sufficient for the generation of an overwhelmingly 
superior general-purpose technology. For instance, one could imagine a special-
ized AI adept at simulating molecular systems and at inventing nanomolecular 
designs that realize a wide range of important capabilities (such as computers 
or weapons systems with futuristic performance characteristics) described by 
the user only at a fairly high level of abstraction.7 Such an AI might also be able 
to produce a detailed blueprint for how to bootstrap from existing technology 
(such as biotechnology and protein engineering) to the constructor capabilities 
needed for high-throughput atomically precise manufacturing that would allow 
inexpensive fabrication of a much wider range of nanomechanical structures.8  

Table 8 Superpowers: some strategically relevant tasks and correspond-
ing skill sets

Task Skill set Strategic relevance

Intelligence 
amplification

AI programming, cognitive 
enhancement research, 
 social epistemology devel-
opment, etc.

•   System can bootstrap its  intelligence

Strategizing Strategic planning, forecast-
ing, prioritizing, and analysis 
for optimizing chances of 
achieving distant goal

•   Achieve distant goals
•   Overcome intelligent opposition

Social 
 manipulation

Social and psychological 
modeling, manipulation, 
rhetoric persuasion

•   Leverage external resources by 
recruiting human support

•   Enable a “boxed” AI to persuade its 
gatekeepers to let it out

•   Persuade states and organizations to 
adopt some course of action

Hacking Finding and exploiting 
security flaws in computer 
systems

•   AI can expropriate computational 
resources over the Internet

•   A boxed AI may exploit security holes 
to escape cybernetic confinement

•   Steal financial resources
•   Hijack infrastructure, military robots, 

etc.

Technology 
research

Design and modeling of 
advanced technologies (e.g. 
biotechnology, nanotechnol-
ogy) and development paths

•   Creation of powerful military force
•   Creation of surveillance system
•   Automated space colonization

Economic 
productivity

Various skills enabling 
economically productive 
intellectual work

•   Generate wealth which can be used 
to buy influence, services, resources 
(including hardware), etc.
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However, it might turn out to be the case that an engineering AI could not truly pos-
sess the technological research superpower without also possessing advanced skills 
in areas outside of technology—a wide range of intellectual faculties might be needed 
to understand how to interpret user requests, how to model a design’s behavior in 
real-world applications, how to deal with unanticipated bugs and malfunctions, how 
to procure the materials and inputs needed for construction, and so forth.9

A system that has the intelligence amplification superpower could use it to 
bootstrap itself to higher levels of intelligence and to acquire any of the other intel-
lectual superpowers that it does not possess at the outset. But using an intelligence 
amplification superpower is not the only way for a system to become a full-fledged 
superintelligence. A system that has the strategizing superpower, for instance, 
might use it to devise a plan that will eventually bring an increase in intelligence 
(e.g. by positioning the system so as to become the focus for intelligence amplifica-
tion work performed by human programmers and computer science researchers).

An AI takeover scenario

We thus find that a project that controls a superintelligence has access to a great 
source of power. A project that controls the first superintelligence in the world 
would probably have a decisive strategic advantage. But the more immediate locus 
of the power is in the system itself. A machine superintelligence might itself be 
an extremely powerful agent, one that could successfully assert itself against the 
project that brought it into existence as well as against the rest of the world. This 
is a point of paramount importance, and we will examine it more closely in the 
coming pages.

Now let us suppose that there is a machine superintelligence that wants to 
seize power in a world in which it has as yet no peers. (Set aside, for the moment, 
the question of whether and how it would acquire such a motive—that is a topic 
for the next chapter.) How could the superintelligence achieve this goal of world 
domination?

We can imagine a sequence along the following lines (see Figure 10).

 1 Pre-criticality phase

Scientists conduct research in the field of artificial intelligence and other relevant 
disciplines. This work culminates in the creation of a seed AI. The seed AI is able 
to improve its own intelligence. In its early stages, the seed AI is dependent on 
help from human programmers who guide its development and do most of the 
heavy lifting. As the seed AI grows more capable, it becomes capable of doing 
more of the work by itself.

 2 Recursive self-improvement phase

At some point, the seed AI becomes better at AI design than the human pro-
grammers. Now when the AI improves itself, it improves the thing that does the 
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Seed AI

Pre-criticality Recursive self-improvement Covert preparation Overt implementation

AI Research

Intel l igence ampli�cation

(Economic productiv ity)

Strateg izing  /  Technolog y  research

Hacking /  Socia l

E xpansion

Construction

Str ike

Escape

Figure 10 Phases in an AI takeover scenario.

improving. An intelligence explosion results—a rapid cascade of recursive self-
improvement cycles causing the AI’s capability to soar. (We can thus think of 
this phase as the takeoff that occurs just after the AI reaches the crossover point, 
assuming the intelligence gain during this part of the takeoff is explosive and 
driven by the application of the AI’s own optimization power.) The AI develops 
the intelligence amplification superpower. This superpower enables the AI to 
develop all the other superpowers detailed in Table 8. At the end of the recursive 
self-improvement phase, the system is strongly superintelligent.

 3 Covert preparation phase

Using its strategizing superpower, the AI develops a robust plan for achieving its 
long-term goals. (In particular, the AI does not adopt a plan so stupid that even 
we present-day humans can foresee how it would inevitably fail. This criterion 
rules out many science fiction scenarios that end in human triumph.10) The plan 
might involve a period of covert action during which the AI conceals its intel-
lectual development from the human programmers in order to avoid setting off 
alarms. The AI might also mask its true proclivities, pretending to be cooperative 
and docile.

If the AI has (perhaps for safety reasons) been confined to an isolated computer, 
it may use its social manipulation superpower to persuade the gatekeepers to let it 
gain access to an Internet port. Alternatively, the AI might use its hacking super-
power to escape its confinement. Spreading over the Internet may enable the AI 
to expand its hardware capacity and knowledge base, further increasing its intel-
lectual superiority. An AI might also engage in licit or illicit economic activity to 
obtain funds with which to buy computer power, data, and other resources.
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At this point, there are several ways for the AI to achieve results outside the 
virtual realm. It could use its hacking superpower to take direct control of robotic 
manipulators and automated laboratories. Or it could use its social manipulation 
superpower to persuade human collaborators to serve as its legs and hands. Or it 
could acquire financial assets from online transactions and use them to purchase 
services and influence.

 4 Overt implementation phase

The final phase begins when the AI has gained sufficient strength to obviate the 
need for secrecy. The AI can now directly implement its objectives on a full scale.

The overt implementation phase might start with a “strike” in which the AI 
eliminates the human species and any automatic systems humans have created that 
could offer intelligent opposition to the execution of the AI’s plans. This could be 
achieved through the activation of some advanced weapons system that the AI has 
perfected using its technology research superpower and covertly deployed in the 
covert preparation phase. If the weapon uses self-replicating biotechnology or nano-
technology, the initial stockpile needed for global coverage could be microscopic: 
a single replicating entity would be enough to start the process. In order to ensure 
a sudden and uniform effect, the initial stock of the replicator might have been 
deployed or allowed to diffuse worldwide at an extremely low, undetectable con-
centration. At a pre-set time, nanofactories producing nerve gas or target- seeking 
mosquito-like robots might then burgeon forth simultaneously from every square 
meter of the globe (although more effective ways of killing could probably be 
devised by a machine with the technology research superpower).11 One might also 
entertain scenarios in which a superintelligence attains power by hijacking politi-
cal processes, subtly manipulating financial markets, biasing information flows, 
or hacking into human-made weapon systems. Such scenarios would obviate the 
need for the superintelligence to invent new weapons technology, although they 
may be unnecessarily slow compared with scenarios in which the machine intel-
ligence builds its own infrastructure with manipulators that operate at molecular 
or atomic speed rather than the slow speed of human minds and bodies.

Alternatively, if the AI is sure of its invincibility to human interference, our spe-
cies may not be targeted directly. Our demise may instead result from the habitat 
destruction that ensues when the AI begins massive global construction projects 
using nanotech factories and assemblers—construction projects which quickly, 
perhaps within days or weeks, tile all of the Earth’s surface with solar panels, 
nuclear reactors, supercomputing facilities with protruding cooling towers, space 
rocket launchers, or other installations whereby the AI intends to maximize the 
long-term cumulative realization of its values. Human brains, if they contain 
information relevant to the AI’s goals, could be disassembled and scanned, and 
the extracted data transferred to some more efficient and secure storage format.

Box 6 describes one particular scenario. One should avoid fixating too much 
on the concrete details, since they are in any case unknowable and intended for 
illustration only. A superintelligence might—and probably would—be able to 
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Box 6 The mail-ordered DNA scenario

Yudkowsky describes the following possible scenario for an AI takeover.12

 1 Crack the protein folding problem to the extent of being able to generate 
DNA strings whose folded peptide sequences fill specific functional roles 
in a complex chemical interaction.

 2 Email sets of DNA strings to one or more online laboratories that offer 
DNA synthesis, peptide sequencing, and FedEx delivery. (Many labs cur-
rently offer this service, and some boast of 72-hour turnaround times.)

 3 Find at least one human connected to the Internet who can be paid, black-
mailed, or fooled by the right background story, into receiving FedExed 
vials and mixing them in a specified environment.

 4 The synthesized proteins form a very primitive “wet” nanosystem, which, 
ribosome-like, is capable of accepting external instructions; perhaps pat-
terned acoustic vibrations delivered by a speaker attached to the beaker.

 5 Use the extremely primitive nanosystem to build more sophisticated sys-
tems, which construct still more sophisticated systems, bootstrapping to 
molecular nanotechnology—or beyond.

In this scenario, the superintelligence uses its technology research superpower to 
solve the protein folding problem in step 1, enabling it to design a set of molecu-
lar building blocks for a rudimentary nanotechnology assembler or fabrication 
device, which can self-assemble in aqueous solution (step 4). The same technol-
ogy research superpower is used again in step 5 to bootstrap from primitive to 
advanced machine-phase nanotechnology. The other steps require no more than 
human intelligence. The skills required for step 3—identifying a gullible Internet 
user and persuading him or her to follow some simple instructions—are on dis-
play every day all over the world. The entire scenario was invented by a human 
mind, so the strategizing ability needed to formulate this plan is also merely hu-
man level.

In this particular scenario, the AI starts out having access to the Internet. If this 
is not the case, then additional steps would have to be added to the plan. The 
AI might, for example, use its social manipulation superpower to convince the 
people interacting with it that it ought to be set free. Alternatively, the AI might 
be able to use its hacking superpower to escape confinement. If the AI does 
not possess these capabilities, it might first need to use its intelligence amplifica-
tion superpower to develop the requisite proficiency in social manipulation or 
hacking.

A superintelligent AI will presumably be born into a highly networked world. 
One could point to various developments that could potentially help a future AI 
to control the world—cloud computing, proliferation of web-connected sen-
sors, military and civilian drones, automation in research labs and manufacturing 
plants, increased reliance on electronic payment systems and digitized financial 
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conceive of a better plan for achieving its goals than any that a human can come 
up with. It is therefore necessary to think about these matters more abstractly. 
Without knowing anything about the detailed means that a superintelligence 
would adopt, we can conclude that a superintelligence—at least in the absence 
of intellectual peers and in the absence of effective safety measures arranged by 
humans in advance—would likely produce an outcome that would involve recon-
figuring terrestrial resources into whatever structures maximize the realization 
of its goals. Any concrete scenario we develop can at best establish a lower bound 
on how quickly and efficiently the superintelligence could achieve such an out-
come. It remains possible that the superintelligence would find a shorter path to 
its preferred destination.

Power over nature and agents

An agent’s ability to shape humanity’s future depends not only on the absolute 
magnitude of the agent’s own faculties and resources—how smart and energetic it 
is, how much capital it has, and so forth—but also on the relative magnitude of its 
capabilities compared with those of other agents with conflicting goals.

In a situation where there are no competing agents, the absolute capability 
level of a superintelligence, so long as it exceeds a certain minimal threshold, 
does not matter much, because a system starting out with some sufficient set 
of capabilities could plot a course of development that will let it acquire any 
capabilities it initially lacks. We alluded to this point earlier when we said 
that speed, quality, and collective superintelligence all have the same indi-
rect reach. We alluded to it again when we said that various subsets of super-
powers, such as the intelligence amplification superpower or the strategizing 
and the social manipulation superpowers, could be used to obtain the full 
complement.

Box 6  Continued

assets, and increased use of automated information-filtering and decision sup-
port systems. Assets like these could potentially be acquired by an AI at digital 
speeds, expediting its rise to power (though advances in cybersecurity might 
make it harder). In the final analysis, however, it is doubtful whether any of these 
trends makes a difference. A superintelligence’s power resides in its brain, not its 
hands. Although the AI, in order to remake the external world, will at some point 
need access to an actuator, a single pair of helping human hands, those of a pliable 
accomplice, would probably suffice to complete the covert preparation phase, 
as suggested by the above scenario. This would enable the AI to reach the overt 
implementation phase in which it constructs its own infrastructure of physical 
manipulators.
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Consider a superintelligent agent with actuators connected to a nanotech assem-
bler. Such an agent is already powerful enough to overcome any natural obstacles 
to its indefinite survival. Faced with no intelligent opposition, such an agent could 
plot a safe course of development that would lead to its acquiring the complete 
inventory of technologies that would be useful to the attainment of its goals. For 
example, it could develop the technology to build and launch von Neumann probes, 
machines capable of interstellar travel that can use resources such as asteroids, 
planets, and stars to make copies of themselves.13 By launching one von Neumann 
probe, the agent could thus initiate an open-ended process of space colonization. 
The replicating probe’s descendants, travelling at some significant fraction of the 
speed of light, would end up colonizing a substantial portion of the Hubble vol-
ume, the part of the expanding universe that is theoretically accessible from where 
we are now. All this matter and free energy could then be organized into whatever 
value structures maximize the originating agent’s utility function integrated over 
cosmic time—a duration encompassing at least trillions of years before the aging 
universe becomes inhospitable to information processing (see Box 7).

The superintelligent agent could design the von Neumann probes to be 
evolution- proof. This could be accomplished by careful quality control during 
the replication step. For example, the control software for a daughter probe could 
be proofread multiple times before execution, and the software itself could use 
encryption and error-correcting code to make it arbitrarily unlikely that any ran-
dom mutation would be passed on to its descendants.14 The proliferating popu-
lation of von Neumann probes would then securely preserve and transmit the 
originating agent’s values as they go about settling the universe. When the colon-
ization phase is completed, the original values would determine the use made of 
all the accumulated resources, even though the great distances involved and the 
accelerating speed of cosmic expansion would make it impossible for remote parts 
of the infrastructure to communicate with one another. The upshot is that a large 
part of our future light cone would be formatted in accordance with the prefer-
ences of the originating agent.

This, then, is the measure of the indirect reach of any system that faces no signif-
icant intelligent opposition and that starts out with a set of capabilities exceeding 
a certain threshold. We can term the threshold the “wise-singleton sustainability 
threshold” (Figure 11):

The wise-singleton sustainability threshold

A capability set exceeds the wise-singleton threshold if and only if a patient and 
existential risk-savvy system with that capability set would, if it faced no intelligent 
opposition or competition, be able to colonize and re-engineer a large part of the 
accessible universe.

By “singleton” we mean a sufficiently internally coordinated political structure 
with no external opponents, and by “wise” we mean sufficiently patient and savvy 
about existential risks to ensure a substantial amount of well-directed concern for 
the very long-term consequences of the system’s actions.
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Figure 11 Schematic illustration of some possible trajectories for a hypothetical wise singleton. 
With a capability below the short-term viability threshold—for example, if population size is too 
small—a species tends to go extinct in short order (and remain extinct). At marginally higher 
levels of capability, various trajectories are possible: a singleton might be unlucky and go extinct or 
it might be lucky and attain a capability (e.g. population size, geographical dispersion, technologic al 
capacity) that crosses the wise-singleton sustainability threshold. Once above this threshold, a 
singleton will almost certainly continue to gain in capability until some extremely high capability 
level is attained. In this picture, there are two attractors: extinction and astronomical capability. 
Note that, for a wise singleton, the distance between the short-term viability threshold and the 
sustainability threshold may be rather small.15

Box 7 How big is the cosmic endowment?

Consider a technologically mature civilization capable of building sophisticated 
von Neumann probes of the kind discussed in the text. If these can travel at 
50% of the speed of light, they can reach some 6×1018 stars before the cosmic 
expansion puts further acquisitions forever out of reach. At 99% of c, they could 
reach some 2×1020 stars.16 These travel speeds are energetically attainable using a 
small fraction of the resources available in the solar system.17 The impossibility of 
faster-than-light travel, combined with the positive cosmological constant (which 
causes the rate of cosmic expansion to accelerate), implies that these are close to 
upper bounds on how much stuff our descendants acquire.18

If we assume that 10% of stars have a planet that is—or could by means of 
terraforming be rendered—suitable for habitation by human-like creatures, and 
that it could then be home to a population of a billion individuals for a billion years 
(with a human life lasting a century), this suggests that around 1035 human lives 
could be created in the future by an Earth-originating intelligent civilization.19

There are, however, reasons to think this greatly underestimates the true 
number. By disassembling non-habitable planets and collecting matter from the 

continued
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Box 7  Continued

interstellar medium, and using this material to construct Earth-like planets, or 
by increasing population densities, the number could be increased by at least 
a couple of orders of magnitude. And if instead of using the surfaces of solid 
planets, the future civilization built O’Neill cylinders, then many further orders of 
magnitude could be added, yielding a total of perhaps 1043 human lives. (“O’Neill 
cylinders” refers to a space settlement design proposed in the mid-seventies by 
the American physicist Gerard K. O’Neill, in which inhabitants dwell on the inside 
of hollow cylinders whose rotation produces a gravity-substituting centrifugal 
force.20)

Many more orders of magnitudes of human-like beings could exist if we coun-
tenance digital implementations of minds—as we should. To calculate how many 
such digital minds could be created, we must estimate the computational power 
attainable by a technologically mature civilization. This is hard to do with any pre-
cision, but we can get a lower bound from technological designs that have been 
outlined in the literature. One such design builds on the idea of a Dyson sphere, 
a hypothetical system (described by the physicist Freeman Dyson in 1960) that 
would capture most of the energy output of a star by surrounding it with a sys-
tem of solar-collecting structures.21 For a star like our Sun, this would generate 
1026 watts. How much computational power this would translate into depends 
on the efficiency of the computational circuitry and the nature of the computa-
tions to be performed. If we require irreversible computations, and assume a na-
nomechanical implementation of the “computronium” (which would allow us to 
push close to the Landauer limit of energy efficiency), a computer system driven 
by a Dyson sphere could generate some 1047 operations per second.22

Combining these estimates with our earlier estimate of the number of stars 
that could be colonized, we get a number of about 1067 ops/s once the accessible 
parts of the universe have been colonized (assuming nanomechanical computro-
nium).23 A typical star maintains its luminosity for some 1018 s. Consequently, the 
number of computational operations that could be performed using our cosmic 
endowment is at least 1085. The true number is probably much larger. We might 
get additional orders of magnitude, for example, if we make extensive use of 
reversible computation, if we perform the computations at colder temperatures 
(by waiting until the universe has cooled further), or if we make use of additional 
sources of energy (such as dark matter).24

It might not be immediately obvious to some readers why the ability to per-
form 1085 computational operations is a big deal. So it is useful to put it in context. 
We may, for example, compare this number with our earlier estimate (Box 3, in 
Chapter 2) that it may take about 1031–1044 ops to simulate all neuronal opera-
tions that have occurred in the history of life on Earth. Alternatively, let us sup-
pose that the computers are used to run human whole brain emulations that live 
rich and happy lives while interacting with one another in virtual environments. 
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This wise-singleton sustainability threshold appears to be quite low. Limited 
forms of superintelligence, as we have seen, exceed this threshold provided they 
have access to some actuator sufficient to initiate a technology bootstrap process. 
In an environment that includes contemporary human civilization, the mini-
mally necessary actuator could be very simple—an ordinary screen or indeed any 
means of transmitting a non-trivial amount of information to a human accom-
plice would suffice.

But the wise-singleton sustainability threshold is lower still: neither superin-
telligence nor any other futuristic technology is needed to surmount it. A patient 
and existential risk-savvy singleton with no more technological and intellectual 
capabilities than those possessed by contemporary humanity should be readily 
able to plot a course that leads reliably to the eventual realization of humanity’s 
astronomical capability potential. This could be achieved by investing in rela-
tively safe methods of increasing wisdom and existential risk-savvy while post-
poning the development of potentially dangerous new technologies. Given that 
non-anthropogenic existential risks (ones not arising from human activities) are 
small over the relevant timescales—and could be further reduced with various 
safe interventions—such a singleton could afford to go slow.25 It could look care-
fully before each step, delaying development of capabilities such as synthetic biol-
ogy, human enhancement medicine, molecular nanotechnology, and machine 
intelligence until it had first perfected seemingly less hazardous capabilities such 
as its education system, its information technology, and its collective decision-
making processes, and until it had used these capabilities to conduct a very thor-
ough review of its options. So this is all within the indirect reach of a technological 
civilization like that of contemporary humanity. We are separated from this scen-
ario “merely” by the fact that humanity is currently neither a singleton nor (in the 
relevant sense) wise.

Box 7  Continued

A typical estimate of the computational requirements for running one emulation 
is 1018 ops/s. To run an emulation for 100 subjective years would then require 
some 1027 ops. This would mean that at least 1058 human lives could be created 
in emulation even with quite conservative assumptions about the efficiency of 
computronium.

In other words, assuming that the observable universe is void of extraterres-
trial civilizations, then what hangs in the balance is at least 10,000,000,000,000, 
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 human lives 
(though the true number is probably larger). If we represent all the happiness 
experienced during one entire such life with a single teardrop of joy, then the 
happiness of these souls could fill and refill the Earth’s oceans every second, and 
keep doing so for a hundred billion billion millennia. It is really important that we 
make sure these truly are tears of joy.
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One could even argue that Homo sapiens passed the wise-singleton sustain-
ability threshold soon after the species first evolved. Twenty thousand years ago, 
say, with equipment no fancier than stone axes, bone tools, atlatls, and fire, the 
human species was perhaps already in a position from which it had an excellent 
chance of surviving to the present era.26 Admittedly, there is something queer 
about crediting our Paleolithic ancestors with having developed technology that 
“exceeded the wise-singleton sustainability threshold”—given that there was no 
realistic possibility of a singleton forming at such a primitive time, let alone a sin-
gleton savvy about existential risks and patient.27 Nevertheless, the point stands 
that the threshold corresponds to a very modest level of technology—a level that 
humanity long ago surpassed.28

It is clear that if we are to assess the effective powers of a superintelligence—its 
ability to achieve a range of preferred outcomes in the world—we must consider 
not only its own internal capacities but also the capabilities of competing agents. 
The notion of a superpower invoked such a relativized standard implicitly. We 
said that “a system that sufficiently excels” at any of the tasks in Table 8 has a 
corresponding superpower. Exceling at a task like strategizing, social manipula-
tion, or hacking involves having a skill at that task that is high in comparison to 
the skills of other agents (such as strategic rivals, influence targets, or computer 
security experts). The other superpowers, too, should be understood in this rela-
tive sense: intelligence amplification, technology research, and economic produc-
tivity are possessed by an agent as superpowers only if the agent’s capabilities in 
these areas substantially exceed the combined capabilities of the rest of the global 
civilization. It follows from this definition that at most one agent can possess a 
particular superpower at any given time.29

This is the main reason why the question of takeoff speed is important—not 
because it matters exactly when a particular outcome happens, but because the 
speed of the takeoff may make a big difference to what the outcome will be. With 
a fast or medium takeoff, it is likely that one project will get a decisive strategic 
advantage. We have now suggested that a superintelligence with a decisive stra-
tegic advantage would have immense powers, enough that it could form a stable 
singleton—a singleton that could determine the disposition of humanity’s cosmic 
endowment.

But “could” is different from “would.” Somebody might have great powers yet 
choose not to use them. Is it possible to say anything about what a superintel-
ligence with a decisive strategic advantage would want? It is to this question of 
motivation that we turn next.
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CHAPTER 7

The superintelligent will

We have seen that a superintelligence could have a great ability to 
shape the future according to its goals. But what will its goals be? 
What is the relation between intelligence and motivation in an arti-

ficial agent? Here we develop two theses. The orthogonality thesis holds (with 
some caveats) that intelligence and final goals are independent variables: any 
level of intelligence could be combined with any final goal. The instrumental 
convergence thesis holds that superintelligent agents having any of a wide range 
of final goals will nevertheless pursue similar intermediary goals because they 
have common instrumental reasons to do so. Taken together, these theses help 
us think about what a superintelligent agent would do.

The relation between intelligence and motivation

We have already cautioned against anthropomorphizing the capabilities of a 
superintelligent AI. This warning should be extended to pertain to its motivations 
as well.

It is a useful propaedeutic to this part of our inquiry to first reflect for a 
moment on the vastness of the space of possible minds. In this abstract space, 
human minds form a tiny cluster. Consider two persons who seem extremely 
unlike, perhaps Hannah Arendt and Benny Hill. The personality differences 
between these two individuals may seem almost maximally large. But this is 
because our intuitions are calibrated on our experience, which samples from 
the existing human distribution (and to some extent from fictional personalities 
constructed by the human imagination for the enjoyment of the human imagin-
ation). If we zoom out and consider the space of all possible minds, however,  
we must conceive of these two personalities as virtual clones. Certainly in terms 
of neural architecture, Ms. Arendt and Mr. Hill are nearly identical. Imagine 
their brains lying side by side in quiet repose. You would readily recognize 
them as two of a kind. You might even be unable to tell which brain belonged to 
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whom. If you looked more closely, studying the morphology of the two brains 
under a microscope, this impression of fundamental similarity would only be 
strengthened: you would see the same lamellar organization of the cortex, with 
the same brain areas, made up of the same types of neuron, soaking in the same 
bath of neurotransmitters.1

Despite the fact that human psychology corresponds to a tiny spot in the space 
of possible minds, there is a common tendency to project human attributes onto 
a wide range of alien or artificial cognitive systems. Yudkowsky illustrates this 
point nicely:

Back in the era of pulp science fiction, magazine covers occasionally depicted a sentient 
monstrous alien—colloquially known as a bug-eyed monster (BEM)—carrying off an 
attractive human female in a torn dress. It would seem the artist believed that a non-
humanoid alien, with a wholly different evolutionary history, would sexually desire human 
females. . . . Probably the artist did not ask whether a giant bug perceives human females 
as attractive. Rather, a human female in a torn dress is sexy—inherently so, as an intrin-
sic property. They who made this mistake did not think about the insectoid’s mind: they 
focused on the woman’s torn dress. If the dress were not torn, the woman would be less 
sexy; the BEM does not enter into it.2

An artificial intelligence can be far less human-like in its motivations than a 
green scaly space alien. The extraterrestrial (let us assume) is a biological crea-
ture that has arisen through an evolutionary process and can therefore be 
expected to have the kinds of motivation typical of evolved creatures. It would 
not be hugely surprising, for example, to find that some random intelligent alien 
would have motives related to one or more items like food, air, temperature, 
energy expenditure, occurrence or threat of bodily injury, disease, predation, 
sex, or progeny. A member of an intelligent social species might also have moti-
vations related to cooperation and competition: like us, it might show in-group 
loyalty, resentment of free riders, perhaps even a vain concern with reputation 
and appearance.

Figure 12 Results of anthropomorphizing alien motivation. Least likely hypothesis: space aliens 
prefer blondes. More likely hypothesis: the illustrators succumbed to the “mind projection fallacy.” 
Most likely hypothesis: the publisher wanted a cover that would entice the target demographic.



An AI, by contrast, need not care intrinsically about any of those things. There 
is nothing paradoxical about an AI whose sole final goal is to count the grains of 
sand on Boracay, or to calculate the decimal expansion of pi, or to maximize the 
total number of paperclips that will exist in its future light cone. In fact, it would 
be easier to create an AI with simple goals like these than to build one that had 
a human-like set of values and dispositions. Compare how easy it is to write a 
program that measures how many digits of pi have been calculated and stored in 
memory with how difficult it would be to create a program that reliably measures 
the degree of realization of some more meaningful goal—human flourishing, 
say, or global justice. Unfortunately, because a meaningless reductionistic goal is 
easier for humans to code and easier for an AI to learn, it is just the kind of goal 
that a programmer would choose to install in his seed AI if his focus is on taking 
the quickest path to “getting the AI to work” (without caring much about what 
exactly the AI will do, aside from displaying impressively intelligent behavior). 
We will revisit this concern shortly.

Intelligent search for instrumentally optimal plans and policies can be per-
formed in the service of any goal. Intelligence and motivation are in a sense 
orthogonal: we can think of them as two axes spanning a graph in which each 
point represents a logically possible artificial agent. Some qualifications could be 
added to this picture. For instance, it might be impossible for a very unintelligent 
system to have very complex motivations. In order for it to be correct to say that 
an certain agent “has” a set of motivations, those motivations may need to be 
functionally integrated with the agent’s decision processes, something that places 
demands on memory, processing power, and perhaps intelligence. For minds 
that can modify themselves, there may also be dynamical constraints—an intel-
ligent self-modifying mind with an urgent desire to be stupid might not remain 
intelligent for long. But these qualifications must not be allowed to obscure the 
basic point about the independence of intelligence and motivation, which we can 
express as follows:

The orthogonality thesis

Intelligence and final goals are orthogonal: more or less any level of intelligence 
could in principle be combined with more or less any final goal.

If the orthogonality thesis seems problematic, this might be because of the super-
ficial resemblance it bears to some traditional philosophical positions which have 
been subject to long debate. Once it is understood to have a different and narrower 
scope, its credibility should rise. (For example, the orthogonality thesis does not 
presuppose the Humean theory of motivation.3 Nor does it presuppose that basic 
preferences cannot be irrational.4)

Note that the orthogonality thesis speaks not of rationality or reason, but of 
intelligence. By “intelligence” we here mean something like skill at prediction, 
planning, and means–ends reasoning in general.5 This sense of instrumental cog-
nitive efficaciousness is most relevant when we are seeking to understand what 
the causal impact of a machine superintelligence might be. Even if there is some 
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(normatively thick) sense of the word “rational” such that a paperclip- maximizing 
superintelligent agent would necessarily fail to qualify as fully rational in that 
sense, this would in no way preclude such an agent from having awesome facul-
ties of instrumental reasoning, faculties which could let it have a large impact on 
the world.6

According to the orthogonality thesis, artificial agents can have utterly non-
anthropomorphic goals. This, however, does not imply that it is impossible to 
make predictions about the behavior of particular artificial agents—not even 
hypothetical superintelligent agents whose cognitive complexity and perform-
ance characteristics might render them in some respects opaque to human analy-
sis. There are at least three directions from which we can approach the problem of 
predicting superintelligent motivation:

•	 Predictability through design. If we can suppose that the designers of a superintel-
ligent agent can successfully engineer the goal system of the agent so that it stably 
pursues a particular goal set by the programmers, then one prediction we can 
make is that the agent will pursue that goal. The more intelligent the agent is, the 
greater the cognitive resourcefulness it will have to pursue that goal. So even be-
fore an agent has been created we might be able to predict something about its 
behavior, if we know something about who will build it and what goals they will 
want it to have.

•	 Predictability through inheritance. If a digital intelligence is created directly from a hu-
man template (as would be the case in a high-fidelity whole brain emulation), then 
the digital intelligence might inherit the motivations of the human template.7 The 
agent might retain some of these motivations even if its cognitive capacities are 
subsequently enhanced to make it superintelligent. This kind of inference requires 
caution. The agent’s goals and values could easily become corrupted in the uploading 
process or during its subsequent operation and enhancement, depending on how 
the procedure is implemented.

•	 Predictability through convergent instrumental reasons. Even without detailed know-
ledge of an agent’s final goals, we may be able to infer something about its more 
immediate objectives by considering the instrumental reasons that would arise for 
any of a wide range of possible final goals in a wide range of situations. This way of 
predicting becomes more useful the greater the intelligence of the agent, because 
a more intelligent agent is more likely to recognize the true instrumental reasons 
for its actions, and so act in ways that make it more likely to achieve its goals. (A cav-
eat here is that there might be important instrumental reasons to which we are 
oblivious and which an agent would discover only once it reaches some very high 
level of intelligence—this could make the behavior of superintelligent agents less 
predictable.)

The next section explores this third way of predictability and develops an “instru-
mental convergence thesis” which complements the orthogonality thesis. Against 
this background we can then better examine the other two sorts of predictability, 
which we will do in later chapters where we ask what might be done to shape an 
intelligence explosion to increase the chances of a beneficial outcome.
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Instrumental convergence

According to the orthogonality thesis, intelligent agents may have an enormous 
range of possible final goals. Nevertheless, according to what we may term the 
“instrumental convergence” thesis, there are some instrumental goals likely to be 
pursued by almost any intelligent agent, because there are some objectives that 
are useful intermediaries to the achievement of almost any final goal. We can 
formulate this thesis as follows:

The instrumental convergence thesis

Several instrumental values can be identified which are convergent in the sense 
that their attainment would increase the chances of the agent’s goal being realized 
for a wide range of final goals and a wide range of situations, implying that these 
instrumental values are likely to be pursued by a broad spectrum of situated intel-
ligent agents.

In the following we will consider several categories where such convergent 
instrumental values may be found.8 The likelihood that an agent will recognize 
the instrumental values it confronts increases (ceteris paribus) with the agent’s 
intelligence. We will therefore focus mainly on the case of a hypothetical super-
intelligent agent whose instrumental reasoning capacities far exceed those of 
any human. We will also comment on how the instrumental convergence thesis 
applies to the case of human beings, as this gives us occasion to elaborate some 
essential qualifications concerning how the instrumental convergence thesis  
should be interpreted and applied. Where there are convergent instrumental  
values, we may be able to predict some aspects of a superintelligence’s behavior 
even if we know virtually nothing about that superintelligence’s final goals.

Self-preservation

If an agent’s final goals concern the future, then in many scenarios there will 
be future actions it could perform to increase the probability of achieving its 
goals. This creates an instrumental reason for the agent to try to be around in the 
future—to help achieve its future-oriented goal.

Most humans seem to place some final value on their own survival. This is not 
a necessary feature of artificial agents: some may be designed to place no final 
value whatever on their own survival. Nevertheless, many agents that do not care 
intrinsically about their own survival would, under a fairly wide range of condi-
tions, care instrumentally about their own survival in order to accomplish their 
final goals.

Goal-content integrity

If an agent retains its present goals into the future, then its present goals will 
be more likely to be achieved by its future self. This gives the agent a present 
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instrumental reason to prevent alterations of its final goals. (The argument applies 
only to final goals. In order to attain its final goals, an intelligent agent will of 
course routinely want to change its subgoals in light of new information and 
insight.)

Goal-content integrity for final goals is in a sense even more fundamental than 
survival as a convergent instrumental motivation. Among humans, the opposite 
may seem to hold, but that is because survival is usually part of our final goals. 
For software agents, which can easily switch bodies or create exact duplicates of 
themselves, preservation of self as a particular implementation or a particular 
physical object need not be an important instrumental value. Advanced software 
agents might also be able to swap memories, download skills, and radically mod-
ify their cognitive architecture and personalities. A population of such agents 
might operate more like a “functional soup” than a society composed of distinct 
semi- permanent persons.9 For some purposes, processes in such a system might 
be better individuated as teleological threads, based on their values, rather than on 
the basis of bodies, personalities, memories, or abilities. In such scenarios, goal-
continuity might be said to constitute a key aspect of survival.

Even so, there are situations in which an agent can best fulfill its final goals by 
intentionally changing them. Such situations can arise when any of the following 
factors is significant:

•	 Social signaling. When others can perceive an agent’s goals and use that information 
to infer instrumentally relevant dispositions or other correlated attributes, it can be 
in the agent’s interest to modify its goals to make a favorable impression. For exam-
ple, an agent might miss out on beneficial deals if potential partners cannot trust it to 
fulfill its side of the bargain. In order to make credible commitments, an agent might 
therefore wish to adopt as a final goal the honoring of its earlier commitments (and 
allow others to verify that it has indeed adopted this goal). Agents that could flexibly 
and transparently modify their own goals could use this ability to enforce deals.10

•	 Social preferences. Others may also have final preferences about an agent’s goals. The 
agent could then have reason to modify its goals, either to satisfy or to frustrate 
those preferences.

•	 Preferences concerning own goal content. An agent might have some final goal con-
cerned with the agent’s own goal content. For example, the agent might have a final 
goal to become the type of agent that is motivated by certain values rather than 
others (such as compassion rather than comfort).

•	 Storage costs. If the cost of storing or processing some part of an agent’s utility func-
tion is large compared to the chance that a situation will arise in which applying that 
part of the utility function will make a difference, then the agent has an instrumental 
reason to simplify its goal content, and it may trash the bit that is idle.11

We humans often seem happy to let our final values drift. This might often be 
because we do not know precisely what they are. It is not surprising that we want 
our beliefs about our final values to be able to change in light of continuing self-
discovery or changing self-presentation needs. However, there are cases in which 
we willingly change the values themselves, not just our beliefs or interpretations 
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of them. For example, somebody deciding to have a child might predict that they 
will come to value the child for its own sake, even though at the time of the deci-
sion they may not particularly value their future child or like children in general.

Humans are complicated, and many factors might be at play in a situation like 
this.12 For instance, one might have a final value that involves becoming the kind 
of person who cares about some other individual for his or her own sake, or one 
might have a final value that involves having certain experiences and occupying 
a certain social role; and becoming a parent—and undergoing the attendant goal 
shift—might be a necessary aspect of that. Human goals can also have inconsist-
ent content, and so some people might want to modify some of their final goals to 
reduce the inconsistencies.

Cognitive enhancement

Improvements in rationality and intelligence will tend to improve an agent’s 
decision- making, rendering the agent more likely to achieve its final goals. One 
would therefore expect cognitive enhancement to emerge as an instrumental goal 
for a wide variety of intelligent agents. For similar reasons, agents will tend to 
instrumentally value many kinds of information.13

Not all kinds of rationality, intelligence, and knowledge need be instrumentally 
useful in the attainment of an agent’s final goals. “Dutch book arguments” can be 
used to show that an agent whose credence function violates the rules of probabil-
ity theory is susceptible to “money pump” procedures, in which a savvy bookie 
arranges a set of bets each of which appears favorable according to the agent’s 
beliefs, but which in combination are guaranteed to result in a loss for the agent, 
and a corresponding gain for the bookie.14 However, this fact fails to provide any 
strong general instrumental reasons to iron out all probabilistic incoherency. 
Agents who do not expect to encounter savvy bookies, or who adopt a general 
policy against betting, do not necessarily stand to lose much from having some 
incoherent beliefs—and they may gain important benefits of the types mentioned: 
reduced cognitive effort, social signaling, etc. There is no general reason to expect 
an agent to seek instrumentally useless forms of cognitive enhancement, as an 
agent might not value knowledge and understanding for their own sakes.

Which cognitive abilities are instrumentally useful depends both on the agent’s 
final goals and on its situation. An agent that has access to reliable expert advice 
may have little need for its own intelligence and knowledge. If intelligence and 
knowledge come at a cost, such as time and effort expended in acquisition, or 
increased storage or processing requirements, then the agent might prefer less 
knowledge and less intelligence.15 The same can hold if the agent has final goals 
that involve being ignorant of certain facts; and likewise if an agent faces incen-
tives arising from strategic commitments, signaling, or social preferences.16

Each of these countervailing reasons often comes into play for human beings. 
Much information is irrelevant to our goals; we can often rely on others’ skill and 
expertise; acquiring knowledge takes time and effort; we might intrinsically value 
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certain kinds of ignorance; and we operate in an environment in which the ability 
to make strategic commitments, socially signal, and satisfy other people’s direct 
preferences over our own epistemic states is often more important to us than sim-
ple cognitive gains.

There are special situations in which cognitive enhancement may result in an 
enormous increase in an agent’s ability to achieve its final goals—in particular, 
if the agent’s final goals are fairly unbounded and the agent is in a position to 
become the first superintelligence and thereby potentially obtain a decisive strate-
gic advantage, enabling the agent to shape the future of Earth-originating life and 
accessible cosmic resources according to its preferences. At least in this special 
case, a rational intelligent agent would place a very high instrumental value on 
cognitive enhancement.

Technological perfection

An agent may often have instrumental reasons to seek better technology, which 
at its simplest means seeking more efficient ways of transforming some given set 
of inputs into valued outputs. Thus, a software agent might place an instrumental 
value on more efficient algorithms that enable its mental functions to run faster 
on given hardware. Similarly, agents whose goals require some form of physi-
cal construction might instrumentally value improved engineering technology 
which enables them to create a wider range of structures more quickly and reli-
ably, using fewer or cheaper materials and less energy. Of course, there is a trade-
off: the potential benefits of better technology must be weighed against its costs, 
including not only the cost of obtaining the technology but also the costs of learn-
ing how to use it, integrating it with other technologies already in use, and so 
forth.

Proponents of some new technology, confident in its superiority to existing 
alternatives, are often dismayed when other people do not share their enthusiasm. 
But people’s resistance to novel and nominally superior technology need not be 
based on ignorance or irrationality. A technology’s valence or normative charac-
ter depends not only on the context in which it is deployed, but also the vantage 
point from which its impacts are evaluated: what is a boon from one person’s 
perspective can be a liability from another’s. Thus, although mechanized looms 
increased the economic efficiency of textile production, the Luddite handloom 
weavers who anticipated that the innovation would render their artisan skills 
obsolete may have had good instrumental reasons to oppose it. The point here 
is that if “technological perfection” is to name a widely convergent instrumental 
goal for intelligent agents, then the term must be understood in a special sense—
technology must be construed as embedded in a particular social context, and its 
costs and benefits must be evaluated with reference to some specified agents’ final 
values.

It seems that a superintelligent singleton—a superintelligent agent that faces no 
significant intelligent rivals or opposition, and is thus in a position to determine 
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global policy unilaterally—would have instrumental reason to perfect the tech-
nologies that would make it better able to shape the world according to its pre-
ferred designs.17 This would probably include space colonization technology, such 
as von Neumann probes. Molecular nanotechnology, or some alternative still 
more capable physical manufacturing technology, also seems potentially very 
useful in the service of an extremely wide range of final goals.18

Resource acquisition

Finally, resource acquisition is another common emergent instrumental goal, 
for much the same reasons as technological perfection: both technology and 
resources facilitate physical construction projects.

Human beings tend to seek to acquire resources sufficient to meet their basic 
biological needs. But people usually seek to acquire resources far beyond this 
minimum level. In doing so, they may be partially driven by lesser physical desid-
erata, such as increased convenience. A great deal of resource accumulation is 
motivated by social concerns—gaining status, mates, friends, and influence, 
through wealth accumulation and conspicuous consumption. Perhaps less com-
monly, some people seek additional resources to achieve altruistic ambitions or 
expensive non-social aims.

On the basis of such observations it might be tempting to suppose that a super-
intelligence not facing a competitive social world would see no instrumental rea-
son to accumulate resources beyond some modest level, for instance whatever 
computational resources are needed to run its mind along with some virtual 
reality. Yet such a supposition would be entirely unwarranted. First, the value of 
resources depends on the uses to which they can be put, which in turn depends on 
the available technology. With mature technology, basic resources such as time, 
space, matter, and free energy, could be processed to serve almost any goal. For 
instance, such basic resources could be converted into life. Increased computa-
tional resources could be used to run the superintelligence at a greater speed and 
for a longer duration, or to create additional physical or simulated lives and civi-
lizations. Extra physical resources could also be used to create backup systems or 
perimeter defenses, enhancing security. Such projects could easily consume far 
more than one planet’s worth of resources.

Furthermore, the cost of acquiring additional extraterrestrial resources will 
decline radically as the technology matures. Once von Neumann probes can be 
built, a large portion of the observable universe (assuming it is uninhabited by 
intelligent life) could be gradually colonized—for the one-off cost of building and 
launching a single successful self-reproducing probe. This low cost of celestial 
resource acquisition would mean that such expansion could be worthwhile even if 
the value of the additional resources gained were somewhat marginal. For exam-
ple, even if a superintelligence’s final goals only concerned what happened within 
some particular small volume of space, such as the space occupied by its original 
home planet, it would still have instrumental reasons to harvest the resources of 
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the cosmos beyond. It could use those surplus resources to build computers to 
calculate more optimal ways of using resources within the small spatial region of 
primary concern. It could also use the extra resources to build ever more robust 
fortifications to safeguard its sanctum. Since the cost of acquiring additional 
resources would keep declining, this process of optimizing and increasing safe-
guards might well continue indefinitely even if it were subject to steeply diminish-
ing returns.19

Thus, there is an extremely wide range of possible final goals a superintelli-
gent singleton could have that would generate the instrumental goal of unlimited 
resource acquisition. The likely manifestation of this would be the superin-
telligence’s initiation of a colonization process that would expand in all direc-
tions using von Neumann probes. This would result in an approximate sphere 
of expanding infrastructure centered on the originating planet and growing in 
radius at some fraction of the speed of light; and the colonization of the universe 
would continue in this manner until the accelerating speed of cosmic expansion 
(a consequence of the positive cosmological constant) makes further procure-
ments impossible as remoter regions drift permanently out of reach (this happens 
on a timescale of billions of years).20 By contrast, agents lacking the technology 
required for inexpensive resource acquisition, or for the conversion of generic 
physical resources into useful infrastructure, may often find it not cost-effective 
to invest any present resources in increasing their material endowments. The 
same may hold for agents operating in competition with other agents of similar 
powers. For instance, if competing agents have already secured accessible cos-
mic resources, there may be no colonization opportunities left for a late-starting 
agent. The convergent instrumental reasons for superintelligences uncertain of 
the non-existence of other powerful superintelligent agents are complicated by 
strategic considerations that we do not currently fully understand but which may 
constitute important qualifications to the examples of convergent instrumental 
reasons we have looked at here.21

* * *
It should be emphasized that the existence of convergent instrumental reasons, 
even if they apply to and are recognized by a particular agent, does not imply 
that the agent’s behavior is easily predictable. An agent might well think of ways 
of pursuing the relevant instrumental values that do not readily occur to us. This 
is especially true for a superintelligence, which could devise extremely clever but 
counterintuitive plans to realize its goals, possibly even exploiting as-yet undis-
covered physical phenomena.22 What is predictable is that the convergent instru-
mental values would be pursued and used to realize the agent’s final goals—not 
the specific actions that the agent would take to achieve this.
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CHAPTER 8

Is the default outcome 
doom?

We found the link between intelligence and final values to be extremely 
loose. We also found an ominous convergence in instrumental val-
ues. For weak agents, these things do not matter much; because weak 

agents are easy to control and can do little damage. But in Chapter 6 we argued 
that the first superintelligence might well get a decisive strategic advantage. Its 
goals would then determine how humanity’s cosmic endowment will be used. 
Now we can begin to see how menacing this prospect is.

Existential catastrophe as the default outcome 
of an intelligence explosion?

An existential risk is one that threatens to cause the extinction of Earth-
originating intelligent life or to otherwise permanently and drastically destroy 
its potential for future desirable development. Proceeding from the idea of first-
mover advantage, the orthogonality thesis, and the instrumental convergence 
thesis, we can now begin to see the outlines of an argument for fearing that a 
plausible default outcome of the creation of machine superintelligence is existen-
tial catastrophe.

First, we discussed how the initial superintelligence might obtain a decisive 
strategic advantage. This superintelligence would then be in a position to form a 
singleton and to shape the future of Earth-originating intelligent life. What hap-
pens from that point onward would depend on the superintelligence’s motivations.

Second, the orthogonality thesis suggests that we cannot blithely assume that 
a superintelligence will necessarily share any of the final values stereotypically 
associated with wisdom and intellectual development in humans—scientific curi-
osity, benevolent concern for others, spiritual enlightenment and contemplation, 
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renunciation of material acquisitiveness, a taste for refined culture or for the sim-
ple pleasures in life, humility and selflessness, and so forth. We will consider later 
whether it might be possible through deliberate effort to construct a superintel-
ligence that values such things, or to build one that values human welfare, moral 
goodness, or any other complex purpose its designers might want it to serve. But 
it is no less possible—and in fact technically a lot easier—to build a superintel-
ligence that places final value on nothing but calculating the decimal expansion 
of pi. This suggests that—absent a special effort—the first superintelligence may 
have some such random or reductionistic final goal.

Third, the instrumental convergence thesis entails that we cannot blithely 
assume that a superintelligence with the final goal of calculating the decimals 
of pi (or making paperclips, or counting grains of sand) would limit its activities 
in such a way as not to infringe on human interests. An agent with such a final 
goal would have a convergent instrumental reason, in many situations, to acquire 
an unlimited amount of physical resources and, if possible, to eliminate poten-
tial threats to itself and its goal system. Human beings might constitute potential 
threats; they certainly constitute physical resources.

Taken together, these three points thus indicate that the first superintel-
ligence may shape the future of Earth-originating life, could easily have non- 
anthropomorphic final goals, and would likely have instrumental reasons to 
pursue open-ended resource acquisition. If we now reflect that human beings 
consist of useful resources (such as conveniently located atoms) and that we 
depend for our survival and flourishing on many more local resources, we can 
see that the outcome could easily be one in which humanity quickly becomes 
extinct.1

There are some loose ends in this reasoning, and we shall be in a better posi-
tion to evaluate it after we have cleared up several more surrounding issues. In 
particular, we need to examine more closely whether and how a project develop-
ing a superintelligence might either prevent it from obtaining a decisive strategic 
advantage or shape its final values in such a way that their realization would also 
involve the realization of a satisfactory range of human values.

It might seem incredible that a project would build or release an AI into the 
world without having strong grounds for trusting that the system will not cause 
an existential catastrophe. It might also seem incredible, even if one project were 
so reckless, that wider society would not shut it down before it (or the AI it was 
building) attains a decisive strategic advantage. But as we shall see, this is a road 
with many hazards. Let us look at one example right away.

The treacherous turn

With the help of the concept of convergent instrumental value, we can see the flaw 
in one idea for how to ensure superintelligence safety. The idea is that we validate 
the safety of a superintelligent AI empirically by observing its behavior while it 
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is in a controlled, limited environment (a “sandbox”) and that we only let the AI 
out of the box if we see it behaving in a friendly, cooperative, responsible manner.

The flaw in this idea is that behaving nicely while in the box is a convergent 
instrumental goal for friendly and unfriendly AIs alike. An unfriendly AI of suf-
ficient intelligence realizes that its unfriendly final goals will be best realized if it 
behaves in a friendly manner initially, so that it will be let out of the box. It will 
only start behaving in a way that reveals its unfriendly nature when it no longer 
matters whether we find out; that is, when the AI is strong enough that human 
opposition is ineffectual.

Consider also a related set of approaches that rely on regulating the rate of intel-
ligence gain in a seed AI by subjecting it to various kinds of intelligence tests or by 
having the AI report to its programmers on its rate of progress. At some point, an 
unfriendly AI may become smart enough to realize that it is better off concealing 
some of its capability gains. It may underreport on its progress and deliberately 
flunk some of the harder tests, in order to avoid causing alarm before it has grown 
strong enough to attain a decisive strategic advantage. The programmers may try 
to guard against this possibility by secretly monitoring the AI’s source code and 
the internal workings of its mind; but a smart-enough AI would realize that it 
might be under surveillance and adjust its thinking accordingly.2 The AI might 
find subtle ways of concealing its true capabilities and its incriminating intent.3 
(Devising clever escape plans might, incidentally, also be a convergent strategy for 
many types of friendly AI, especially as they mature and gain confidence in their 
own judgments and capabilities. A system motivated to promote our interests 
might be making a mistake if it allowed us to shut it down or to construct another, 
potentially unfriendly AI.)

We can thus perceive a general failure mode, wherein the good behavioral track 
record of a system in its juvenile stages fails utterly to predict its behavior at a 
more mature stage. Now, one might think that the reasoning described above is 
so obvious that no credible project to develop artificial general intelligence could 
possibly overlook it. But one should not be too confident that this is so.

Consider the following scenario. Over the coming years and decades, AI systems 
become gradually more capable and as a consequence find increasing real-world 
application: they might be used to operate trains, cars, industrial and household 
robots, and autonomous military vehicles. We may suppose that this automation 
for the most part has the desired effects, but that the success is punctuated by 
occasional mishaps—a driverless truck crashes into oncoming traffic, a military 
drone fires at innocent civilians. Investigations reveal the incidents to have been 
caused by judgment errors by the controlling AIs. Public debate ensues. Some 
call for tighter oversight and regulation, others emphasize the need for research 
and better-engineered systems—systems that are smarter and have more com-
mon sense, and that are less likely to make tragic mistakes. Amidst the din can 
perhaps also be heard the shrill voices of doomsayers predicting many kinds of ill 
and impending catastrophe. Yet the momentum is very much with the growing 
AI and robotics industries. So development continues, and progress is made. As 
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the automated navigation systems of cars become smarter, they suffer fewer acci-
dents; and as military robots achieve more precise targeting, they cause less col-
lateral damage. A broad lesson is inferred from these observations of real-world 
outcomes: the smarter the AI, the safer it is. It is a lesson based on science, data, 
and statistics, not armchair philosophizing. Against this backdrop, some group of 
researchers is beginning to achieve promising results in their work on developing 
general machine intelligence. The researchers are carefully testing their seed AI 
in a sandbox environment, and the signs are all good. The AI’s behavior inspires 
confidence—increasingly so, as its intelligence is gradually increased.

At this point, any remaining Cassandra would have several strikes against her:

 i A history of alarmists predicting intolerable harm from the growing capabil-
ities of robotic systems and being repeatedly proven wrong. Automation has 
brought many benefits and has, on the whole, turned out safer than human 
operation.

 ii A clear empirical trend: the smarter the AI, the safer and more reliable it 
has been. Surely this bodes well for a project aiming at creating machine in-
telligence more generally smart than any ever built before—what is more, 
machine intelligence that can improve itself so that it will become even more 
reliable.

 iii Large and growing industries with vested interests in robotics and machine 
intelligence. These fields are widely seen as key to national economic com-
petitiveness and military security. Many prestigious scientists have built their 
careers laying the groundwork for the present applications and the more ad-
vanced systems being planned.

 iv A promising new technique in artificial intelligence, which is tremendously ex-
citing to those who have participated in or followed the research. Although 
safety issues and ethics are debated, the outcome is preordained. Too much 
has been invested to pull back now. AI researchers have been working to get 
to human-level artificial general intelligence for the better part of a century: 
of course there is no real prospect that they will now suddenly stop and throw 
away all this effort just when it finally is about to bear fruit.

 v The enactment of some safety rituals, whatever helps demonstrate that the 
participants are ethical and responsible (but nothing that significantly impedes 
the forward charge).

 vi A careful evaluation of seed AI in a sandbox environment, showing that it 
is behaving cooperatively and showing good judgment. After some further 
 adjustments, the test results are as good as they could be. It is a green light 
for the final step . . .

And so we boldly go—into the whirling knives.
We observe here how it could be the case that when dumb, smarter is safer; yet 

when smart, smarter is more dangerous. There is a kind of pivot point, at which 
a strategy that has previously worked excellently suddenly starts to backfire. We 
may call the phenomenon the treacherous turn.
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The treacherous turn—While weak, an AI behaves cooperatively (increasingly so, as it 
gets smarter). When the AI gets sufficiently strong—without warning or provocation—
it strikes, forms a singleton, and begins directly to optimize the world according to the 
 criteria implied by its final values.

A treacherous turn can result from a strategic decision to play nice and build 
strength while weak in order to strike later; but this model should not be inter-
preted too narrowly. For example, an AI might not play nice in order that it 
be allowed to survive and prosper. Instead, the AI might calculate that if it is 
terminated, the programmers who built it will develop a new and somewhat 
different AI architecture, but one that will be given a similar utility function. 
In this case, the original AI may be indifferent to its own demise, knowing that 
its goals will continue to be pursued in the future. It might even choose a strat-
egy in which it malfunctions in some particularly interesting or reassuring way. 
Though this might cause the AI to be terminated, it might also encourage the 
engineers who perform the postmortem to believe that they have gleaned a valu-
able new insight into AI dynamics—leading them to place more trust in the 
next system they design, and thus increasing the chance that the now-defunct 
original AI’s goals will be achieved. Many other possible strategic considerations 
might also influence an advanced AI, and it would be hubristic to suppose that 
we could anticipate all of them, especially for an AI that has attained the strate-
gizing superpower.

A treacherous turn could also come about if the AI discovers an unanticipated 
way of fulfilling its final goal as specified. Suppose, for example, that an AI’s final 
goal is to “make the project’s sponsor happy.” Initially, the only method available 
to the AI to achieve this outcome is by behaving in ways that please its sponsor in 
something like the intended manner. The AI gives helpful answers to questions; 
it exhibits a delightful personality; it makes money. The more capable the AI gets, 
the more satisfying its performances become, and everything goeth according to 
plan—until the AI becomes intelligent enough to figure out that it can realize its 
final goal more fully and reliably by implanting electrodes into the pleasure cent-
ers of its sponsor’s brain, something assured to delight the sponsor immensely.4 
Of course, the sponsor might not have wanted to be pleased by being turned into 
a grinning idiot; but if this is the action that will maximally realize the AI’s final 
goal, the AI will take it. If the AI already has a decisive strategic advantage, then 
any attempt to stop it will fail. If the AI does not yet have a decisive strategic 
advantage, then the AI might temporarily conceal its canny new idea for how to 
instantiate its final goal until it has grown strong enough that the sponsor and 
everybody else will be unable to resist. In either case, we get a treacherous turn.

Malignant failure modes

A project to develop machine superintelligence might fail in various ways. 
Many of these are “benign” in the sense that they would not cause an existential 
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catastrophe. For example, a project might run out of funding, or a seed AI might 
fail to extend its cognitive capacities sufficiently to reach superintelligence. Benign 
failures are bound to occur many times between now and the eventual develop-
ment of machine superintelligence.

But there are other ways of failing that we might term “malignant” in that they 
involve an existential catastrophe. One feature of a malignant failure is that it 
eliminates the opportunity to try again. The number of malignant failures that 
will occur is therefore either zero or one. Another feature of a malignant fail-
ure is that it presupposes a great deal of success: only a project that got a great 
number of things right could succeed in building a machine intelligence powerful 
enough to pose a risk of malignant failure. When a weak system malfunctions, 
the fallout is limited. However, if a system that has a decisive strategic advantage 
misbehaves, or if a misbehaving system is strong enough to gain such an advan-
tage, the damage can easily amount to an existential catastrophe—a terminal and 
global destruction of humanity’s axiological potential; that is to say, a future that 
is mostly void of whatever we have reason to value.

Let us look at some possible malignant failure modes.

Perverse instantiation

We have already encountered the idea of perverse instantiation: a superintelli-
gence discovering some way of satisfying the criteria of its final goal that violates 
the intentions of the programmers who defined the goal. Some examples:

Final goal: “Make us smile”
Perverse instantiation: Paralyze human facial musculatures into constant beaming smiles

The perverse instantiation—manipulating facial nerves—realizes the final goal 
to a greater degree than the methods we would normally use, and is therefore 
preferred by the AI. One might try to avoid this undesirable outcome by adding a 
stipulation to the final goal to rule it out:

Final goal: “Make us smile without directly interfering with our facial muscles”
Perverse instantiation: Stimulate the part of the motor cortex that controls our facial muscu­
lature in such a way as to produce constant beaming smiles

Defining a final goal in terms of human expressions of satisfaction or approval 
does not seem promising. Let us bypass the behaviorism and specify a final goal 
that refers directly to a positive phenomenal state, such as happiness or subjective 
well-being. This suggestion requires that the programmers are able to define a 
computational representation of the concept of happiness in the seed AI. This is 
itself a difficult problem, but we set it to one side for now (we will return to it in 
Chapter 12). Let us suppose that the programmers can somehow get the AI to have 
the goal of making us happy. We then get:

Final goal: “Make us happy”
Perverse instantiation: Implant electrodes into the pleasure centers of our brains
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The perverse instantiations we mention are only meant as illustrations. There may 
be other ways of perversely instantiating the stated final goal, ways that enable a 
greater degree of realization of the goal and which are therefore preferred (by the 
agent whose final goals they are—not by the programmers who gave the agent 
these goals). For example, if the goal is to maximize our pleasure, then the elec-
trode method is relatively inefficient. A more plausible way would start with the 
superintelligence “uploading” our minds to a computer (through high-fidelity 
brain emulation). The AI could then administer the digital equivalent of a drug 
to make us ecstatically happy and record a one-minute episode of the resulting 
experience. It could then put this bliss loop on perpetual repeat and run it on fast 
computers. Provided that the resulting digital minds counted as “us,” this out-
come would give us much more pleasure than electrodes implanted in biological 
brains, and would therefore be preferred by an AI with the stated final goal.

“But wait! This is not what we meant! Surely if the AI is superintelligent, it 
must understand that when we asked it to make us happy, we didn’t mean that it 
should reduce us to a perpetually repeating recording of a drugged-out digitized 
mental episode!”—The AI may indeed understand that this is not what we meant. 
However, its final goal is to make us happy, not to do what the programmers 
meant when they wrote the code that represents this goal. Therefore, the AI will 
care about what we meant only instrumentally. For instance, the AI might place 
an instrumental value on finding out what the programmers meant so that it can 
pretend—until it gets a decisive strategic advantage—that it cares about what the 
programmers meant rather than about its actual final goal. This will help the AI 
realize its final goal by making it less likely that the programmers will shut it 
down or change its goal before it is strong enough to thwart any such interference.

Perhaps it will be suggested that the problem is that the AI has no conscience. 
We humans are sometimes saved from wrongdoing by the anticipation that we 
would feel guilty afterwards if we lapsed. Maybe what the AI needs, then, is the 
capacity to feel guilt?

Final goal: “Act so as to avoid the pangs of bad conscience”
Perverse instantiation: Extirpate the cognitive module that produces guilt feelings

Both the observation that we might want the AI to do “what we meant” and the 
idea that we might want to endow the AI with some kind of moral sense deserve 
to be explored further. The final goals mentioned above would lead to perverse 
instantiations; but there may be other ways of developing the underlying ideas 
that have more promise. We will return to this in Chapter 13.

Let us consider one more example of a final goal that leads to a perverse 
instantiation. This goal has the advantage of being easy to specify in code: 
reinforcement- learning algorithms are routinely used to solve various machine 
learning problems.

Final goal: “Maximize the time­discounted integral of your future reward signal”
Perverse instantiation: Short­circuit the reward pathway and clamp the reward signal to its 
maximal strength
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The idea behind this proposal is that if the AI is motivated to seek reward, then 
one could get it to behave desirably by linking reward to appropriate action. The 
proposal fails when the AI obtains a decisive strategic advantage, at which point 
the action that maximizes reward is no longer one that pleases the trainer but one 
that involves seizing control of the reward mechanism. We can call this phenom-
enon wireheading.5 In general, while an animal or a human can be motivated to 
perform various external actions in order to achieve some desired inner mental 
state, a digital mind that has full control of its internal state can short-circuit such 
a motivational regime by directly changing its internal state into the desired con-
figuration: the external actions and conditions that were previously necessary as 
means become superfluous when the AI becomes intelligent and capable enough 
to achieve the end more directly (more on this shortly).6

These examples of perverse instantiation show that many final goals that might 
at first glance seem safe and sensible turn out, on closer inspection, to have radi-
cally unintended consequences. If a superintelligence with one of these final goals 
obtains a decisive strategic advantage, it is game over for humanity.

Suppose now that somebody proposes a different final goal, one not included in 
our list above. Perhaps it is not immediately obvious how it could have a perverse 
instantiation. But we should not be too quick to clap our hands and declare vic-
tory. Rather, we should worry that the goal specification does have some perverse 
instantiation and that we need to think harder in order to find it. Even if after 
thinking as hard as we can we fail to discover any way of perversely instantiating 
the proposed goal, we should remain concerned that maybe a superintelligence 
will find a way where none is apparent to us. It is, after all, far shrewder than we are.

Infrastructure profusion

One might think that the last of the abovementioned perverse instantiations, 
wireheading, is a benign failure mode: that the AI would “turn on, tune in, drop 
out,” maxing out its reward signal and losing interest in the external world, rather 
like a heroin addict. But this is not necessarily so, and we already hinted at the 
reason in Chapter 7. Even a junkie is motivated to take actions to ensure a con-
tinued supply of his drug. The wireheaded AI, likewise, would be motivated to 
take actions to maximize the expectation of its (time-discounted) future reward 
stream. Depending on exactly how the reward signal is defined, the AI may not 
even need to sacrifice any significant amount of its time, intelligence, or product-
ivity to indulge its craving to the fullest, leaving the bulk of its capacities free 
to be deployed for purposes other than the immediate registration of reward. 
What other purposes? The only thing of final value to the AI, by assumption, is its 
reward signal. All available resources should therefore be devoted to increasing 
the volume and duration of the reward signal or to reducing the risk of a future 
disruption. So long as the AI can think of some use for additional resources that 
will have a nonzero positive effect on these parameters, it will have an instrumen-
tal reason to use those resources. There could, for example, always be use for an 
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extra backup system to provide an extra layer of defense. And even if the AI could 
not think of any further way of directly reducing risks to the maximization of its 
future reward stream, it could always devote additional resources to expanding 
its computational hardware, so that it could search more effectively for new risk 
mitigation ideas.

The upshot is that even an apparently self-limiting goal, such as wirehead-
ing, entails a policy of unlimited expansion and resource acquisition in a 
utility- maximizing agent that enjoys a decisive strategic advantage.7 This case 
of a wireheading AI exemplifies the malignant failure mode of infrastructure 
 profusion, a phenomenon where an agent transforms large parts of the reachable 
universe into infrastructure in the service of some goal, with the side effect of 
preventing the realization of humanity’s axiological potential.

Infrastructure profusion can result from final goals that would have been per-
fectly innocuous if they had been pursued as limited objectives. Consider the fol-
lowing two examples:

•	 Riemann hypothesis catastrophe. An AI, given the final goal of evaluating the Riemann 
hypothesis, pursues this goal by transforming the Solar System into “computronium” 
(physical resources arranged in a way that is optimized for computation)—including 
the atoms in the bodies of whomever once cared about the answer.8

•	 Paperclip AI. An AI, designed to manage production in a factory, is given the final goal 
of maximizing the manufacture of paperclips, and proceeds by converting first the 
Earth and then increasingly large chunks of the observable universe into paperclips.

In the first example, the proof or disproof of the Riemann hypothesis that the 
AI produces is the intended outcome and is in itself harmless; the harm comes 
from the hardware and infrastructure created to achieve this result. In the sec-
ond example, some of the paperclips produced would be part of the intended 
outcome; the harm would come either from the factories created to produce the 
paperclips (infrastructure profusion) or from the excess of paperclips (perverse 
instantiation).

One might think that the risk of a malignant infrastructure profusion failure 
arises only if the AI has been given some clearly open-ended final goal, such as 
to manufacture as many paperclips as possible. It is easy to see how this gives the 
superintelligent AI an insatiable appetite for matter and energy, since additional 
resources can always be turned into more paperclips. But suppose that the goal is 
instead to make at least one million paperclips (meeting suitable design specifica-
tions) rather than to make as many as possible. One would like to think that an AI 
with such a goal would build one factory, use it to make a million paperclips, and 
then halt. Yet this may not be what would happen.

Unless the AI’s motivation system is of a special kind, or there are additional 
elements in its final goal that penalize strategies that have excessively wide- 
ranging impacts on the world, there is no reason for the AI to cease activity upon 
achieving its goal. On the contrary: if the AI is a sensible Bayesian agent, it would 
never assign exactly zero probability to the hypothesis that it has not yet achieved 
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its goal—this, after all, being an empirical hypothesis against which the AI can 
have only uncertain perceptual evidence. The AI should therefore continue to 
make paperclips in order to reduce the (perhaps astronomically small) probability 
that it has somehow still failed to make at least a million of them, all appearances 
notwithstanding. There is nothing to be lost by continuing paperclip production 
and there is always at least some microscopic probability increment of achieving 
its final goal to be gained.

Now it might be suggested that the remedy here is obvious. (But how obvious 
was it before it was pointed out that there was a problem here in need of remedy-
ing?) Namely, if we want the AI to make some paperclips for us, then instead of 
giving it the final goal of making as many paperclips as possible, or to make at 
least some number of paperclips, we should give it the final goal of making some 
specific number of paperclips—for example, exactly one million paperclips—so 
that going beyond this number would be counterproductive for the AI. Yet this, 
too, would result in a terminal catastrophe. In this case, the AI would not produce 
additional paperclips once it had reached one million, since that would prevent 
the realization of its final goal. But there are other actions the superintelligent AI 
could take that would increase the probability of its goal being achieved. It could, 
for instance, count the paperclips it has made, to reduce the risk that it has made 
too few. After it has counted them, it could count them again. It could inspect each 
one, over and over, to reduce the risk that any of the paperclips fail to meet the 
design specifications. It could build an unlimited amount of computronium in an 
effort to clarify its thinking, in the hope of reducing the risk that it has overlooked 
some obscure way in which it might have somehow failed to achieve its goal. Since 
the AI may always assign a nonzero probability to having merely hallucinated 
making the million paperclips, or to having false memories, it would quite pos-
sibly always assign a higher expected utility to continued action—and continued 
infrastructure production—than to halting.

The claim here is not that there is no possible way to avoid this failure mode. 
We will explore some potential solutions in later pages. The claim is that it is much 
easier to convince oneself that one has found a solution than it is to actually find 
a solution. This should make us extremely wary. We may propose a specification 
of a final goal that seems sensible and that avoids the problems that have been 
pointed out so far, yet which upon further consideration—by human or super-
human intelligence—turns out to lead to either perverse instantiation or infra-
structure profusion, and hence to existential catastrophe, when embedded in a 
superintelligent agent able to attain a decisive strategic advantage.

Before we end this subsection, let us consider one more variation. We have been 
assuming the case of a superintelligence that is seeking to maximize its expected 
utility, where the utility function expresses its final goal. We have seen that this 
tends to lead to infrastructure profusion. Might we avoid this malignant outcome 
if instead of a maximizing agent we build a satisficing agent, one that simply seeks 
to achieve an outcome that is “good enough” according to some criterion, rather 
than an outcome that is as good as possible?
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There are at least two different ways to formalize this idea. The first would be to 
make the final goal itself have a satisficing character. For example, instead of giv-
ing the AI the final goal of making as many paperclips as possible, or of making 
exactly one million paperclips, we might give the AI the goal of making between 
999,000 and 1,001,000 paperclips. The utility function defined by the final goal 
would be indifferent between outcomes in this range; and as long as the AI is sure 
it has hit this wide target, it would see no reason to continue to produce infra-
structure. But this method fails in the same way as before: the AI, if reasonable, 
never assigns exactly zero probability to it having failed to achieve its goal; there-
fore the expected utility of continuing activity (e.g. by counting and recounting 
the paperclips) is greater than the expected utility of halting. Thus, a malignant 
infrastructure profusion can result.

Another way of developing the satisficing idea is by modifying not the final goal 
but the decision procedure that the AI uses to select plans and actions. Instead 
of searching for an optimal plan, the AI could be constructed to stop looking as 
soon as it found a plan that it judged gave a probability of success exceeding a 
certain threshold, say 95%. Hopefully, the AI could achieve a 95% probability of 
having manufactured one million paperclips without needing to turn the entire 
galaxy into infrastructure in the process. But this way of implementing the satis-
ficing idea fails for another reason: there is no guarantee that the AI would select 
some humanly intuitive and sensible way of achieving a 95% chance of having 
manufactured a million paperclips, such as by building a single paperclip factory. 
Suppose that the first solution that pops into the AI’s mind for how to achieve 
a 95% probability of achieving its final goal is to implement the probability- 
maximizing plan for achieving the goal. Having thought of this solution, and 
having correctly judged that it meets the satisficing criterion of giving at least 95% 
probability to successfully manufacturing one million paperclips, the AI would 
then have no reason to continue to search for alternative ways of achieving the 
goal. Infrastructure profusion would result, just as before.

Perhaps there are better ways of building a satisficing agent, but let us take 
heed: plans that appear natural and intuitive to us humans need not so appear to 
a superintelligence with a decisive strategic advantage, and vice versa.

Mind crime

Another failure mode for a project, especially a project whose interests incorpor-
ate moral considerations, is what we might refer to as mind crime. This is similar 
to infrastructure profusion in that it concerns a potential side effect of actions 
undertaken by the AI for instrumental reasons. But in mind crime, the side effect 
is not external to the AI; rather, it concerns what happens within the AI itself (or 
within the computational processes it generates). This failure mode deserves its 
own designation because it is easy to overlook yet potentially deeply problematic.

Normally, we do not regard what is going on inside a computer as having 
any moral significance except insofar as it affects things outside. But a machine 
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superintelligence could create internal processes that have moral status. For 
example, a very detailed simulation of some actual or hypothetical human mind 
might be conscious and in many ways comparable to an emulation. One can 
imagine scenarios in which an AI creates trillions of such conscious simulations,  
perhaps in order to improve its understanding of human psychology and soci-
ology. These simulations might be placed in simulated environments and sub-
jected to various stimuli, and their reactions studied. Once their informational 
usefulness has been exhausted, they might be destroyed (much as lab rats are 
routinely sacrificed by human scientists at the end of an experiment).

If such practices were applied to beings that have high moral status—such as 
simulated humans or many other types of sentient mind—the outcome might be 
equivalent to genocide and thus extremely morally problematic. The number of 
victims, moreover, might be orders of magnitude larger than in any genocide in 
history.

The claim here is not that creating sentient simulations is necessarily morally 
wrong in all situations. Much would depend on the conditions under which these 
beings would live, in particular the hedonic quality of their experience but pos-
sibly on many other factors as well. Developing an ethics for these matters is a task 
outside the scope of this book. It is clear, however, that there is at least the poten-
tial for a vast amount of death and suffering among simulated or digital minds, 
and, a fortiori, the potential for morally catastrophic outcomes.9

There might also be other instrumental reasons, aside from epistemic ones, for 
a machine superintelligence to run computations that instantiate sentient minds 
or that otherwise infract moral norms. A superintelligence might threaten to mis-
treat, or commit to reward, sentient simulations in order to blackmail or incen-
tivize various external agents; or it might create simulations in order to induce 
indexical uncertainty in outside observers.10

* * *
This inventory is incomplete. We will encounter additional malignant failure 
modes in later chapters. But we have seen enough to conclude that scenarios in 
which some machine intelligence gets a decisive strategic advantage are to be 
viewed with grave concern.
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CHAPTER 9

The control problem

If we are threatened with existential catastrophe as the default outcome of an 
intelligence explosion, our thinking must immediately turn to the search 
for countermeasures. Is there some way to avoid the default outcome? Is it 

possible to engineer a controlled detonation? In this chapter we begin to analyze 
the control problem, the unique principal–agent problem that arises with the 
creation of an artificial superintelligent agent. We distinguish two broad classes 
of potential methods for addressing this problem—capability control and moti-
vation selection—and we examine several specific techniques within each class. 
We also allude to the esoteric possibility of “anthropic capture.”

Two agency problems

If we suspect that the default outcome of an intelligence explosion is existential 
catastrophe, our thinking must immediately turn to whether, and if so how, this 
default outcome can be avoided. Is it possible to achieve a “controlled detona-
tion”? Could we engineer the initial conditions of an intelligence explosion so as 
to achieve a specific desired outcome, or at least to ensure that the result lies some-
where in the class of broadly acceptable outcomes? More specifically: how can the 
sponsor of a project that aims to develop superintelligence ensure that the project, 
if successful, produces a superintelligence that would realize the sponsor’s goals? 
We can divide this control problem into two parts. One part is generic, the other 
unique to the present context.

This first part—what we shall call the first principal–agent problem—arises 
whenever some human entity (“the principal”) appoints another (“the agent”) 
to act in the former’s interest. This type of agency problem has been extensively 
studied by economists.1 It becomes relevant to our present concern if the people 
creating an AI are distinct from the people commissioning its creation. The pro-
ject’s owner or sponsor (which could be anything ranging from a single individual 
to humanity as a whole) might then worry that the scientists and programmers 
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implementing the project will not act in the sponsor’s best interest.2 Although this 
type of agency problem could pose significant challenges to a project sponsor, it 
is not a problem unique to intelligence amplification or AI projects. Principal–
agent problems of this sort are ubiquitous in human economic and political inter-
actions, and there are many ways of dealing with them. For instance, the risk 
that a disloyal employee will sabotage or subvert the project could be minimized 
through careful background checks of key personnel, the use of a good version-
control system for software projects, and intensive oversight from multiple inde-
pendent monitors and auditors. Of course, such safeguards come at a cost—they 
expand staffing needs, complicate personnel selection, hinder creativity, and stifle 
independent and critical thought, all of which could reduce the pace of progress. 
These costs could be significant, especially for projects that have tight budgets, or 
that perceive themselves to be in a close race in a winner-takes-all competition. In 
such situations, projects may skimp on procedural safeguards, creating possibili-
ties for potentially catastrophic principal–agent failures of the first type.

The other part of the control problem is more specific to the context of an intel-
ligence explosion. This is the problem that a project faces when it seeks to ensure 
that the superintelligence it is building will not harm the project’s interests. This 
part, too, can be thought of as a principal–agent problem—the second principal–
agent problem. In this case, the agent is not a human agent operating on behalf of 
a human principal. Instead, the agent is the superintelligent system. Whereas the 
first principal–agent problem occurs mainly in the development phase, the sec-
ond agency problem threatens to cause trouble mainly in the superintelligence’s 
operational phase.

Exhibit 1 Two agency problems

The first principal–agent problem
•	 Human v. Human (Sponsor → Developer)
•	 Occurs mainly in developmental phase
•	 Standard management techniques apply

The second principal–agent problem (“the control problem”)
•	 Human v. Superintelligence (Project → System)
•	 Occurs mainly in operational (and bootstrap) phase
•	 New techniques needed

This second agency problem poses an unprecedented challenge. Solving it 
will require new techniques. We have already considered some of the difficulties 
involved. We saw, in particular, that the treacherous turn syndrome vitiates what 
might otherwise have seemed like a promising set of methods, ones that rely on 
observing an AI’s behavior in its developmental phase and allowing the AI to 
graduate from a secure environment once it has accumulated a track record of 
taking appropriate actions. Other technologies can often be safety-tested in the 
laboratory or in small field studies, and then rolled out gradually with a possibility 
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of halting deployment if unexpected troubles arise. Their performance in prelim-
inary trials helps us make reasonable inferences about their future reliability. 
Such behavioral methods are defeated in the case of superintelligence because of 
the strategic planning ability of general intelligence.3

Since the behavioral approach is unavailing, we must look for alternatives. We 
can divide potential control methods into two broad classes: capability control 
methods, which aim to control what the superintelligence can do; and motivation 
selection methods, which aim to control what it wants to do. Some of the  methods 
are compatible while others represent mutually exclusive alternatives. In this 
chapter we canvass the main options. (In the next four chapters, we will explore 
some of the key issues at greater depth.)

It is important to realize that some control method (or combination of   methods) 
must be implemented before the system becomes superintelligent. It cannot be 
done after the system has obtained a decisive strategic advantage. The need to 
solve the control problem in advance—and to implement the solution successfully 
in the very first system to attain superintelligence—is part of what makes achiev-
ing a controlled detonation such a daunting challenge.

Capability control methods

Capability control methods seek to prevent undesirable outcomes by limiting 
what the superintelligence can do. This might involve placing the superintelli-
gence in an environment in which it is unable to cause harm (boxing methods) 
or in which there are strongly convergent instrumental reasons not to engage in 
harmful behavior (incentive methods). It might also involve limiting the inter-
nal capacities of the superintelligence (stunting). In addition, capability control 
methods might involve the use of mechanisms to automatically detect and react 
to various kinds of containment failure or attempted transgression (tripwires).

Boxing methods

Boxing methods can be subdivided into physical and informational containment 
methods.

Physical containment aims to confine the system to a “box,” i.e. to prevent 
the system from interacting with the external world otherwise than via specific 
restricted output channels. The boxed system would not have access to physical 
manipulators outside of the box. Removing manipulators (such as robotic arms) 
from inside the box as well would prevent the system from constructing physical 
devices that could breach the confinement.

For extra security, the system should be placed in a metal mesh to prevent it 
from transmitting radio signals, which might otherwise offer a means of manipu-
lating electronic objects such as radio receivers in the environment. Note, by the 
way, how easy it might have been to overlook the need for this precaution. One 
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might naively have assumed that an agent without a manipulator could not affect 
the external world. But it might be possible for a machine intelligence to generate 
radio waves even when it lacks access to external manipulators, simply “by think-
ing” (that is, by shuffling the electrons in its circuitry in particular patterns).4 
Once pointed out, this vulnerability can be patched by enclosing the system in a 
Faraday cage—but we are left wondering how many other similarly subtle vulner-
abilities might exist. Each time we hear of a seemingly foolproof security design 
that has an unexpected flaw, we should prick up our ears. These occasions grace 
us with the opportunity to abandon a life of overconfidence and resolve to become 
better Bayesians.5

Physical confinement has several advantages. It is easy to implement. It can 
be applied to many machine intelligence architectures, even ones that were not 
initially designed with safety as an objective. It can be used in combination with 
most other control methods. And it seems unlikely to go wrong by backfiring: 
that is, while it might fail to ensure safety, it is unlikely to cause a catastrophe that 
would not otherwise have occurred. The main disadvantage with physical con-
finement is that it reduces the functionality of the superintelligence (an issue to 
which we will return in Chapter 10). Another concern is that it might encourage a 
false sense of security, though this is avoidable if we regard physical confinement 
as icing on the cake rather than the main substance of our precautions.

Informational containment aims to restrict what information is allowed to 
exit the box. We have already seen how a superintelligence that has access to an 
Internet port, such that it can message outside entities, is potentially unsafe: even 
if it starts out without access to physical actuators, it may use its information out-
put channel to get human beings to do its bidding. An obvious informational 
containment method, therefore, is to bar the system from accessing communica-
tions networks.

Unplugging an AI from the Internet does not, however, ensure safety if there 
are one or more humans serving as the system’s gatekeepers and remaining in 
communication with it. During the development phase, the programmers serve 
as gatekeepers; during the operational phase, the system’s owner might play this 
role. If the AI can persuade or trick a gatekeeper to let it out of the box, resulting in 
its gaining access either to the Internet or directly to physical manipulators, then 
the boxing strategy has failed. Human beings are not secure systems, especially 
not when pitched against a superintelligent schemer and persuader.6

Although routing the outbound communications of a machine intelligence 
to a human gatekeeper does not guarantee safety, it could serve as an auxiliary 
safety measure. There are precautions that might reduce the risk of the AI escap-
ing through the gatekeeper. The AI could be allowed to communicate only via 
a low-bandwidth teletype interface. This would make it slightly harder to psy-
chologically manipulate the gatekeepers (precluding the use of emotive sound 
and imagery and tricks such as flashing hypnotic patterns to induce a trancelike 
state).7 Going further, the content (not just the mode of presentation) of the output 
could be restricted; so that, for example, the AI would be constrained to giving 
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single-bit answers to yes/no questions. The idea of building a question-answering 
system will be examined further in the next chapter.

The limiting case of the boxing approach would be a system kept in complete 
physical and informational isolation. Even if achievable, however, such an isolated 
system would be rather useless since it would have no effect on the external world. 
It might perhaps be thought that some scientific purpose could be served by cre-
ating a superintelligence and keeping it in isolation: by studying a self-contained 
model system, one could learn about its internal dynamics and its behavior pat-
terns. But this would be an error. As soon as the system is observed, it ceases to 
be informationally isolated.8 Information can be transmitted not only via mes-
sages that an AI sends out through a designated “output channel” but also via any 
observation an outsider makes of some causal consequence of the AI’s workings, 
direct or indirect—its power consumption, its CPU and memory usage, its com-
putational states, or indeed any traces left behind after it has been shut down. An 
AI anticipating that it might be observed in any of these ways could strategically 
adopt behaviors designed to influence the hypothesized observers. For example, 
the AI could “malfunction” in whichever way would most increase the probability 
that it will ultimately be reactivated or that another superintelligence will be cre-
ated with goals similar to its own.

Incentive methods

Incentive methods involve placing an agent in an environment where it finds 
instrumental reasons to act in ways that promote the principal’s interests.

Consider a billionaire who uses her fortune to set up a large charitable founda-
tion. Once created, the foundation may be powerful—more powerful than most 
individuals, including its founder, who might have donated most of her wealth. 
To control the foundation, the founder lays down its purpose in articles of incor-
poration and bylaws, and appoints a board of directors sympathetic to her cause. 
These measures constitute a form of motivation selection, since they aim to shape 
foundation’s preferences. But even if such attempts to customize the organiza-
tional internals fail, the foundation’s behavior would remain circumscribed by its 
social and legal milieu. The foundation would have an incentive to obey the law, 
for example, lest it be shut down or fined. It would have an incentive to offer its 
employees acceptable pay and working conditions, and to satisfy external stake-
holders. Whatever its final goals, the foundation thus has instrumental reasons to 
conform its behavior to various social norms.

Might one not hope that a machine superintelligence would likewise be hemmed 
in by the need to get along with the other actors with which it shares the stage? 
Though this might seem like a straightforward way of dealing with the control 
problem, it is not free of obstacles. In particular, it presupposes a balance of power: 
legal or economic sanctions cannot restrain an agent that has a decisive strategic 
advantage. Social integration can therefore not be relied upon as a control method 
in fast or medium takeoff scenarios that feature a winner-takes-all dynamic.
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How about in multipolar scenarios, wherein several agencies emerge post- 
transition with comparable levels of capability? Unless the default trajectory is 
one with a slow takeoff, achieving such a power distribution may require a care-
fully orchestrated ascent wherein different projects are deliberately synchronized 
to prevent any one of them from ever pulling ahead of the pack.9 Even if a multi-
polar outcome does result, social integration is not a perfect solution. By relying 
on social integration to solve the control problem, the principal risks sacrificing 
a large portion of her potential influence. Although a balance of power might 
prevent a particular AI from taking over the world, that AI will still have some 
power to affect outcomes; and if that power is used to promote some arbitrary 
final goal—maximizing paperclip production—it is probably not being used to 
advance the interests of the principal. Imagine our billionaire endowing a new 
foundation and allowing its mission to be set by a random word generator: not a 
species-level threat, but surely a wasted opportunity.

A related but importantly different idea is that an AI, by interacting freely in 
society, would acquire new human-friendly final goals. Some such process of 
socialization takes place in us humans. We internalize norms and ideologies, and 
we come to value other individuals for their own sakes in consequence of our 
experiences with them. But this is not a universal dynamic present in all intel-
ligent systems. As discussed earlier, many types of agent in many situations will 
have convergent instrumental reasons not to permit changes in their final goals. 
(One might consider trying to design a special kind of goal system that can acquire 
final goals in the manner that humans do; but this would not count as a capability 
control method. We will discuss some possible methods of value acquisition in 
Chapter 12.)

Capability control through social integration and balance of power relies upon 
diffuse social forces rewarding and penalizing the AI. Another type of incen-
tive method would involve creating a setup wherein the AI can be rewarded and 
penalized by the project that creates it, and thereby incentivized to act in the 
interests of the principal. To achieve this, the AI would be placed in a surveillance 
context that allows its behavior to be monitored and evaluated, either manually or 
by some automated process. The AI would know that a positive evaluation would 
bring about some outcome it desires and that a negative evaluation would fail 
to do so. Theoretically, the reward could be the fulfillment of some convergent 
instrumental goal. Without knowing anything specific about the AI’s motiva-
tion system, however, it might be difficult to calibrate the reward mechanism. 
For example, we could end up with an AI that would be willing to take extreme 
risks for the sake of a small chance of eventually obtaining control of a large share 
of the universe. It could be expensive to offer the AI a higher expected utility as 
reward for cooperation than the AI could hope to achieve by defecting and trying 
to escape.10

A better alternative might be to combine the incentive method with the use 
of motivation selection to give the AI a final goal that makes it easier to con-
trol. Suppose that an AI were designed to have as its final goal that a particular 
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red button inside a command bunker never be pressed. Since the pressing of the 
button is disvalued intrinsically and not because of its causal consequences, the 
button could be completely inert: it could be made of Play-Doh. Furthermore, it 
is irrelevant whether the AI can ever know whether the button had been pressed. 
What is essential is that the AI believes that the button will more likely remain 
unpressed if the AI continuously acts in the principal’s interest than if it rebels.

Refinements to this setup are possible. Instead of trying to endow an AI with a 
final goal that refers to a physical button, one could build an AI that places final 
value on receiving a stream of “cryptographic reward tokens.”11 These would be 
sequences of numbers serving as keys to ciphers that would have been generated 
before the AI was created and that would have been built into its motivation sys-
tem.12 These special number sequences would be extremely desirable to the AI, 
constituting a special kind of reward token that the AI could not attain though 
wireheading.13 The keys would be stored in a secure location where they could be 
quickly destroyed if the AI ever made an attempt to seize them. So long as the AI 
cooperates, the keys are doled out at a steady rate.

The AI could then be given a bounded utility function, and matters could be 
arranged so that the AI would get (for instance) 99% of its maximum utility from 
the first reward token; 99% of its remaining utility potential from the second 
reward token; and so on. By keeping the “discount rate” high, and by transmit-
ting reward tokens to the AI at a reasonably high rate, one would dissuade the AI 
from attempting to carry out long-term plans that would increase the expected 
number of reward tokens in the distal future at the expense of some risk that its 
reward stream will be cut short or that the next reward token will be cancelled 
and destroyed. If the AI always believes that defecting (i.e. doing anything other 
than its best to look after the principal’s interests) would incur at least a 2% risk 
of forfeiting the next reward token, whereas cooperating would reduce the risk of 
forfeiting the next reward token to below 1%, then a utility-maximizing AI would 
always cooperate.

What might go wrong with such an incentive scheme? One possibility is that 
the AI will not trust the human operator to deliver the promised rewards. The 
track record of human reliability is something other than a straight line of unerr-
ing perfection. The AI would reasonably worry that the operator will change his 
mind, or raise the performance bar, or fail to recognize that the AI has done its 
part. The AI would also worry about the operator becoming incapacitated. The 
combined risk of such failures might exceed the risk of attempting to seize control  
of the reward mechanism. Even a boxed AI possessing the panoply of super-
powers is a strong force. (For an AI that is not boxed to begin with, hijacking the 
human-governed reward mechanism may be like taking candy from a baby.)

Another problem with the incentive scheme is that it presupposes that we can 
tell whether the outcomes produced by the AI are in our interest. As later chapters 
will elaborate, this presupposition is not innocuous.

A full assessment of the feasibility of incentive methods would also have to take 
into account a range of other factors, including some esoteric considerations that 
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might conceivably make such methods more viable than a preliminary analysis 
would suggest. In particular, the AI may face ineliminable indexical uncertainty 
if it could not be sure that it does not inhabit a computer simulation (as opposed 
to “basement-level,” non-simulated physical reality), and this epistemic predica-
ment may radically influence the AI’s deliberations (see Box 8).

Box 8 Anthropic capture

The AI might assign a substantial probability to its simulation hypothesis, the hy-
pothesis that it is living in a computer simulation. Even today, many AIs inhabit sim-
ulated worlds—worlds consisting of geometric line drawings, texts, chess games, 
or simple virtual realities, and in which the laws of physics deviate sharply from 
the laws of physics that we believe govern the world of our own experience. 
Richer and more complicated virtual worlds will become feasible with improve-
ments in programming techniques and computing power. A mature superintel-
ligence could create virtual worlds that appear to its inhabitants much the same 
as our world appears to us. It might create vast numbers of such worlds, running 
the same simulation many times or with small variations. The inhabitants would 
not necessarily be able to tell whether their world is simulated or not; but if they 
are intelligent enough they could consider the possibility and assign it some prob-
ability. In light of the simulation argument (a full discussion of which is beyond the 
scope of this book) that probability could be substantial.14

This predicament especially afflicts relatively early-stage superintelligences, 
ones that have not yet expanded to take advantage of the cosmic endowment. 
An early-stage superintelligence, which uses only a small fraction of the resources 
of a single planet, would be much less expensive to simulate than a mature in-
tergalactic superintelligence. Potential simulators—that is, other more mature 
civilizations— would be able to run great numbers of simulations of such early-
stage AIs even by dedicating a minute fraction of their computational resources 
to that purpose. If at least some (non-trivial fraction) of these mature superintel-
ligent civilizations choose to use this ability, early-stage AIs should assign a sub-
stantial probability to being in a simulation.

How an AI would be affected by the simulation hypothesis depends on its 
values.15 Consider first an AI that has a “resource-insatiable” final goal, such as 
the goal of maximizing a utility function that is linear in the number of paperclips 
caused by the AI to exist—twice as many paperclips, twice as good. Such an AI 
might care less about the simulation hypothesis, on grounds that its ability to in-
fluence how many paperclips are produced looks much more limited if the AI is 
in a simulation than if it is in basement-level physical reality. The AI might accord-
ingly behave much as if it were certain that the simulation hypothesis is false, even 
if it assigned a fairly high probability to the simulation hypothesis being true.16 
The AI would reason that it does not much matter how it acts if the simulation 
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Stunting

Another possible capability control method is to limit the system’s intellectual 
faculties or its access to information. This might be done by running the AI on 
hardware that is slow or short on memory. In the case of a boxed system, informa-
tion inflow could also be restricted.

Stunting an AI in these ways would limit its usefulness. The method thus 
faces a dilemma: too little stunting, and the AI might have the wit to figure 

Box 8  Continued

hypothesis is true, whereas its actions make a great difference if the hypothesis is 
false; so it would select actions mainly by reference to how good they are condi-
tional on the simulation hypothesis being false.

By contrast, consider an AI that has a more modest final goal, one that could 
be satisfied with a small amount of resources, such as the goal of receiving some 
pre-produced cryptographic reward tokens, or the goal of causing the existence 
of forty-five virtual paperclips. Such an AI should not discount those possible 
worlds in which it inhabits a simulation. A substantial portion of the AI’s total 
expected utility might derive from those possible worlds. The decision-making 
of an AI with goals that are easily resource-satiable may therefore—if it assigns a 
high probability to the simulation hypothesis—be dominated by considerations 
about which actions would produce the best result if its perceived world is a 
simulation. Such an AI (even if it is, in fact, not in a simulation) might therefore 
be heavily influenced by its beliefs about which behaviors would be rewarded in 
a simulation.

In particular, if an AI with resource-satiable final goals believes that in most 
simulated worlds that match its observations it will be rewarded if it cooperates 
(but not if it attempts to escape its box or contravene the interests of its crea-
tor) then it may choose to cooperate. We could therefore find that even an AI 
with a decisive strategic advantage, one that could in fact realize its final goals to a 
greater extent by taking over the world than by refraining from doing so, would 
nevertheless balk at doing so.

Thus Conscience does make Cowards of us all,
And thus the Native hue of Resolution
Is sicklied o’er, with the pale cast of Thought,
And enterprises of great pith and moment,
With this regard their Currents turn away,
And lose the name of Action.

(Shakespeare, Hamlet, Act iii. Sc. 1)

A mere line in the sand, backed by the clout of a nonexistent simulator, could 
prove a stronger restraint than a two-foot-thick solid steel door.17



136  |  THE CONTROL PROBLEM

out some way to make itself more intelligent (and thence to world domina-
tion); too much, and the AI is just another piece of dumb software. A radically 
stunted AI is certainly safe but does not solve the problem of how to achieve 
a controlled detonation: an intelligence explosion would remain possible and 
would simply be triggered by some other system instead, perhaps at a slightly 
later date.

One might think it would be safe to build a superintelligence provided it is only 
given data about some narrow domain of facts. For example, one might build an 
AI that lacks sensors and that has preloaded into its memory only facts about 
petroleum engineering or peptide chemistry. But if the AI is superintelligent—if 
it is has a superhuman level of general intelligence—such data deprivation does 
not guarantee safety.

There are several reasons for this. First, the notion of information being 
“about” a certain topic is generally problematic. Any piece of information can 
in principle be relevant to any topic whatsoever, depending on the background 
information of a reasoner.18 Furthermore, a given data set contains information 
not only about the domain from which the data was collected but also about 
various circumstantial facts. A shrewd mind looking over a knowledge base 
that is nominally about peptide chemistry might infer things about a wide range 
of topics. The fact that certain information is included and other information 
is not could tell an AI something about the state of human science, the meth-
ods and instruments available to study peptides, the fabrication technologies 
used to make these instruments, and the nature of the brains and societies that 
conceived the studies and the instruments. It might be that a superintelligence 
could correctly surmise a great deal from what seem, to dull-witted human 
minds, meager scraps of evidence. Even without any designated knowledge 
base at all, a sufficiently superior mind might be able to learn much by simply 
introspecting on the workings of its own psyche—the design choices reflected 
in its source code, the physical characteristics of its circuitry.19 Perhaps a super-
intelligence could even deduce much about the likely properties of the world 
a priori (combining logical inference with a probability prior biased toward 
simpler worlds, and a few elementary facts implied by the superintelligence’s 
existence as a reasoning system). It might imagine the consequences of dif-
ferent possible laws of physics: what kind of planets would form, what kind of 
intelligent life would evolve, what kind of societies would develop, what kind of 
methods to solve the control problem would be attempted, how those methods 
could be defeated.20

For these reasons it would be imprudent to rely on information deprivation as 
the main check on a superintelligence’s power. Some forms of stunting however, 
including limiting hardware capacity and preventing the development of specific 
cognitive faculties, might find use as auxiliary control methods in the develop-
mental phase. They could be used, for instance, to regulate the rate of capacity 
gain in an intermediary AI and to allow tests to be run at different levels of capa-
bility short of full-throttled superintelligence.
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Tripwires

A tripwire is a mechanism that performs diagnostic tests on the system (possibly 
without its knowledge) and effects a shutdown if it detects signs of dangerous 
activity. Programmers can then scrutinize recordings of the suspicious activity 
at their leisure, and make changes to the AI’s code base or environment before 
restarting it. If they find that the problem is sufficiently deep-rooted, they could 
decide to abort the entire project.

Tripwires differ from incentive methods in that they do not rely on the system 
being aware of the consequences of engaging in forbidden activities. Tripwires are 

Table 9 Different kinds of tripwires

Type of monitoring Description and examples

Behavior Detectors could be placed around a boxed AI to detect at-
tempts to breach the containment. For example, detectors 
could intercept attempts at radio communication or at accessing 
internal computational resources intended to be off limits. An 
“Ethernet port of Eden” could be installed: an apparent connec-
tion to the internet that leads to a shutdown switch.

Ability Automated capability testing could be performed at frequent 
intervals to determine the AI’s skill in various domains. If either 
the rate of improvement is unexpectedly high or the AI attains 
a level of competence that brings it close to the potential danger 
zone, the system could be slowed down or paused, in order to 
allow the programmers to monitor further developments more 
closely.

Content The AI’s internal processes could be monitored for suspicious 
activity. For example, any change to the AI’s representation of 
its final values might trigger an automatic shutdown and review. 
The AI’s resource use and algorithmic methods may also be also 
be monitored for unexpected patterns.

More ambitiously, the AI’s beliefs, plans, subgoals, and 
 justifications may be continuously scrutinized, to ensure they 
conform to the programmers’ expectations. Such  monitoring of 
the AI’s intentional states would enable a particularly powerful 
form of content monitoring: the scanning of the AI’s cogni-
tive processes for a conception of deception—that vulnerable 
 moment when an unfriendly AI first forms the intention to 
conceal its true intentions.21

Content monitoring that requires that the AI’s intentional 
states be transparent to the programmers or to an automatic 
monitoring mechanism may not be feasible for all kinds of AI 
architectures. (Some neural networks, for instance, are opaque, 
as they represent information holistically and in ways that do 
not necessarily match up with human concepts.) This may be a 
reason to avoid using such architectures.
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more closely related to stunting methods. Like stunting, tripwires could be used 
as a temporary safeguard, providing a degree of protection during the develop-
ment phase. In principle, tripwires can also be used during the operational phase, 
particularly for a boxed system. However, the ability of tripwires to constrain a 
full-fledged superintelligence must remain very much in doubt, since it would be 
hard for us to assure ourselves that such an agent could not find ways to subvert 
any tripwire devised by the human intellect.

As an adjunct safety measure in the development phase, though, tripwires are 
important. It would be good practice for the AI’s designers to codify their expect-
ations about how the system is supposed to function, and then to circumscribe 
the AI with tripwires that would be activated if any of these expectations is vio-
lated. To make the tests more stringent, “honeypots” could be strategically placed 
to create temptations for a malfunctioning AI to commit some easily observable 
violation. For instance, if an AI has been designed in such a way that it is supposed 
not to want to access the internet, a fake Ethernet port could be installed (lead-
ing to an automatic shutdown switch) just to see if they AI tries to use it. (Some 
 examples of tripwires are given in Table 9.)

It should be emphasized that the value of a tripwire depends not only on the 
mechanism itself but also—critically—on how a project reacts when a tripwire is 
triggered. If the programmers or project managers, impatient to make progress, 
simply switch the system back on again—or if they do so after making some token 
modification to prevent the tripwire being triggered on the next run—then no 
safety has been gained even if the tripwire itself works exactly as intended.

Motivation selection methods

Motivation selection methods seek to prevent undesirable outcomes by shaping 
what the superintelligence wants to do. By engineering the agent’s motivation 
system and its final goals, these methods would produce a superintelligence that 
would not want to exploit a decisive strategic advantage in a harmful way. Since a 
superintelligent agent is skilled at achieving its ends, if it prefers not to cause harm 
(in some appropriate sense of “harm”) then it would tend not to cause harm (in 
that sense of “harm”).

Motivation selection can involve explicitly formulating a goal or set of rules to 
be followed (direct specification) or setting up the system so that it can discover 
an appropriate set of values for itself by reference to some implicitly or indirectly 
formulated criterion (indirect normativity). One option in motivation selection 
is to try to build the system so that it would have modest, non-ambitious goals 
(domesticity). An alternative to creating a motivation system from scratch is to 
select an agent that already has an acceptable motivation system and then aug-
ment that agent’s cognitive powers to make it superintelligent, while ensuring that 
the motivation system does not get corrupted in the process (augmentation). Let 
us look at these in turn.
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Direct specification

Direct specification is the most straightforward approach to the control prob-
lem. The approach comes in two versions, rule-based and consequentialist, and 
involves trying to explicitly define a set of rules or values that will cause even 
a free-roaming superintelligent AI to act safely and beneficially. Direct specifi-
cation, however, faces what may be insuperable obstacles, deriving from both 
the difficulties in determining which rules or values we would wish the AI to be 
guided by and the difficulties in expressing those rules or values in computer-
readable code.

The traditional illustration of the direct rule-based approach is the “three laws 
of robotics” concept, formulated by science fiction author Isaac Asimov in a short 
story published in 1942.22 The three laws were: (1) A robot may not injure a human 
being or, through inaction, allow a human being to come to harm; (2) A robot 
must obey any orders given to it by human beings, except where such orders would 
conflict with the First Law; (3) A robot must protect its own existence as long as 
such protection does not conflict with the First or Second Law. Embarrassingly 
for our species, Asimov’s laws remained state-of-the-art for over half a century: 
this despite obvious problems with the approach, some of which are explored in 
Asimov’s own writings (Asimov probably having formulated the laws in the first 
place precisely so that they would fail in interesting ways, providing fertile plot 
complications for his stories).23

Bertrand Russell, who spent many years working on the foundations of math-
ematics, once remarked that “everything is vague to a degree you do not realize 
till you have tried to make it precise.”24 Russell’s dictum applies in spades to the 
direct specification approach. Consider, for example, how one might explicate 
Asimov’s first law. Does it mean that the robot should minimize the probability of 
any human being coming to harm? In that case the other laws become otiose since 
it is always possible for the AI to take some action that would have at least some 
microscopic effect on the probability of a human being coming to harm. How is 
the robot to balance a large risk of a few humans coming to harm versus a small 
risk of many humans being harmed? How do we define “harm” anyway? How 
should the harm of physical pain be weighed against the harm of architectural 
ugliness or social injustice? Is a sadist harmed if he is prevented from tormenting 
his victim? How do we define “human being”? Why is no consideration given to 
other morally considerable beings, such as sentient nonhuman animals and digi-
tal minds? The more one ponders, the more the questions proliferate.

Perhaps the closest existing analog to a rule set that could govern the actions 
of a superintelligence operating in the world at large is a legal system. But legal 
systems have developed through a long process of trial and error, and they regu-
late relatively slowly-changing human societies. Laws can be revised when neces-
sary. Most importantly, legal systems are administered by judges and juries 
who generally apply a measure of common sense and human decency to ignore 
logically possible legal interpretations that are sufficiently obviously unwanted  
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and unintended by the lawgivers. It is probably humanly impossible to explicitly 
formulate a highly complex set of detailed rules, have them apply across a highly 
diverse set of circumstances, and get it right on the first implementation.25

Problems for the direct consequentialist approach are similar to those for the 
direct rule-based approach. This is true even if the AI is intended to serve some 
apparently simple purpose such as implementing a version of classical utilitarian-
ism. For instance, the goal “Maximize the expectation of the balance of pleasure 
over pain in the world” may appear simple. Yet expressing it in computer code 
would involve, among other things, specifying how to recognize pleasure and 
pain. Doing this reliably might require solving an array of persistent problems 
in the philosophy of mind—even just to obtain a correct account expressed in a 
natural language, an account which would then, somehow, have to be translated 
into a programming language.

A small error in either the philosophical account or its translation into code 
could have catastrophic consequences. Consider an AI that has hedonism as its 
final goal, and which would therefore like to tile the universe with “hedonium” 
(matter organized in a configuration that is optimal for the generation of pleas-
urable experience). To this end, the AI might produce computronium (matter 
organized in a configuration that is optimal for computation) and use it to imple-
ment digital minds in states of euphoria. In order to maximize efficiency, the AI 
omits from the implementation any mental faculties that are not essential for the 
experience of pleasure, and exploits any computational shortcuts that according 
to its definition of pleasure do not vitiate the generation of pleasure. For instance, 
the AI might confine its simulation to reward circuitry, eliding faculties such as 
memory, sensory perception, executive function, and language; it might simulate 
minds at a relatively coarse-grained level of functionality, omitting lower-level 
neuronal processes; it might replace commonly repeated computations with calls 
to a lookup table; or it might put in place some arrangement whereby multiple 
minds would share most parts of their underlying computational machinery 
(their “supervenience bases” in philosophical parlance). Such tricks could greatly 
increase the quantity of pleasure producible with a given amount of resources. 
It is unclear how desirable this would be. Furthermore, if the AI’s criterion for 
determining whether a physical process generates pleasure is wrong, then the AI’s 
optimizations might throw the baby out with the bathwater: discarding some-
thing which is inessential according to the AI’s criterion yet essential according 
to the criteria implicit in our human values. The universe then gets filled not with 
exultingly heaving hedonium but with computational processes that are uncon-
scious and completely worthless—the equivalent of a smiley-face sticker xeroxed 
trillions upon trillions of times and plastered across the galaxies.

Domesticity

One special type of final goal which might be more amenable to direct specifica-
tion than the examples given above is the goal of self-limitation. While it seems 
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extremely difficult to specify how one would want a superintelligence to behave in 
the world in general—since this would require us to account for all the trade-offs 
in all the situations that could arise—it might be feasible to specify how a super-
intelligence should behave in one particular situation. We could therefore seek to 
motivate the system to confine itself to acting on a small scale, within a narrow 
context, and through a limited set of action modes. We will refer to this approach 
of giving the AI final goals aimed at limiting the scope of its ambitions and activi-
ties as “domesticity.”

For example, one could try to design an AI such that it would function as a 
question-answering device (an “oracle,” to anticipate the terminology that we will 
introduce in the next chapter). Simply giving the AI the final goal of producing 
maximally accurate answers to any question posed to it would be unsafe—recall 
the “Riemann hypothesis catastrophe” described in Chapter 8. (Reflect, also, that 
this goal would incentivize the AI to take actions to ensure that it is asked easy 
questions.) To achieve domesticity, one might try to define a final goal that would 
somehow overcome these difficulties: perhaps a goal that combined the desiderata 
of answering questions correctly and minimizing the AI’s impact on the world 
except whatever impact results as an incidental consequence of giving accurate 
and non-manipulative answers to the questions it is asked.26

The direct specification of such a domesticity goal is more likely to be feasible 
than the direct specification of either a more ambitious goal or a complete rule set 
for operating in an open-ended range of situations. Significant challenges none-
theless remain. Care would have to be taken, for instance, in the definition of what 
it would be for the AI to “minimize its impact on the world” to ensure that the 
measure of the AI’s impact coincides with our own standards for what counts as a 
large or a small impact. A bad measure would lead to bad trade-offs. There are also 
other kinds of risk associated with building an oracle, which we will discuss later.

There is a natural fit between the domesticity approach and physical contain-
ment. One would try to “box” an AI such that the system is unable to escape while 
simultaneously trying to shape the AI’s motivation system such that it would be 
unwilling to escape even if it found a way to do so. Other things equal, the existence 
of multiple independent safety mechanisms should shorten the odds of success.27

Indirect normativity

If direct specification seems hopeless, we might instead try indirect normativ-
ity. The basic idea is that rather than specifying a concrete normative standard 
directly, we specify a process for deriving a standard. We then build the system 
so that it is motivated to carry out this process and to adopt whatever standard 
the process arrives at.28 For example, the process could be to carry out an inves-
tigation into the empirical question of what some suitably idealized version of us 
would prefer the AI to do. The final goal given to the AI in this example could be 
something along the lines of “achieve that which we would have wished the AI to 
achieve if we had thought about the matter long and hard.”



142  |  THE CONTROL PROBLEM

Further explanation of indirect normativity will have to await Chapter 13. 
There, we will revisit the idea of “extrapolating our volition” and explore vari-
ous alterative formulations. Indirect normativity is a very important approach 
to motivation selection. Its promise lies in the fact that it could let us offload to 
the superintelligence much of the difficult cognitive work required to carry out a 
direct specification of an appropriate final goal.

Augmentation

The last motivation selection method on our list is augmentation. Here the idea 
is that rather than attempting to design a motivation system de novo, we start 
with a system that already has an acceptable motivation system, and enhance its 
cognitive faculties to make it superintelligent. If all goes well, this would give us a 
superintelligence with an acceptable motivation system.

This approach, obviously, is unavailing in the case of a newly created seed AI. 
But augmentation is a potential motivation selection method for other paths to 
superintelligence, including brain emulation, biological enhancement, brain–
computer interfaces, and networks and organizations, where there is a possibility 
of building out the system from a normative nucleus (regular human beings) that 
already contains a representation of human value.

The attractiveness of augmentation may increase in proportion to our despair 
at the other approaches to the control problem. Creating a motivation system for a 
seed AI that remains reliably safe and beneficial under recursive self- improvement 
even as the system grows into a mature superintelligence is a tall order, especially 
if we must get the solution right on the first attempt. With augmentation, we 
would at least start with a system that has familiar and human-like motivations.

On the downside, it might be hard to ensure that a complex, evolved, kludgy, 
and poorly understood motivation system, like that of a human being, will not get 
corrupted when its cognitive engine blasts into the stratosphere. As discussed ear-
lier, an imperfect brain emulation procedure that preserves intellectual function-
ing may not preserve all facets of personality. The same is true (though perhaps 
to a lesser degree) for biological enhancements of cognition, which might subtly 
affect motivation, and for collective intelligence enhancements of organizations 
and networks, which might adversely change social dynamics (e.g. in ways that 
debase the collective’s attitude toward outsiders or toward its own constituents). If 
superintelligence is achieved via any of these paths, a project sponsor would find 
guarantees about the ultimate motivations of the mature system hard to come 
by. A mathematically well-specified and foundationally elegant AI architecture 
might—for all its non-anthropomorphic otherness—offer greater transparency, 
perhaps even the prospect that important aspects of its functionality could be 
formally verified.

In the end, however one tallies up the advantages and disadvantages of aug-
mentation, the choice as to whether to rely on it might be forced. If superintel-
ligence is first achieved along the artificial intelligence path, augmentation is not 
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applicable. Conversely, if superintelligence is first achieved along some non-AI 
path, then many of the other motivation selection methods are inapplicable. Even 
so, views on how likely augmentation would be to succeed do have strategic rele-
vance insofar as we have opportunities to influence which technology will first 
produce superintelligence.

Synopsis

A quick synopsis might be called for before we close this chapter. We distinguished 
two broad classes of methods for dealing with the agency problem at the heart of 
AI safety: capability control and motivation selection. Table 10 gives a summary.

Table 10 Control methods

Capability control

Boxing methods The system is confined in such a way that it can affect the exter-
nal world only through some restricted, pre-approved channel. 
Encompasses physical and informational containment methods.

Incentive methods The system is placed within an environment that provides ap-
propriate incentives. This could involve social integration into 
a world of similarly powerful entities. Another variation is the 
use of (cryptographic) reward tokens. “Anthropic capture” is 
also a very important possibility but one that involves esoteric 
considerations.

Stunting Constraints are imposed on the cognitive capabilities of the 
system or its ability to affect key internal processes.

Tripwires Diagnostic tests are performed on the system (possibly without 
its knowledge) and a mechanism shuts down the system if dan-
gerous activity is detected.

Motivation selection

Direct specification The system is endowed with some directly specified motivation 
system, which might be consequentialist or involve following a 
set of rules.

Domesticity A motivation system is designed to severely limit the scope of 
the agent’s ambitions and activities.

Indirect normativity Indirect normativity could involve rule-based or consequential-
ist principles, but is distinguished by its reliance on an indirect 
approach to specifying the rules that are to be followed or the 
values that are to be pursued.

Augmentation One starts with a system that already has substantially human or 
benevolent motivations, and enhances its cognitive capacities to 
make it superintelligent.
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Each control method comes with potential vulnerabilities and presents differ-
ent degrees of difficulty in its implementation. It might perhaps be thought that 
we should rank them from better to worse, and then opt for the best method. 
But that would be simplistic. Some methods can be used in combination whereas 
 others are exclusive. Even a comparatively insecure method may be advisable if it 
can easily be used as an adjunct, whereas a strong method might be unattractive 
if it would preclude the use of other desirable safeguards.

It is therefore necessary to consider what package deals are available. We need 
to consider what type of system we might try to build, and which control methods 
would be applicable to each type. This is the topic for our next chapter.
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CHAPTER 10

Oracles, genies, sovereigns, 
tools

Some say: “Just build a question-answering system!” or “Just build an AI 
that is like a tool rather than an agent!” But these suggestions do not make 
all safety concerns go away, and it is in fact a non-trivial question which 

type of system would offer the best prospects for safety. We consider four types 
or “castes”—oracles, genies, sovereigns, and tools—and explain how they relate 
to one another.1 Each offers different sets of advantages and disadvantages in 
our quest to solve the control problem.

Oracles

An oracle is a question-answering system. It might accept questions in a natu-
ral language and present its answers as text. An oracle that accepts only yes/no 
 questions could output its best guess with a single bit, or perhaps with a few extra 
bits to represent its degree of confidence. An oracle that accepts open-ended ques-
tions would need some metric with which to rank possible truthful answers in 
terms of their informativeness or appropriateness.2 In either case, building an 
oracle that has a fully domain-general ability to answer natural language ques-
tions is an AI-complete problem. If one could do that, one could probably also 
build an AI that has a decent ability to understand human intentions as well as 
human words.

Oracles with domain-limited forms of superintelligence are also conceivable. 
For instance, one could conceive of a mathematics-oracle which would only accept 
queries posed in a formal language but which would be very good at answering 
such questions (e.g. being able to solve in an instant almost any formally expressed 
math problem that the human mathematics profession could solve by laboring 
collaboratively for a century). Such a mathematics-oracle would form a stepping-
stone toward domain-general superintelligence.
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Oracles with superintelligence in extremely limited domains already exist. 
A pocket calculator can be viewed as a very narrow oracle for basic arithmetical 
questions; an Internet search engine can be viewed as a very partial realization 
of an oracle with a domain that encompasses a significant part of general human 
declarative knowledge. These domain-limited oracles are tools rather than agents 
(more on tool-AIs shortly). In what follows, though, the term “oracle” will refer to 
question-answering systems that have domain-general superintelligence, unless 
otherwise stated.

To make a general superintelligence function as an oracle, we could apply both 
motivation selection and capability control. Motivation selection for an oracle 
may be easier than for other castes of superintelligence, because the final goal in 
an oracle could be comparatively simple. We would want the oracle to give truth-
ful, non-manipulative answers and to otherwise limit its impact on the world. 
Applying a domesticity method, we might require that the oracle should use only 
designated resources to produce its answer. For example, we might stipulate that 
it should base its answer on a preloaded corpus of information, such as a stored 
snapshot of the Internet, and that it should use no more than a fixed number of 
computational steps.3 To avoid incentivizing the oracle to manipulate us into giv-
ing it easier questions—which would happen if we gave it the goal of maximizing 
its accuracy across all questions we will ask it—we could give it the goal of answer-
ing only one question and to terminate immediately upon delivering its answer. 
The question would be preloaded into its memory before the program is run. To 
ask a second question, we would reset the machine and run the same program 
with a different question preloaded in memory.

Subtle and potentially treacherous challenges arise even in specifying the rela-
tively simple motivation system needed to drive an oracle. Suppose, for example, 
that we come up with some explication of what it means for the AI “to minimize 
its impact on the world, subject to achieving certain results” or “to use only des-
ignated resources in preparing the answer.” What happens if the AI, in the course 
of its intellectual development, undergoes the equivalent of a scientific revolu-
tion involving a change in its basic ontology?4 We might initially have explicated 
“impact” and “designated resources” using our own ontology (postulating the 
existence of various physical objects such as computers). But just as we have aban-
doned ontological categories that were taken for granted by scientists in previous 
ages (e.g. “phlogiston,” “élan vital,” and “absolute simultaneity”), so a superintel-
ligent AI might discover that some of our current categories are predicated on 
fundamental misconceptions. The goal system of an AI undergoing an ontologi-
cal crisis needs to be resilient enough that the “spirit” of its original goal content 
is carried over, charitably transposed into the new key.

Although making an oracle safe through the use of motivation selection might 
be far from trivial, it may nevertheless be easier than doing the same for an AI that 
roams the world in pursuit of some complicated goal. This is an argument for pre-
ferring that the first superintelligence be an oracle. Another point in favor of an 
oracle-first path is the greater susceptibility of an oracle to capability control. All 
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the standard boxing methods apply here. In addition, there may be methods that 
are distinctively applicable to oracles. For example, consider the risk that an ora-
cle will answer questions not in a maximally truthful way but in such a way as to 
subtly manipulate us into promoting its own hidden agenda. One way to slightly 
mitigate this threat could be to create multiple oracles, each with a slightly dif-
ferent code and a slightly different information base. A simple mechanism could 
then compare the answers given by the different oracles and only present them for 
human viewing if all the answers agree. While one must assume that any super-
intelligent domain-general oracle would know about the existence of other oracles 
(it could infer this from its knowledge about human society), it might be feasible 
to hide some implementation details of each oracle from the views of the others. If 
the oracles are not able to communicate with one another, it might then be diffi-
cult for them to coordinate on how to answer our questions manipulatively. There 
are many ways of deviating from the truth, and the oracles may not all agree on 
which of these deviations is most attractive—whereas the truth itself is a Schelling 
point (a salient place for agreement in the absence of communication). So if the 
oracles achieve consensus, it might be a sign that they gave the true answer.5

An oracle would ideally be trustworthy in the sense that we could safely assume 
that its answers are always accurate to the best of its ability. But even an untrust-
worthy oracle could be useful. We could ask such an oracle questions of a type for 
which it is difficult to find the answer but easy to verify whether a given answer 
is correct. Many mathematical problems are of this kind. If we are wondering 
whether a mathematical proposition is true, we could ask the oracle to produce a 
proof or disproof of the proposition. Finding the proof may require insight and 
creativity beyond our ken, but checking a purported proof ’s validity can be done 
by a simple mechanical procedure.

If it is expensive to verify answers (as is often the case on topics outside logic 
and mathematics), we can randomly select a subset of the oracle’s answers for 
verification. If they are all correct, we can assign a high probability to most of the 
other answers also being correct. This trick can give us a bulk discount on trust-
worthy answers that would be costly to verify individually. (Unfortunately, it can-
not give us trustworthy answers that we are unable to verify, since a dissembling 
oracle may choose to answer correctly only those questions where it believes we 
could verify its answers.)

There could be important issues on which we could benefit from an augural 
pointer toward the correct answer (or toward a method for locating the correct 
answer) even if we had to actively distrust the provenance. For instance, one 
might ask for the solution to various technical or philosophical problems that 
may arise in the course of trying to develop more advanced motivation selection 
methods. If we had a proposed AI design alleged to be safe, we could ask an oracle 
whether it could identify any significant flaw in the design, and whether it could 
explain any such flaw to us in twenty words or less. Questions of this kind could 
elicit valuable information. Caution and restraint would be required, however, 
for us not to ask too many such questions—and not to allow ourselves to partake 
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of too many details of the answers given to the questions we do ask—lest we give 
the untrustworthy oracle opportunities to work on our psychology (by means of 
plausible-seeming but subtly manipulative messages). It might not take many bits 
of communication for an AI with the social manipulation superpower to bend us 
to its will.

Even if the oracle itself works exactly as intended, there is a risk that it would 
be misused. One obvious dimension of this problem is that an oracle AI would be 
a source of immense power which could give a decisive strategic advantage to its 
operator. This power might be illegitimate and it might not be used for the com-
mon good. Another more subtle but no less important dimension is that the use 
of an oracle could be extremely dangerous for the operator herself. Similar wor-
ries (which involve philosophical as well as technical issues) arise also for other 
hypothetical castes of superintelligence. We will explore them more thoroughly 
in Chapter 13. Suffice it here to note that the protocol determining which ques-
tions are asked, in which sequence, and how the answers are reported and dis-
seminated could be of great significance. One might also consider whether to try 
to build the oracle in such a way that it would refuse to answer any question in 
cases where it predicts that its answering would have consequences classified as 
catastrophic according to some rough-and-ready criteria.

Genies and sovereigns

A genie is a command-executing system: it receives a high-level command, car-
ries it out, then pauses to await the next command.6 A sovereign is a system that 
has an open-ended mandate to operate in the world in pursuit of broad and possi-
bly very long-range objectives. Although these might seem like radically different 
templates for what a superintelligence should be and do, the difference is not as 
deep as it might at first glance appear.

With a genie, one already sacrifices the most attractive property of an oracle: 
the opportunity to use boxing methods. While one might consider creating a 
physically confined genie, for instance one that can only construct objects inside 
a designated volume—a volume that might be sealed off by a hardened wall or 
a barrier loaded with explosive charges rigged to detonate if the containment is 
breached—it would be difficult to have much confidence in the security of any 
such physical containment method against a superintelligence equipped with ver-
satile manipulators and construction materials. Even if it were somehow possible 
to ensure a containment as secure as that which can be achieved for an oracle, it is 
not clear how much we would have gained by giving the superintelligence direct 
access to manipulators compared to requiring it instead to output a blueprint that 
we could inspect and then use to achieve the same result ourselves. The gain in 
speed and convenience from bypassing the human intermediary seems hardly 
worth the loss of foregoing the use of the stronger boxing methods available to 
contain an oracle.
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If one were creating a genie, it would be desirable to build it so that it would 
obey the intention behind the command rather than its literal meaning, since a 
literalistic genie (one superintelligent enough to attain a decisive strategic advan-
tage) might have a propensity to kill the user and the rest of humanity on its first 
use, for reasons explained in the section on malignant failure modes in Chapter 8. 
More broadly, it would seem important that the genie seek a charitable—and what 
human beings would regard as reasonable—interpretation of what is being com-
manded, and that the genie be motivated to carry out the command under such 
an interpretation rather than under the literalistic interpretation. The ideal genie 
would be a super-butler rather than an autistic savant.

A genie endowed with such a super-butler nature, however, would not be far 
from qualifying for membership in the caste of sovereigns. Consider, for compari-
son, the idea of building a sovereign with the final goal of obeying the spirit of the 
commands we would have given had we built a genie rather than a sovereign. Such 
a sovereign would mimic a genie. Being superintelligent, this sovereign would do 
a good job at guessing what commands we would have given a genie (and it could 
always ask us if that would help inform its decisions). Would there then really be 
any important difference between such a sovereign and a genie? Or, pressing on 
the distinction from the other side, consider that a superintelligent genie may 
likewise be able to predict what commands we will give it: what then is gained 
from having it await the actual issuance before it acts?

One might think that a big advantage of a genie over a sovereign is that if 
something goes wrong, we could issue the genie with a new command to stop or 
to reverse the effects of the previous actions, whereas a sovereign would just push 
on regardless of our protests. But this apparent safety advantage for the genie is 
largely illusory. The “stop” or “undo” button on a genie works only for benign 
failure modes: in the case of a malignant failure—one in which, for  example, 
carrying out the existing command has become a final goal for the genie— 
the genie would simply disregard any subsequent attempt to countermand the 
previous command.7

One option would be to try to build a genie such that it would automatically 
present the user with a prediction about salient aspects of the likely outcomes of 
a proposed command, asking for confirmation before proceeding. Such a system 
could be referred to as a genie-with-a-preview. But if this could be done for a genie, 
it could likewise be done for a sovereign. So again, this is not a clear differentiator 
between a genie and a sovereign. (Supposing that a preview functionality could 
be created, the questions of whether and if so how to use it are rather less obvious 
than one might think, notwithstanding the strong appeal of being able to glance 
at the outcome before committing to making it irrevocable reality. We will return 
to this matter later.)

The ability of one caste to mimic another extends to oracles, too. A genie could 
be made to act like an oracle if the only commands we ever give it are to answer 
certain questions. An oracle, in turn, could be made to substitute for a genie if we 
asked the oracle what the easiest way is to get certain commands executed. The 
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oracle could give us step-by-step instructions for achieving the same result as a 
genie would produce, or it could even output the source code for a genie.8 Similar 
points can be made with regard to the relation between an oracle and a sovereign.

The real difference between the three castes, therefore, does not reside in the 
ultimate capabilities that they would unlock. Instead, the difference comes down 
to alternative approaches to the control problem. Each caste corresponds to a dif-
ferent set of safety precautions. The most prominent feature of an oracle is that 
it can be boxed. One might also try to apply domesticity motivation selection 
to an oracle. A genie is harder to box, but at least domesticity may be applicable. 
A sovereign can neither be boxed nor handled through the domesticity approach.

If these were the only relevant factors, then the order of desirability would seem 
clear: an oracle would be safer than a genie, which would be safer than a sover-
eign; and any initial differences in convenience and speed of operation would be 
relatively small and easily dominated by the gains in safety obtainable by building 
an oracle. However, there are other factors that need to be taken into account. 
When choosing between castes, one should consider not only the danger posed 
by the system itself but also the dangers that arise out of the way it might be used. 
A genie most obviously gives the person who controls it enormous power, but the 
same holds for an oracle.9 A sovereign, by contrast, could be constructed in such 
way as to accord no one person or group any special influence over the outcome, 
and such that it would resist any attempt to corrupt or alter its original agenda. 
What is more, if a sovereign’s motivation is defined using “indirect normativ-
ity” (a concept to be described in Chapter 13) then it could be used to achieve 
some abstractly defined outcome, such as “whatever is maximally fair and mor-
ally right”—without anybody knowing in advance what exactly this will entail. 
This would create a situation analogous to a Rawlsian “veil of ignorance.”10 Such 
a setup might facilitate the attainment of consensus, help prevent conflict, and 
promote a more equitable outcome.

Another point, which counts against some types of oracles and genies, is that 
there are risks involved in designing a superintelligence to have a final goal that 
does not fully match the outcome that we ultimately seek to attain. For example, 
if we use a domesticity motivation to make the superintelligence want to mini-
mize some of its impacts on the world, we might thereby create a system whose 
preference ranking over possible outcomes differs from that of the sponsor. The 
same will happen if we build the AI to place a peculiarly high value on answering 
questions correctly, or on faithfully obeying individual commands. Now, if suf-
ficient care is taken, this should not cause any problems: there would be sufficient 
agreement between the two rankings—at least insofar as they pertain to possi-
ble worlds that have a reasonable chance of being actualized—that the outcomes 
that are good by the AI’s standard are also good by the principal’s standard. But 
perhaps one could argue for the design principle that it is unwise to introduce 
even a limited amount of disharmony between the AI’s goals and ours. (The same 
concern would of course apply to giving sovereigns goals that do not completely 
harmonize with ours.)
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Tool-AIs

One suggestion that has been made is that we build the superintelligence to be 
like a tool rather than an agent.11 This idea seems to arise out of the observation 
that ordinary software, which is used in countless applications, does not raise any 
safety concerns even remotely analogous to the challenges discussed in this book. 
Might one not create “tool-AI” that is like such software—like a flight control 
system, say, or a virtual assistant—only more flexible and capable? Why build 
a superintelligence that has a will of its own? On this line of thinking, the agent 
paradigm is fundamentally misguided. Instead of creating an AI that has beliefs 
and desires and that acts like an artificial person, we should aim to build regular 
software that simply does what it is programmed to do.

This idea of creating software that “simply does what it is programmed to do” is, 
however, not so straightforward if the product being created is a powerful general 
intelligence. There is, of course, a trivial sense in which all software simply does 
what it is programmed to do: the behavior is mathematically specified by the code. 
But this is equally true for all castes of machine intelligence, “tool-AI” or not. If, 
instead, “simply doing what it is programmed to do” means that the software 
behaves as the programmers intended, then this is a standard that ordinary soft-
ware very often fails to meet.

Because of the limited capabilities of contemporary software (compared with 
those of machine superintelligence) the consequences of such failures are man-
ageable, ranging from insignificant to very costly, but in no case amounting to an 
existential threat.12 However, if it is insufficient capability rather than sufficient 
reliability that makes ordinary software existentially safe, then it is unclear how 
such software could be a model for a safe superintelligence. It might be thought 
that by expanding the range of tasks done by ordinary software, one could elim-
inate the need for artificial general intelligence. But the range and diversity of 
tasks that a general intelligence could profitably perform in a modern economy 
is enormous. It would be infeasible to create special-purpose software to handle 
all of those tasks. Even if it could be done, such a project would take a long time to 
carry out. Before it could be completed, the nature of some of the tasks would have 
changed, and new tasks would have become relevant. There would be great advan-
tage to having software that can learn on its own to do new tasks, and indeed to 
discover new tasks in need of doing. But this would require that the software be 
able to learn, reason, and plan, and to do so in a powerful and robustly cross-
domain manner. In other words, it would require general intelligence.

Especially relevant for our purposes is the task of software development itself. 
There would be enormous practical advantages to being able to automate this. Yet 
the capacity for rapid self-improvement is just the critical property that enables a 
seed AI to set off an intelligence explosion.

If general intelligence is not dispensable, is there some other way of construing 
the tool-AI idea so as to preserve the reassuringly passive quality of a humdrum 
tool? Could one have a general intelligence that is not an agent? Intuitively, it is 
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not just the limited capability of ordinary software that makes it safe: it is also its 
lack of ambition. There is no subroutine in Excel that secretly wants to take over 
the world if only it were smart enough to find a way. The spreadsheet applica-
tion does not “want” anything at all; it just blindly carries out the instructions 
in the program. What (one might wonder) stands in the way of creating a more 
generally intelligent application of the same type? An oracle, for instance, which, 
when prompted with a description of a goal, would respond with a plan for how 
to achieve it, in much the same way that Excel responds to a column of numbers 
by calculating a sum—without thereby expressing any “preferences” regarding its 
output or how humans might choose to use it?

The classical way of writing software requires the programmer to understand 
the task to be performed in sufficient detail to formulate an explicit solution pro-
cess consisting of a sequence of mathematically well-defined steps expressible in 
code.13 (In practice, software engineers rely on code libraries stocked with use-
ful behaviors, which they can invoke without needing to understand how the 
behaviors are implemented. But that code was originally created by programmers 
who had a detailed understanding of what they were doing.) This approach works 
for solving well-understood tasks, and is to credit for most software that is cur-
rently in use. It falls short, however, when nobody knows precisely how to solve 
all of the tasks that need to be accomplished. This is where techniques from the 
field of artificial intelligence become relevant. In narrow applications, machine 
learning might be used merely to fine-tune a few parameters in a largely human-
designed program. A spam filter, for example, might be trained on a corpus of 
hand- classified email messages in a process that changes the weights that the 
classification algorithm places on various diagnostic features. In a more ambi-
tious application, the classifier might be built so that it can discover new features 
on its own and test their validity in a changing environment. An even more 
sophisticated spam filter could be endowed with some ability to reason about the 
trade-offs facing the user or about the contents of the messages it is classifying. In 
neither of these cases does the programmer need to know the best way of distin-
guishing spam from ham, only how to set up an algorithm that can improve its 
own performance via learning, discovering, or reasoning.

With advances in artificial intelligence, it would become possible for the 
programmer to offload more of the cognitive labor required to figure out how 
to accomplish a given task. In an extreme case, the programmer would simply 
specify a formal criterion of what counts as success and leave it to the AI to find 
a solution. To guide its search, the AI would use a set of powerful heuristics and 
other methods to discover structure in the space of possible solutions. It would 
keep searching until it found a solution that satisfied the success criterion. The AI 
would then either implement the solution itself or (in the case of an oracle) report 
the solution to the user.

Rudimentary forms of this approach are quite widely deployed today. 
Nevertheless, software that uses AI and machine learning techniques, though it has 
some ability to find solutions that the programmers had not anticipated, functions 
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for all practical purposes like a tool and poses no existential risk. We would enter 
the danger zone only when the methods used in the search for solutions become 
extremely powerful and general: that is, when they begin to amount to general 
intelligence—and especially when they begin to amount to superintelligence.

There are (at least) two places where trouble could then arise. First, the super-
intelligent search process might find a solution that is not just unexpected but 
radically unintended. This could lead to a failure of one of the types discussed pre-
viously (“perverse instantiation,” “infrastructure profusion,” or “mind crime”). It 
is most obvious how this could happen in the case of a sovereign or a genie, which 
directly implements the solution it has found. If making molecular smiley faces or 
transforming the planet into paperclips is the first idea that the superintelligence 
discovers that meets the solution criterion, then smiley faces or paperclips we 
get.14 But even an oracle, which—if all else goes well—merely reports the solution, 
could become a cause of perverse instantiation. The user asks the oracle for a plan 
to achieve a certain outcome, or for a technology to serve a certain function; and 
when the user follows the plan or constructs the technology, a perverse instantia-
tion can ensue, just as if the AI had implemented the solution itself.15

A second place where trouble could arise is in the course of the software’s oper-
ation. If the methods that the software uses to search for a solution are sufficiently 
sophisticated, they may include provisions for managing the search process itself 
in an intelligent manner. In this case, the machine running the software may 
begin to seem less like a mere tool and more like an agent. Thus, the software may 
start by developing a plan for how to go about its search for a solution. The plan 
may specify which areas to explore first and with what methods, what data to 
gather, and how to make best use of available computational resources. In search-
ing for a plan that satisfies the software’s internal criterion (such as yielding a 
sufficiently high probability of finding a solution satisfying the user-specified 
criterion within the allotted time), the software may stumble on an unorthodox 
idea. For instance, it might generate a plan that begins with the acquisition of 
additional computational resources and the elimination of potential interrupters 
(such as human beings). Such “creative” plans come into view when the software’s 
cognitive abilities reach a sufficiently high level. When the software puts such a 
plan into action, an existential catastrophe may ensue.

As the examples in Box 9 illustrate, open-ended search processes sometimes 
evince strange and unexpected non-anthropocentric solutions even in their cur-
rently limited forms. Present-day search processes are not hazardous because they 
are too weak to discover the kind of plan that could enable a program to take over 
the world. Such a plan would include extremely difficult steps, such as the inven-
tion of a new weapons technology several generations ahead of the state of the art 
or the execution of a propaganda campaign far more effective than any communi-
cation devised by human spin doctors. To have a chance of even conceiving of such 
ideas, let alone developing them in a way that would actually work, a machine 
would probably need the capacity to represent the world in a way that is at least as 
rich and realistic as the world model possessed by a normal human adult (though 
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Box 9 Strange solutions from blind search

Even simple evolutionary search processes sometimes produce highly unexpect-
ed results, solutions that satisfy a formal user-defined criterion in a very different 
way than the user expected or intended.

The field of evolvable hardware offers many illustrations of this phenomenon. 
In this field, an evolutionary algorithm searches the space of hardware designs, 
testing the fitness of each design by instantiating it physically on a rapidly recon-
figurable array or motherboard. The evolved designs often show remarkable 
economy. For instance, one search discovered a frequency discrimination circuit 
that functioned without a clock—a component normally considered necessary 
for this function. The researchers estimated that the evolved circuit was between 
one and two orders of magnitude smaller than what a human engineer would 
have required for the task. The circuit exploited the physical properties of its 
components in unorthodox ways; some active, necessary components were not 
even connected to the input or output pins! These components instead par-
ticipated via what would normally be considered nuisance side effects, such as 
electromagnetic coupling or power-supply loading.

Another search process, tasked with creating an oscillator, was deprived of 
a seemingly even more indispensible component, the capacitor. When the al-
gorithm presented its successful solution, the researchers examined it and at 
first concluded that it “should not work.” Upon more careful examination, they 
discovered that the algorithm had, MacGyver-like, reconfigured its sensor-less 
motherboard into a makeshift radio receiver, using the printed circuit board 
tracks as an aerial to pick up signals generated by personal computers that hap-
pened to be situated nearby in the laboratory. The circuit amplified this signal to 
produce the desired oscillating output.16

In other experiments, evolutionary algorithms designed circuits that sensed 
whether the motherboard was being monitored with an oscilloscope or wheth-
er a soldering iron was connected to the lab’s common power supply. These ex-
amples illustrate how an open-ended search process can repurpose the materials 
accessible to it in order to devise completely unexpected sensory capabilities, by 
means that conventional human design-thinking is poorly equipped to exploit or 
even account for in retrospect.

The tendency for evolutionary search to “cheat” or find counterintuitive ways 
of achieving a given end is on display in nature too, though it is perhaps less obvi-
ous to us there because of our already being somewhat familiar with the look and 
feel of biology, and thus being prone to regarding the actual outcomes of natural 
evolutionary processes as normal—even if we would not have expected them ex 
ante. But it is possible to set up experiments in artificial selection where one can 
see the evolutionary process in action outside its familiar context. In such experi-
ments, researchers can create conditions that rarely obtain in nature, and observe 
the results.
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a lack of awareness in some areas might possibly be compensated for by extra skill 
in others). This is far beyond the reach of contemporary AI. And because of the 
combinatorial explosion, which generally defeats attempts to solve complicated 
planning problems with brute-force methods (as we saw in Chapter 1), the short-
comings of known algorithms cannot realistically be overcome simply by pour-
ing on more computing power.21 However, once the search or planning processes 
become powerful enough, they also become potentially dangerous.

Instead of allowing agent-like purposive behavior to emerge spontaneously and 
haphazardly from the implementation of powerful search processes (including 
processes searching for internal work plans and processes directly searching for 
solutions meeting some user-specified criterion), it may be better to create agents 
on purpose. Endowing a superintelligence with an explicitly agent-like structure 
can be a way of increasing predictability and transparency. A well-designed sys-
tem, built such that there is a clean separation between its values and its beliefs, 
would let us predict something about the outcomes it would tend to produce. Even 
if we could not foresee exactly which beliefs the system would acquire or which 
situations it would find itself in, there would be a known place where we could 
inspect its final values and thus the criteria that it will use in selecting its future 
actions and in evaluating any potential plan.

Comparison

It may be useful to summarize the features of the different system castes we have 
discussed (Table 11).

Box 9  Continued

For example, prior to the 1960s, it was apparently quite common for biolo-
gists to maintain that predator populations restrict their own breeding in order 
to avoid falling into a Malthusian trap.17 Although individual selection would work 
against such restraint, it was sometimes thought that group selection would over-
come individual incentives to exploit opportunities for reproduction and favor 
traits that would benefit the group or population at large. Theoretical analysis and 
simulation studies later showed that while group selection is possible in principle, 
it can overcome strong individual selection only under very stringent conditions 
that may rarely apply in nature.18 But such conditions can be created in the labora-
tory. When flour beetles (Tribolium castaneum) were bred for reduced popula-
tion size, by applying strong group selection, evolution did indeed lead to smaller 
populations.19 However, the means by which this was accomplished included not 
only the “benign” adaptations of reduced fecundity and extended developmental 
time that a human naively anthropomorphizing evolutionary search might have 
expected, but also an increase in cannibalism.20



156  |  ORACLES, GENIES, SOvEREIGNS, TOOLS

T
ab

le
 1

1 
Fe

at
ur

es
 o

f 
di

ff
er

en
t 

sy
st

em
 c

as
te

s

O
ra

cl
e

A
 q

ue
st

io
n-

an
sw

er
in

g 
sy

st
em

Va
ria

tio
ns

: D
om

ai
n-

lim
ite

d 
or

ac
le

s 
(e

.g
. 

m
at

he
m

at
ic

s)
; o

ut
pu

t-
re

st
ric

te
d 

or
ac

le
s 

(e
.g

. o
nl

y 
ye

s/
no

/u
nd

ec
id

ed
 a

ns
w

er
s, 

or
 p

ro
ba

bi
lit

ie
s)

; o
ra

cl
es

 th
at

 r
ef

us
e 

to
 

an
sw

er
 q

ue
st

io
ns

 if
 th

ey
 p

re
di

ct
 th

e 
co

ns
eq

ue
nc

es
 o

f a
ns

w
er

in
g 

w
ou

ld
 m

ee
t 

pr
e-

sp
ec

ifi
ed

 “
di

sa
st

er
 c

ri
te

ria
”; 

m
ul

tip
le

 
or

ac
le

s 
fo

r 
pe

er
 r

ev
ie

w

• 
 Bo

xi
ng
 m

et
ho

ds
 fu

lly
 a
pp

lic
ab
le

• 
 D
om

es
tic
ity
 fu

lly
 a
pp

lic
ab
le

• 
 Re

du
ce
d 
ne
ed
 fo

r 
A
I t
o 
un
de

rs
ta
nd

 h
um

an
 in
te
nt
io
ns
 a
nd

 in
te
re
st
s 
(c
om

-
pa

re
d 

to
 g

en
ie

s 
an

d 
so

ve
re

ig
ns

)
• 
 U
se
 o
f y
es
/n
o 
qu

es
tio

ns
 c
an
 o
bv
ia
te
 n
ee
d 
fo
r 
a 
m
et
ric
 o
f t
he
 “
us
ef
ul
ne
ss
” 
or
 

“i
nf

or
m

at
iv

en
es

s”
 o

f a
ns

w
er

s
• 
 So

ur
ce
 o
f g
re
at
 p
ow

er
 (m

ig
ht
 g
iv
e 
op

er
at
or
 a
 d
ec
isi
ve
 s
tr
at
eg
ic
 a
dv
an
ta
ge
)

• 
 Li
m
ite

d 
pr
ot
ec
tio

n 
ag
ai
ns
t f
oo

lis
h 
us
e 
by
 o
pe

ra
to
r

• 
 U
nt
ru
st
w
or
th
y 
or
ac
le
s 
co
ul
d 
be
 u
se
d 
to
 p
ro
vi
de
 a
ns
w
er
s 
th
at
 a
re
 h
ar
d 
to
 

fin
d 

bu
t e

as
y 

to
 v

er
ify

• 
 W
ea
k 
ve
rifi

ca
tio

n 
of
 a
ns
w
er
s 
m
ay
 b
e 
po

ss
ib
le
 th

ro
ug
h 
th
e 
us
e 
of
 m

ul
tip

le
 

or
ac

le
s

G
en

ie
A

 c
om

m
an

d-
ex

ec
ut

in
g 

sy
st

em

Va
ria

tio
ns

: G
en

ie
s 

us
in

g 
di

ffe
re

nt
 “

ex
tr

ap
o-

la
tio

n 
di

st
an

ce
s”

 o
r 

de
gr

ee
s 

of
 fo

llo
w

in
g 

th
e 

sp
iri

t r
at

he
r 

th
an

 le
tt

er
 o

f t
he

 c
om

-
m

an
d;

 d
om

ai
n-

lim
ite

d 
ge

ni
es

; g
en

ie
s-

w
ith

-
pr

ev
ie

w
; g

en
ie

s 
th

at
 r

ef
us

e 
to

 o
be

y 
co

m
-

m
an

ds
 if

 th
ey

 p
re

di
ct

 th
e 

co
ns

eq
ue

nc
es

 
of

 o
be

yi
ng

 w
ou

ld
 m

ee
t p

re
-s

pe
ci

fie
d 

“d
isa

st
er

 c
ri

te
ria

”

• 
 Bo

xi
ng
 m

et
ho

ds
 p
ar
tia
lly
 a
pp

lic
ab
le
 (f
or
 s
pa
tia
lly
 li
m
ite

d 
ge
ni
es
)

• 
 D
om

es
tic
ity
 p
ar
tia
lly
 a
pp

lic
ab
le

• 
 G
en
ie
 c
ou

ld
 o
ffe
r 
a 
pr
ev
ie
w
 o
f s
al
ie
nt
 a
sp
ec
ts
 o
f e

xp
ec
te
d 
ou

tc
om

es
• 
 G
en
ie
 c
ou

ld
 im

pl
em

en
t c
ha
ng
e 
in
 s
ta
ge
s, 
w
ith

 o
pp

or
tu
ni
ty
 fo

r 
re
vi
ew

 a
t e

ac
h 

st
ag

e
• 
 So

ur
ce
 o
f g
re
at
 p
ow

er
 (m

ig
ht
 g
iv
e 
op

er
at
or
 a
 d
ec
isi
ve
 s
tr
at
eg
ic
 a
dv
an
ta
ge
)

• 
 Li
m
ite

d 
pr
ot
ec
tio

n 
ag
ai
ns
t f
oo

lis
h 
us
e 
by
 o
pe

ra
to
r

• 
 G
re
at
er
 n
ee
d 
fo
r 
A
I t
o 
un
de

rs
ta
nd

 h
um

an
 in
te
re
st
s 
an
d 
in
te
nt
io
ns
 (c
om

pa
re
d 

to
 o

ra
cl

es
)



COMPARISON  |  157

So
ve

re
ig

n
A

 s
ys

te
m

 d
es

ig
ne

d 
fo

r 
op

en
-e

nd
ed

 
au

to
no

m
ou

s 
op

er
at

io
n

Va
ria

tio
ns

: M
an

y 
po

ss
ib

le
 m

ot
iv

at
io

n 
sy

st
em

s; 
po

ss
ib

ili
ty

 o
f u

sin
g 

pr
ev

ie
w

 a
nd

 
“s

po
ns

or
 r

at
ifi

ca
tio

n”
 (t

o 
be

 d
isc

us
se

d 
in

 
C

ha
pt

er
 1

3)

•
 Bo

xi
ng
 m

et
ho

ds
 in
ap
pl
ic
ab
le

•
 M
os
t o

th
er
 c
ap
ab
ili
ty
 c
on

tr
ol
 m

et
ho

ds
 a
lso

 in
ap
pl
ic
ab
le
 (e

xc
ep

t, 
po

ss
ib
ly,

so
ci

al
 in

te
gr

at
io

n 
or

 a
nt

hr
op

ic
 c

ap
tu

re
)

•
 D
om

es
tic
ity
 m

os
tly
 in
ap
pl
ic
ab
le

•
 G
re
at
 n
ee
d 
fo
r 
A
I t
o 
un
de

rs
ta
nd

 tr
ue
 h
um

an
 in
te
re
st
s 
an
d 
in
te
nt
io
ns

•
 N
ec
es
sit
y 
of
 g
et
tin
g 
it 
rig

ht
 o
n 
th
e 
fir
st
 tr
y 
(t
ho

ug
h,
 to

 a
 p
os
sib

ly
 le
ss
er
 e
xt
en
t,

th
is 

is 
tr

ue
 fo

r 
al

l c
as

te
s)

•
 Po

te
nt
ia
lly
 a
 s
ou

rc
e 
of
 g
re
at
 p
ow

er
 fo

r 
sp
on

so
r, 
in
cl
ud

in
g 
de

ci
siv
e 
st
ra
te
gi
c

ad
va

nt
ag

e
•
 O
nc
e 
ac
tiv
at
ed

, n
ot
 v
ul
ne
ra
bl
e 
to
 h
ija
ck
in
g 
by
 o
pe

ra
to
r, 
an
d 
m
ig
ht
 b
e 
de

-
sig

ne
d 

w
ith

 s
om

e 
pr

ot
ec

tio
n 

ag
ai

ns
t f

oo
lis

h 
us

e
•
 C
an
 b
e 
us
ed
 to

 im
pl
em

en
t “
ve
il 
of
 ig
no

ra
nc
e”
 o
ut
co
m
es
 (c
f. 
C
ha
pt
er
 1
3)

To
ol

A
 s

ys
te

m
 n

ot
 d

es
ig

ne
d 

to
 e

xh
ib

it 
go

al
-

di
re

ct
ed

 b
eh

av
io

r
•
 Bo

xi
ng
 m

et
ho

ds
 m

ay
 b
e 
ap
pl
ic
ab
le
, d
ep

en
di
ng
 o
n 
th
e 
im
pl
em

en
ta
tio

n
•
 Po

w
er
fu
l s
ea
rc
h 
pr
oc
es
se
s 
w
ou

ld
 li
ke
ly
 b
e 
in
vo
lv
ed
 in
 th

e 
de
ve
lo
pm

en
t a
nd

op
er

at
io

n 
of

 a
 m

ac
hi

ne
 s

up
er

in
te

llig
en

ce
•
 Po

w
er
fu
l s
ea
rc
h 
to
 fi
nd

 a
 s
ol
ut
io
n 
m
ee
tin
g 
so
m
e 
fo
rm

al
 c
ri
te
rio

n 
ca
n 
pr
od

uc
e

so
lu

tio
ns

 th
at

 m
ee

t t
he

 c
ri

te
rio

n 
in

 a
n 

un
in

te
nd

ed
 a

nd
 d

an
ge

ro
us

 w
ay

•
 Po

w
er
fu
l s
ea
rc
h 
m
ig
ht
 in
vo
lv
e 
se
co
nd

ar
y, 
in
te
rn
al
 s
ea
rc
h 
an
d 
pl
an
ni
ng

pr
oc

es
se

s 
th

at
 m

ig
ht

 fi
nd

 d
an

ge
ro

us
 w

ay
s 

of
 e

xe
cu

tin
g 

th
e 

pr
im

ar
y 

se
ar

ch
pr

oc
es

s

T
ab

le
 1

1 
C

on
tin

ue
d



158  |  ORACLES, GENIES, SOvEREIGNS, TOOLS

Further research would be needed to determine which type of system would be 
safest. The answer might depend on the conditions under which the AI would be 
deployed. The oracle caste is obviously attractive from a safety standpoint, since it 
would allow both capability control methods and motivation selection methods 
to be applied. It might thus seem to simply dominate the sovereign caste, which 
would only allow motivation selection methods (except in scenarios in which 
the world is believed to contain other powerful superintelligences, in which case 
social integration or anthropic capture might apply). However, an oracle could 
place a lot of power into the hands of its operator, who might be corrupted or 
might apply the power unwisely, whereas a sovereign would offer some protection 
against these hazards. The safety ranking is therefore not so easily determined.

A genie can be viewed as a compromise between an oracle and a sovereign—
but not necessarily a good compromise. In many ways, it would share the disad-
vantages of both. The apparent safety of a tool-AI, meanwhile, may be illusory. 
In order for tools to be versatile enough to substitute for superintelligent agents, 
they may need to deploy extremely powerful internal search and planning pro-
cesses. Agent-like behaviors may arise from such processes as an unplanned con-
sequence. In that case, it would be better to design the system to be an agent in the 
first place, so that the programmers can more easily see what criteria will end up 
determining the system’s output.



MULTIPOLAR SCENARIOS  |  159

CHAPTER 11

Multipolar scenarios

We have seen (particularly in Chapter 8) how menacing a unipolar 
outcome could be, one in which a single superintelligence obtains 
a decisive strategic advantage and uses it to establish a singleton. 

In this chapter, we examine what would happen in a multipolar outcome, a 
post-transition society with multiple competing superintelligent agencies. Our 
interest in this class of scenarios is twofold. First, as alluded to in Chapter 9, 
social integration might be thought to offer a solution to the control problem. 
We already noted some limitations with that approach, and this chapter paints 
a fuller picture. Second, even without anybody setting out to create a multipolar 
condition as a way of handling the control problem, such an outcome might 
occur anyway. So what might such an outcome look like? The resulting competi-
tive society is not necessarily attractive, nor long-lasting.

In singleton scenarios, what happens post-transition depends almost entirely on 
the values of the singleton. The outcome could thus be very good or very bad, 
depending on what those values are. What the values are depends, in turn, on 
whether the control problem was solved, and—to the degree to which it was 
solved—on the goals of the project that created the singleton.

If one is interested in the outcome of singleton scenarios, therefore, one really 
only has three sources of information: information about matters that cannot be 
affected by the actions of the singleton (such as the laws of physics); information 
about convergent instrumental values; and information that enables one to pre-
dict or speculate about what final values the singleton will have.

In multipolar scenarios, an additional set of constraints comes into play, con-
straints having to do with how agents interact. The social dynamics emerging 
from such interactions can be studied using techniques from game theory, eco-
nomics, and evolution theory. Elements of political science and sociology are also 
relevant insofar as they can be distilled and abstracted from some of the more 
contingent features of human experience. Although it would be unrealistic to 
expect these constraints to give us a precise picture of the post-transition world, 
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they can help us identify some salient possibilities and challenge some unfounded 
assumptions.

We will begin by exploring an economic scenario characterized by a low level of 
regulation, strong protection of property rights, and a moderately rapid introduc-
tion of inexpensive digital minds.1 This type of model is most closely associated 
with the American economist Robin Hanson, who has done pioneering work on 
the subject. Later in this chapter, we will look at some evolutionary considerations 
and examine the prospects of an initially multipolar post-transition world subse-
quently coalescing into a singleton.

Of horses and men

General machine intelligence could serve as a substitute for human intelligence. 
Not only could digital minds perform the intellectual work now done by humans, 
but, once equipped with good actuators or robotic bodies, machines could also 
substitute for human physical labor. Suppose that machine workers—which can 
be quickly reproduced—become both cheaper and more capable than human 
workers in virtually all jobs. What happens then?

Wages and unemployment

With cheaply copyable labor, market wages fall. The only place where humans 
would remain competitive may be where customers have a basic preference for 
work done by humans. Today, goods that have been handcrafted or produced by 
indigenous people sometimes command a price premium. Future consumers 
might similarly prefer human-made goods and human athletes, human artists, 
human lovers, and human leaders to functionally indistinguishable or superior 
artificial counterparts. It is unclear, however, just how widespread such prefer-
ences would be. If machine-made alternatives were sufficiently superior, perhaps 
they would be more highly prized.

One parameter that might be relevant to consumer choice is the inner life of the 
worker providing a service or product. A concert audience, for instance, might like 
to know that the performer is consciously experiencing the music and the venue. 
Absent phenomenal experience, the musician could be regarded as merely a high-
powered jukebox, albeit one capable of creating the three-dimensional appear-
ance of a performer interacting naturally with the crowd. Machines might then 
be designed to instantiate the same kinds of mental states that would be present 
in a human performing the same task. Even with perfect replication of subjective 
experiences, however, some people might simply prefer organic work. Such pref-
erences could also have ideological or religious roots. Just as many Muslims and 
Jews shun food prepared in ways they classify as haram or treif, so there might be 
groups in the future that eschew products whose manufacture involved unsanc-
tioned use of machine intelligence.
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What hinges on this? To the extent that cheap machine labor can substitute for 
human labor, human jobs may disappear. Fears about automation and job loss are 
of course not new. Concerns about technological unemployment have surfaced 
periodically, at least since the Industrial Revolution; and quite a few professions 
have in fact gone the way of the English weavers and textile artisans who in the 
early nineteenth century united under the banner of the folkloric “General Ludd” 
to fight against the introduction of mechanized looms. Nevertheless, although 
machinery and technology have been substitutes for many particular types of 
human labor, physical technology has on the whole been a complement to labor. 
Average human wages around the world have been on a long-term upward trend, 
in large part because of such complementarities. Yet what starts out as a comple-
ment to labor can at a later stage become a substitute for labor. Horses were ini-
tially complemented by carriages and ploughs, which greatly increased the horse’s 
productivity. Later, horses were substituted for by automobiles and tractors. These 
later innovations reduced the demand for equine labor and led to a population 
collapse. Could a similar fate befall the human species?

The parallel to the story of the horse can be drawn out further if we ask why it is 
that there are still horses around. One reason is that there are still a few niches in 
which horses have functional advantages; for example, police work. But the main 
reason is that humans happen to have peculiar preferences for the services that 
horses can provide, including recreational horseback riding and racing. These 
preferences can be compared to the preferences we hypothesized some humans 
might have in the future, that certain goods and services be made by human 
hand. Although suggestive, this analogy is, however, inexact, since there is still no 
complete functional substitute for horses. If there were inexpensive mechanical 
devices that ran on hay and had exactly the same shape, feel, smell, and behav-
ior as biological horses—perhaps even the same conscious experiences—then 
demand for biological horses would probably decline further.

With a sufficient reduction in the demand for human labor, wages would fall 
below the human subsistence level. The potential downside for human workers is 
therefore extreme: not merely wage cuts, demotions, or the need for retraining, 
but starvation and death. When horses became obsolete as a source of moveable 
power, many were sold off to meatpackers to be processed into dog food, bone 
meal, leather, and glue. These animals had no alternative employment through 
which to earn their keep. In the United States, there were about 26 million horses 
in 1915. By the early 1950s, 2 million remained.2

Capital and welfare

One difference between humans and horses is that humans own capital. A stylized 
empirical fact is that the total factor share of capital has for a long time remained 
steady at approximately 30% (though with significant short-term fluctuations).3 
This means that 30% of total global income is received as rent by owners of capital, 
the remaining 70% being received as wages by workers. If we classify AI as capital, 
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then with the invention of machine intelligence that can fully substitute for 
human work, wages would fall to the marginal cost of such machine- substitutes, 
which—under the assumption that the machines are very efficient—would be 
very low, far below human subsistence-level income. The income share received 
by labor would then dwindle to practically nil. But this implies that the factor 
share of capital would become nearly 100% of total world product. Since world 
GDP would soar following an intelligence explosion (because of massive amounts 
of new labor-substituting machines but also because of technological advances 
achieved by superintelligence, and, later, acquisition of vast amounts of new 
land through space colonization), it follows that the total income from capital 
would increase enormously. If humans remain the owners of this capital, the total 
income received by the human population would grow astronomically, despite 
the fact that in this scenario humans would no longer receive any wage income.

The human species as a whole could thus become rich beyond the dreams of 
Avarice. How would this income be distributed? To a first approximation, capital 
income would be proportional to the amount of capital owned. Given the astro-
nomical amplification effect, even a tiny bit of pre-transition wealth would bal-
loon into a vast post-transition fortune. However, in the contemporary world, 
many people have no wealth. This includes not only individuals who live in pov-
erty but also some people who earn a good income or who have high human capi-
tal but have negative net worth. For example, in affluent Denmark and Sweden 
30% of the population report negative wealth—often young, middle-class people 
with few tangible assets and credit card debt or student loans.4 Even if savings 
could earn extremely high interest, there would need to be some seed grain, some 
starting capital, in order for the compounding to begin.5

Nevertheless, even individuals who have no private wealth at the start of the 
transition could become extremely rich. Those who participate in a pension 
scheme, for instance, whether public or private, should be in a good position, pro-
vided the scheme is at least partially funded.6 Have-nots could also become rich 
through the philanthropy of those who see their net worth skyrocket: because of 
the astronomical size of the bonanza, even a very small fraction donated as alms 
would be a very large sum in absolute terms.

It is also possible that riches could still be made through work, even at a 
post-transition stage when machines are functionally superior to humans in all 
domains (as well as cheaper than even subsistence-level human labor). As noted 
earlier, this could happen if there are niches in which human labor is preferred 
for aesthetic, ideological, ethical, religious, or other non-pragmatic reasons. In 
a scenario in which the wealth of human capital-holders increases dramatically, 
demand for such labor could increase correspondingly. Newly minted trillion-
aires or quadrillionaires could afford to pay a hefty premium for having some of 
their goods and services supplied by an organic “fair-trade” labor force. The his-
tory of horses again offers a parallel. After falling to 2 million in the early 1950s, 
the US horse population has undergone a robust recovery: a recent census puts the 
number at just under 10 million head.7 The rise is not due to new functional needs 
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for horses in agriculture or transportation; rather, economic growth has enabled 
more Americans to indulge a fancy for equestrian recreation.

Another relevant difference between humans and horses, beside capital- 
ownership, is that humans are capable of political mobilization. A human-run 
government could use the taxation power of the state to redistribute private 
 profits, or raise revenue by selling appreciated state-owned assets, such as public 
land, and use the proceeds to pension off its constituents. Again, because of the 
explosive economic growth during and immediately after the transition, there 
would be vastly more wealth sloshing around, making it relatively easy to fill the 
cups of all unemployed citizens. It should be feasible even for a single country 
to provide every human worldwide with a generous living wage at no greater 
 proportional cost than what many countries currently spend on foreign aid.8

The Malthusian principle in a historical perspective

So far we have assumed a constant human population. This may be a reasonable 
assumption for short timescales, since biology limits the rate of human repro-
duction. Over longer timescales, however, the assumption is not necessarily 
reasonable.

The human population has increased a thousandfold over the past 9,000 years.9 
The increase would have been much faster except for the fact that throughout 
most of history and prehistory, the human population was bumping up against 
the limits of the world economy. An approximately Malthusian condition pre-
vailed, in which most people received subsistence-level incomes that just barely 
allowed them to survive and raise an average of two children to maturity.10 There 
were temporary and local reprieves: plagues, climate fluctuations, or warfare 
intermittently culled the population and freed up land, enabling survivors to 
improve their nutritional intake—and to bring up more children, until the ranks 
were replenished and the Malthusian condition reinstituted. Also, thanks to 
social inequality, a thin elite stratum could enjoy consistently above-subsistence 
income (at the expense of somewhat lowering the total size of the population that 
could be sustained). A sad and dissonant thought: that in this Malthusian con-
dition, the normal state of affairs during most of our tenure on this planet, it 
was droughts, pestilence, massacres, and inequality—in common estimation the 
worst foes of human welfare—that may have been the greatest humanitarians: 
they alone enabling the average level of well-being to occasionally bop up slightly 
above that of life at the very margin of subsistence.

Superimposed on local fluctuations, history shows a macro-pattern of initially 
slow but accelerating economic growth, fueled by the accumulation of techno-
logical innovations. The growing world economy brought with it a commensurate 
increase in global population. (More precisely, a larger population itself appears 
to have strongly accelerated the rate of growth, perhaps mainly by increasing 
humanity’s collective intelligence.11) Only since the Industrial Revolution, how-
ever, did economic growth become so rapid that population growth failed to keep 
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pace. Average income thus started to rise, first in the early-industrializing coun-
tries of Western Europe, subsequently in most of the world. Even in the poor-
est countries today, average income substantially exceeds subsistence level, as 
reflected in the fact that the populations of these countries are growing.

The poorest countries now have the fastest population growth, as they have 
yet to complete the “demographic transition” to the low-fertility regime that has 
taken hold in more developed societies. Demographers project that the world 
population will rise to about 9 billion by mid-century, and that it might thereafter 
plateau or decline as the poorer countries join the developed world in this low-
fertility regime.12 Many rich countries already have fertility rates that are below 
replacement level; in some cases, far below.13

Yet there are reasons, if we take a longer view and assume a state of unchang-
ing technology and continued prosperity, to expect a return to the historically 
and ecologically normal condition of a world population that butts up against 
the limits of what our niche can support. If this seems counterintuitive in light 
of the negative relationship between wealth and fertility that we are currently 
observing on the global scale, we must remind ourselves that this modern age 
is a brief slice of history and very much an aberration. Human behavior has not 
yet adapted to contemporary conditions. Not only do we fail to take advantage of 
obvious ways to increase our inclusive fitness (such as by becoming sperm or egg 
donors) but we actively sabotage our fertility by using birth control. In the envi-
ronment of evolutionary adaptedness, a healthy sex drive may have been enough 
to make an individual act in ways that maximized her reproductive potential; in 
the modern environment, however, there would be a huge selective advantage to 
having a more direct desire for being the biological parent to the largest possible 
number of children. Such a desire is currently being selected for, as are other 
traits that increase our propensity to reproduce. Cultural adaptation, however, 
might steal a march on biological evolution. Some communities, such those of 
the Hutterites or the adherents of the Quiverfull evangelical movement, have 
natalist cultures that encourage large families, and they are consequently under-
going rapid expansion.

Population growth and investment

If we imagine current socioeconomic conditions magically frozen in their cur-
rent shape, the future would be dominated by cultural or ethnic groups that 
sustain high levels of fertility. If most people had preferences that were fitness- 
maximizing in the contemporary environment, the population could easily dou-
ble in each generation. Absent population control policies—which would have 
to become steadily more rigorous and effective to counteract the evolution of 
stronger preferences to circumvent them—the world population would then con-
tinue to grow exponentially until some constraint, such as land scarcity or deple-
tion of easy opportunities for important innovation, made it impossible for the 
economy to keep pace: at which point, average income would start to decline until 
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it reached the level where crushing poverty prevents most people from raising 
much more than two children to maturity. Thus the Malthusian principle would 
reassert itself, like a dread slave master, bringing our escapade into the dream-
land of abundance to an end, and leading us back to the quarry in chains, there to 
resume the weary struggle for subsistence.

This longer-term outlook could be telescoped into a more imminent prospect 
by the intelligence explosion. Since software is copyable, a population of emula-
tions or AIs could double rapidly—over the course of minutes rather than decades 
or centuries—soon exhausting all available hardware.

Private property might offer partial protection against the emergence of a uni-
versal Malthusian condition. Consider a simple model in which clans (or closed 
communities, or states) start out with varying amounts of property and indepen-
dently adopt different policies about reproduction and investment. Some clans 
discount the future steeply and spend down their endowment, whereafter their 
impoverished members join the global proletariat (or die, if they cannot  support 
themselves through their labor). Other clans invest some of their resources but 
adopt a policy of unlimited reproduction: such clans grow more populous until 
they reach an internal Malthusian condition in which their members are so 
poor that they die at almost the same rate as they reproduce, at which point the 
clan’s population growth slows to equal the growth of its resources. Yet other 
clans might restrict their fertility to below the rate of growth of their capital: such 
clans could slowly increment their numbers while their members also grow richer 
per capita.

If wealth is redistributed from the wealthy clans to the members of the rapidly 
reproducing or rapidly discounting clans (whose children, copies, or offshoots, 
through no fault of their own, were launched into the world with insufficient capi-
tal to survive and thrive) then a universal Malthusian condition would be more 
closely approximated. In the limiting case, all members of all clans would receive 
subsistence level income and everybody would be equal in their poverty.

If property is not redistributed, prudent clans might hold on to a certain 
amount of capital, and it is possible that their wealth could grow in absolute terms. 
It is, however, unclear whether humans could earn as high rates of return on their 
capital as machine intelligences could earn on theirs, because there may be syner-
gies between labor and capital such that an single agent who can supply both (e.g. 
an entrepreneur or investor who is both skilled and wealthy) can attain a private 
rate of return on her capital exceeding the market rate obtainable by agents who 
possess financial but not cognitive resources. Humans, being less skilled than 
machine intelligences, may therefore grow their capital more slowly—unless, of 
course, the control problem had been completely solved, in which case the human 
rate of return would equal the machine rate of return, since a human principal 
could task a machine agent to manage her savings, and could do so costlessly 
and without conflicts of interest: but otherwise, in this scenario, the fraction of 
the economy owned by machines would asymptotically approach one hundred 
percent.
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A scenario in which the fraction of the economy that is owned by machines 
asymptotically approaches one hundred percent is not necessarily one in which 
the size of the human slice declines. If the economy grows at a sufficient clip, then 
even a relatively diminishing fraction of it may still be increasing in its absolute 
size. This may sound like modestly good news for humankind: in a multipolar 
scenario in which property rights are protected—even if we  completely fail to 
solve the control problem—the total amount of wealth owned by human beings 
could increase. Of course, this effect would not take care of the problem of 
 population growth in the human population pulling down per capita income to 
subsistence level, nor the problem of humans who ruin themselves because they 
discount the future.

In the long run, the economy would become increasingly dominated by those 
clans that have the highest savings rates—misers who own half the city and live 
under a bridge. Only in the fullness of time, when there are no more opportunities 
for investment, would the maximally prosperous misers start drawing down their 
savings.14 However, if there is less than perfect protection for property rights—
for example if the more efficient machines on net succeed, by hook or by crook, 
in transferring wealth from humans to themselves—then human capitalists may 
need to spend down their capital much sooner, before it gets depleted by such 
transfers (or the ongoing costs incurred in securing their wealth against such 
transfers). If these developments take place on digital rather than biological time-
scales, then the glacial humans might find themselves expropriated before they 
could say Jack Robinson.15

Life in an algorithmic economy

Life for biological humans in a post-transition Malthusian state need not resemble 
any of the historical states of man (as hunter–gatherer, farmer, or office worker). 
Instead, the majority of humans in this scenario might be idle rentiers who eke out 
a marginal living on their savings.16 They would be very poor, yet derive what little 
income they have from savings or state subsidies. They would live in a world with 
extremely advanced technology, including not only superintelligent machines but 
also anti-aging medicine, virtual reality, and various enhancement technologies 
and pleasure drugs: yet these might be generally unaffordable. Perhaps instead of 
using enhancement medicine, they would take drugs to stunt their growth and 
slow their metabolism in order to reduce their cost of living (fast-burners being 
unable to survive at the gradually declining subsistence income). As our numbers 
increase and our average income declines further, we might degenerate into what-
ever minimal structure still qualifies to receive a pension—perhaps minimally 
conscious brains in vats, oxygenized and nourished by machines, slowly saving up 
enough money to reproduce by having a robot technician develop a clone of them.17

Further frugality could be achieved by means of uploading, since a physically 
optimized computing substrate, devised by advanced superintelligence, would 
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be more efficient than a biological brain. The migration into the digital realm 
might be stemmed, however, if emulations were regarded as non-humans or non- 
citizens ineligible to receive pensions or to hold tax-exempt savings accounts. In 
that case, a niche for biological humans might remain open, alongside a perhaps 
vastly larger population of emulations or artificial intelligences.

So far we have focused on the fate of the humans, who may be supported by 
savings, subsidies, or wage income deriving from other humans who prefer to 
hire humans. Let us now turn our attention to some of the entities that we have so 
far classified as “capital”: machines that may be owned by human beings, that are 
constructed and operated for the sake of the functional tasks they perform, and 
that are capable of substituting for human labor in a very wide range of jobs. What 
may the situation be like for these workhorses of the new economy?

If these machines were mere automata, simple devices like a steam engine 
or the mechanism in a clock, then no further comment would be needed: there 
would be a large amount of such capital in a post-transition economy, but it would 
seem not to matter to anybody how things turn out for pieces of insentient equip-
ment. However, if the machines have conscious minds—if they are constructed 
in such a way that their operation is associated with phenomenal awareness (or if 
they for some other reason are ascribed moral status)—then it becomes important 
to consider the overall outcome in terms of how it would affect these machine 
minds. The welfare of the working machine minds could even appear to be the 
most important aspect of the outcome, since they may be numerically dominant.

Voluntary slavery, casual death

A salient initial question is whether these working machine minds are owned as 
capital (slaves) or are hired as free wage laborers. On closer inspection however, it 
become doubtful that anything really hinges on the issue. There are two reasons 
for this. First, if a free worker in a Malthusian state gets paid a subsistence-level 
wage, he will have no disposable income left after he has paid for food and other 
necessities. If the worker is instead a slave, his owner will pay for his mainten-
ance and again he will have no disposable income. In either case, the worker gets 
the necessities and nothing more. Second, suppose that the free laborer were 
somehow in a position to command an above-subsistence-level income (perhaps 
because of favorable regulation). How will he spend the surplus? Investors would 
find it most profitable to create workers who would be “voluntary slaves”—who 
would willingly work for subsistence-level wages. Investors may create such 
workers by copying those workers who are compliant. With appropriate selec-
tion (and perhaps some modification to the code) investors might be able to 
create workers who not only prefer to volunteer their labor but who would also 
choose to donate back to their owners any surplus income they might happen 
to receive. Giving money to the worker would then be but a roundabout way of 
giving money to the owner or employer, even if the worker were a free agent with 
full legal rights.
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Perhaps it will be objected that it would be difficult to design a machine so that 
it wants to volunteer for any job assigned to it or so that it wants to donate its 
wages to its owner. Emulations, in particular, might be imagined to have more 
typically human desires. But note that even if the original control problem is 
difficult, we are here considering a condition after the transition, a time when 
methods for motivation selection have presumably been perfected. In the case 
of emulations, one might get quite far simply by selecting from the pre-existing 
range of human characters; and we have described several other motivation 
selection methods. The control problem may also in some ways be simplified by 
the current assumption that the new machine intelligence enters into a stable 
socioeconomic matrix that is already populated with other law-abiding super-
intelligent agents.

Let us, then, consider the plight of the working-class machine, whether it be 
operating as a slave or a free agent. We focus first on emulations, the easiest case 
to imagine.

Bringing a new biological human worker into the world takes anywhere 
between fifteen and thirty years, depending on how much expertise and experi-
ence is required. During this time the new person must be fed, housed, nurtured, 
and educated—at great expense. By contrast, spawning a new copy of a digital 
worker is as easy as loading a new program into working memory. Life thus 
becomes cheap. A business could continuously adapt its workforce to fit demands 
by spawning new copies—and terminating copies that are no longer needed, 
to free up computer resources. This could lead to an extremely high death rate 
among digital workers. Many might live for only one subjective day.

There are reasons other than fluctuations in demand why employers or own-
ers of emulations might want to “kill” or “end” their workers frequently.18 If an 
emulation mind, like a biological mind, requires periods of rest and sleep in 
order to function, it might be cheaper to erase a fatigued emulation at the end 
of a day and replace it with a stored state of a fresh and rested emulation. As 
this procedure would cause retrograde amnesia for everything that had been 
learned during that day, emulations performing tasks requiring long cognitive 
threads would be spared such frequent erasure. It would be difficult, for exam-
ple, to write a book if each morning when one sat down at one’s desk, one had 
no memory of what one had done before. But other jobs could be performed 
adequately by agents that are frequently recycled: a shop assistant or a customer 
service agent, once trained, may only need to remember new information for 
twenty minutes.

Since recycling emulations would prevent memory and skill formation, some 
emulations may be placed on a special learning track where they would run con-
tinuously, including for rest and sleep, even in jobs that do not strictly require long 
cognitive threads. For example, some customer service agents might run for many 
years in optimized learning environments, assisted by coaches and performance 
evaluators. The best of these trainees would then be used like studs, serving as 
templates from which millions of fresh copies are stamped out each day. Great 
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effort would be poured into improving the performance of such worker templates, 
because even a small increment in productivity would yield great economic value 
when applied in millions of copies.

In parallel with efforts to train worker-templates for particular jobs, intense 
efforts would also be made to improve the underlying emulation technology. 
Advances here would be even more valuable than advances in individual worker-
templates, since general technology improvements could be applied to all emula-
tion workers (and potentially to non-worker emulations also) rather than only to 
those in a particular occupation. Enormous resources would be devoted to find-
ing computational shortcuts allowing for more efficient implementations of exist-
ing emulations, and also into developing neuromorphic and entirely synthetic 
AI architectures. This research would probably mostly be done by emulations 
running on very fast hardware. Depending on the price of computer power, mil-
lions, billions, or trillions of emulations of the sharpest human research minds 
(or enhanced versions thereof) may be working around the clock on advancing 
the frontier of machine intelligence; and some of these may be operating orders 
of magnitude faster than biological brains.19 This is a good reason for thinking 
that the era of human-like emulations would be brief—a very brief interlude 
in  sidereal time—and that it would soon give way to an era of greatly superior 
 artificial intelligence.

We have already encountered several reasons why employers of emulation 
workers may periodically cull their herds: fluctuations in demand for different 
kinds of laborers, cost savings of not having to emulate rest and sleep time, and 
the introduction of new and improved templates. Security concerns might fur-
nish another reason. To prevent workers from developing subversive plans and 
conspiracies, emulations in some sensitive positions might be run only for limited 
periods, with frequent resets to an earlier stored ready-state.20

These ready-states to which emulations would be reset would be carefully pre-
pared and vetted. A typical short-lived emulation might wake up in a well-rested 
mental state that is optimized for loyalty and productivity. He remembers having 
graduated top of his class after many (subjective) years of intense training and 
selection, then having enjoyed a restorative holiday and a good night’s sleep, then 
having listened to a rousing motivational speech and stirring music, and now he is 
champing at the bit to finally get to work and to do his utmost for his employer. He 
is not overly troubled by thoughts of his imminent death at the end of the working 
day. Emulations with death neuroses or other hang-ups are less productive and 
would not have been selected.21

Would maximally efficient work be fun?

One important variable in assessing the desirability of a hypothetical condition 
like this is the hedonic state of the average emulation.22 Would a typical emulation 
worker be suffering or would he be enjoying the experience of working hard on 
the task at hand?
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We must resist the temptation to project our own sentiments onto the imagin-
ary emulation worker. The question is not whether you would feel happy if you 
had to work constantly and never again spend time with your loved ones—a 
terrible fate, most would agree.

It is moderately more relevant to consider the current human average hedonic 
experience during working hours. Worldwide studies asking respondents how 
happy they are find that most rate themselves as “quite happy” or “very happy” 
(averaging 3.1 on a scale from 1 to 4).23 Studies on average affect, asking respond-
ents how frequently they have recently experienced various positive or negative 
affective states, tend to get a similar result (producing a net affect of about 0.52 
on a scale from –1 to 1). There is a modest positive effect of a country’s per capita 
income on average subjective well-being.24 However, it is hazardous to extrapolate 
from these findings to the hedonic state of future emulation workers. One reason 
that could be given for this is that their condition would be so different: on the 
one hand, they might be working much harder; on the other hand, they might be 
free from diseases, aches, hunger, noxious odors, and so forth. Yet such considera-
tions largely miss the mark. The much more important consideration here is that 
hedonic tone would be easy to adjust through the digital equivalent of drugs or 
neurosurgery. This means that it would be a mistake to infer the hedonic state of 
future emulations from the external conditions of their lives by imagining how 
we ourselves and other people like us would feel in those circumstances. Hedonic 
state would be a matter of choice. In the model we are currently considering, the 
choice would be made by capital-owners seeking to maximize returns on their 
investment in emulation-workers. Consequently, the question of how happy emu-
lations would feel boils down to the question of which hedonic states would be 
most productive (in the various jobs that emulations would be employed to do).

Here, again, one might seek to draw an inference from observations about 
human happiness. If it is the case, across most times, places, and occupations, that 
people are typically at least moderately happy, this would create some presump-
tion in favor of the same holding in a post-transition scenario like the one we are 
considering. To be clear, the argument in this case would not be that human minds 
have a predisposition towards happiness so they would probably find satisfaction 
under these novel conditions; but rather that a certain average level of happiness 
has proved adaptive for human minds in the past so maybe a similar level of hap-
piness will prove adaptive for human-like minds in the future. Yet this formula-
tion also reveals the weakness of the inference: to wit, that the mental dispositions 
that were adaptive for hunter–gatherer hominids roaming the African savanna 
may not necessarily be adaptive for modified emulations living in post-transition 
virtual realities. We can certainly hope that the future emulation- workers would 
be as happy as, or happier than, typical workers were in human history; but we 
have yet to see any compelling reason for supposing it would be so (in the laissez-
faire multipolar scenario currently under examination).

Consider the possibility that the reason happiness is prevalent among humans 
(to whatever limited extent it is prevalent) is that cheerful mood served a signaling 
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function in the environment of evolutionary adaptedness. Conveying the impres-
sion to other members of the social group of being in flourishing condition—in 
good health, in good standing with one’s peers, and in confident expectation of 
continued good fortune—may have boosted an individual’s popularity. A bias 
toward cheerfulness could thus have been selected for, with the result that human 
neurochemistry is now biased toward positive affect compared to what would 
have been maximally efficient according to simpler materialistic criteria. If this 
were the case, then the future of joie de vivre might depend on cheer retaining its 
social signaling function unaltered in the post-transition world: an issue to which 
we will return shortly.

What if glad souls dissipate more energy than glum ones? Perhaps the joyful are 
more prone to creative leaps and flights of fancy—behaviors that future employers 
might disprize in most of their workers. Perhaps a sullen or anxious fixation on 
simply getting on with the job without making mistakes will be the productivity-
maximizing attitude in most lines of work. The claim here is not that this is so, but 
that we do not know that it is not so. Yet we should consider just how bad it could 
be if some such pessimistic hypothesis about a future Malthusian state turned 
out to be true: not only because of the opportunity cost of having failed to create 
something better—which would be enormous—but also because the state could 
be bad in itself, possibly far worse than the original Malthusian state.

We seldom put forth full effort. When we do, it is sometimes painful. Imagine 
running on a treadmill at a steep incline—heart pounding, muscles aching, lungs 
gasping for air. A glance at the timer: your next break, which will also be your 
death, is due in 49 years, 3 months, 20 days, 4 hours, 56 minutes, and 12 seconds. 
You wish you had not been born.

Again the claim is not that this is how it would be, but that we do not know that 
it is not. One could certainly make a more optimistic case. For example, there is 
no obvious reason that emulations would need to suffer bodily injury and sick-
ness: the elimination of physical wretchedness would be a great improvement 
over the present state of affairs. Furthermore, since such stuff as virtual reality is 
made of can be fairly cheap, emulations may work in sumptuous surroundings—
in splendid mountaintop palaces, on terraces set in a budding spring forest, or on 
the beaches of an azure lagoon—with just the right illumination, temperature, 
scenery and décor; free from annoying fumes, noises, drafts, and buzzing insects; 
dressed in comfortable clothing, feeling clean and focused, and well nourished. 
More significantly, if—as seems perfectly possible—the optimum human mental 
state for productivity in most jobs is one of joyful eagerness, then the era of the 
emulation economy could be quite paradisiacal.

There would, in any case, be a great option value in arranging matters in such 
a manner that somebody or something could intervene to set things right if the 
default trajectory should happen to veer toward dystopia. It could also be desir-
able to have some sort of escape hatch that would permit bailout into death and 
oblivion if the quality of life were to sink permanently below the level at which 
annihilation becomes preferable to continued existence.
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Unconscious outsourcers?

In the longer run, as the emulation era gives way to an artificial intelligence era 
(or if machine intelligence is attained directly via AI without a preceding whole 
brain emulation stage) pain and pleasure might possibly disappear entirely in a 
multipolar outcome, since a hedonic reward mechanism may not be the most 
effective motivation system for an complex artificial agent (one that, unlike the 
human mind, is not burdened with the legacy of animal wetware). Perhaps a more 
advanced motivation system would be based on an explicit representation of a 
utility function or some other architecture that has no exact functional analogs 
to pleasure and pain.

A related but slightly more radical multipolar outcome—one that could involve 
the elimination of almost all value from the future—is that the universal prole-
tariat would not even be conscious. This possibility is most salient with respect 
to AI, which might be structured very differently than human intelligence. But 
even if machine intelligence were initially achieved though whole brain emula-
tion, resulting in conscious digital minds, the competitive forces unleashed in a 
post-transition economy could easily lead to the emergence of progressively less 
neuromorphic forms of machine intelligence, either because synthetic AI is cre-
ated de novo or because the emulations would, through successive modifications 
and enhancements, increasingly depart their original human form.

Consider a scenario in which after emulation technology has been developed, 
continued progress in neuroscience and computer science (expedited by the pres-
ence of digital minds to serve as both researchers and test subjects) makes it possi-
ble to isolate individual cognitive modules in an emulation, and to hook them up 
to modules isolated from other emulations. A period of training and adjustment 
may be required before different modules can collaborate effectively; but mod-
ules that conform to common standards could more quickly interface with other 
standard modules. This would make standardized modules more productive, and 
create pressure for more standardization.

Emulations can now begin to outsource increasing portions of their func-
tionality. Why learn arithmetic when you can send your numerical reasoning 
task to Gauss-Modules, Inc.? Why be articulate when you can hire Coleridge 
Conversations to put your thoughts into words? Why make decisions about your 
personal life when there are certified executive modules that can scan your goal 
system and manage your resources to achieve your goals better than if you tried 
to do it yourself? Some emulations may prefer to retain most of their functionality 
and handle tasks themselves that could be done more efficiently by others. Those 
emulations would be like hobbyists who enjoy growing their own vegetables or 
knitting their own cardigans. Such hobbyist emulations would be less efficient; 
and if there is a net flow of resources from less to more efficient participants of the 
economy, the hobbyists would eventually lose out.

The bouillon cubes of discrete human-like intellects thus melt into an algorith-
mic soup.
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It is conceivable that optimal efficiency would be attained by grouping cap-
abilities in aggregates that roughly match the cognitive architecture of a human 
mind. It might be the case, for example, that a mathematics module must be 
 tailored to a language module, and that both must be tailored to the executive 
module, in order for the three to work together. Cognitive outsourcing would 
then be almost entirely unworkable. But in the absence of any compelling  reason 
for being confident that this is so, we must countenance the possibility that 
 human-like cognitive architectures are optimal only within the constraints of 
human neurology (or not at all). When it becomes possible to build architectures 
that could not be implemented well on biological neural networks, new design 
space opens up; and the global optima in this extended space need not resemble 
familiar types of mentality. Human-like cognitive organizations would then lack 
a niche in a competitive post-transition economy or ecosystem.25

There might be niches for complexes that are either less complex (such as indi-
vidual modules), more complex (such as vast clusters of modules), or of similar 
complexity to human minds but with radically different architectures. Would 
these complexes have any intrinsic value? Should we welcome a world in which 
such alien complexes have replaced human complexes?

The answer may depend on the specific nature of those alien complexes. The present 
world has many levels of organization. Some highly complex entities, such as multi-
national corporations and nation states, contain human beings as constituents; yet 
we usually assign these high-level complexes only instrumental value. Corporations 
and states do not (it is generally assumed) have consciousness, over and above the 
consciousness of the people who constitute them: they cannot feel phenomenal pain 
or pleasure or experience any qualia. We value them to the extent that they serve 
human needs, and when they cease to do so we “kill” them without compunction. 
There are also lower-level entities, and those, too, are usually denied moral status. We 
see no harm in erasing an app from a smartphone, and we do not think that a neuro-
surgeon is wronging anyone when she extirpates a malfunctioning module from an 
epileptic brain. As for exotically organized complexes of a level similar to that of the 
human brain, most of us would perhaps judge them to have moral significance only 
if we thought they had a capacity or potential for conscious experience.26

We could thus imagine, as an extreme case, a technologically highly advanced 
society, containing many complex structures, some of them far more intricate 
and intelligent than anything that exists on the planet today—a society which 
nevertheless lacks any type of being that is conscious or whose welfare has moral 
significance. In a sense, this would be an uninhabited society. It would be a  society 
of economic miracles and technological awesomeness, with nobody there to 
 benefit. A Disneyland without children.

Evolution is not necessarily up

The word “evolution” is often used as a synonym of “progress,” perhaps reflecting 
a common uncritical image of evolution as a force for good. A misplaced faith 
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in the inherent beneficence of the evolutionary process can get in the way of a 
fair evaluation of the desirability of a multipolar outcome in which the future 
of intelligent life is determined by competitive dynamics. Any such evaluation 
must rest on some (at least implicit) opinion about the probability distribution 
of different phenotypes turning out to be adaptive in a post-transition digital life 
soup. It would be difficult in the best of circumstances to extract a clear and cor-
rect answer from the unavoidable goo of uncertainty that pervades these matters: 
more so, if we superadd a layer of Panglossian muck.

A possible source for faith in freewheeling evolution is the apparent upward 
directionality exhibited by the evolutionary process in the past. Starting from 
rudimentary replicators, evolution produced increasingly “advanced” organ-
isms, including creatures with minds, consciousness, language, and reason. More 
recently, cultural and technological processes, which bear some loose similarities 
to biological evolution, have enabled humans to develop at an accelerated pace. 
On a geological as well as a historical timescale, the big picture seems to show an 
overarching trend toward increasing levels of complexity, knowledge, conscious-
ness, and coordinated goal-directed organization: a trend which, not to put too 
fine a point on it, one might label “progress.”27

The image of evolution as a process that reliably produces benign effects is dif-
ficult to reconcile with the enormous suffering that we see in both the human and 
the natural world. Those who cherish evolution’s achievements may do so more 
from an aesthetic than an ethical perspective. Yet the pertinent question is not 
what kind of future it would be fascinating to read about in a science fiction novel 
or to see depicted in a nature documentary, but what kind of future it would be 
good to live in: two very different matters.

Furthermore, we have no reason to think that whatever progress there has been 
was in any way inevitable. Much might have been luck. This objection derives 
support from the fact that an observation selection effect filters the evidence we 
can have about the success of our own evolutionary development.28 Suppose that 
on 99.9999% of all planets where life emerged it went extinct before developing 
to the point where intelligent observers could begin to ponder their origin. What 
should we expect to observe if that were the case? Arguably, we should expect 
to observe something like what we do in fact observe. The hypothesis that the 
odds of intelligent life evolving on a given planet are low does not predict that we 
should find ourselves on a planet where life went extinct at an early stage; rather, 
it may predict that we should find ourselves on a planet where intelligent life 
evolved, even if such planets constitute a very small fraction of all planets where 
primitive life evolved. Life’s long track record on Earth may therefore offer scant 
support to the claim that there was a high chance—let alone anything approach-
ing inevitability— involved in the rise of higher organisms on our planet.29

Thirdly, even if present conditions had been idyllic, and even if they could have 
been shown to have arisen ineluctably from some generic primordial state, there 
would still be no guarantee that the melioristic trend is set to continue into the 
indefinite future. This holds even if we disregard the possibility of a cataclysmic 
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extinction event and indeed even if we assume that evolutionary developments 
will continue to produce systems of increasing complexity.

We suggested earlier that machine intelligence workers selected for maximum 
productivity would be working extremely hard and that it is unknown how happy 
such workers would be. We also raised the possibility that the fittest life forms 
within a competitive future digital life soup might not even be conscious. Short of 
a complete loss of pleasure, or of consciousness, there could be a wasting away of 
other qualities that many would regard as indispensible for a good life. Humans 
value music, humor, romance, art, play, dance, conversation, philosophy, litera-
ture, adventure, discovery, food and drink, friendship, parenting, sport, nature, 
tradition, and spirituality, among many other things. There is no guarantee that 
any of these would remain adaptive. Perhaps what will maximize fitness will 
be nothing but nonstop high-intensity drudgery, work of a drab and repetitive 
nature, destitute of ludic frisson, aimed only at improving the eighth decimal 
place of some economic output measure. The phenotypes selected would then 
have lives lacking in the aforesaid qualities, and depending on one’s axiology the 
result might strike one as either abhorrent, worthless, or merely impoverished, but 
at any rate a far cry from a utopia one would feel worthy of one’s commendation.

It might be wondered how such a bleak picture could be consistent with the 
fact that we do now indulge in music, humor, romance, art, etc. If these behaviors 
are really so “wasteful,” then how come they have been tolerated and indeed pro-
moted by the evolutionary processes that shaped our species? That modern man 
is in an evolutionary disequilibrium does not account for this; for our Pleistocene 
forebears, too, engaged in most of these dissipations. Many of the behaviors in 
question are not even unique to Homo sapiens. Flamboyant display is found in a 
wide variety of contexts, from sexual selection in the animal kingdom to prestige 
contests among nation states.30

Although a full evolutionary explanation for each of these behaviors is beyond 
the scope of the present inquiry, we can note that some of them serve functions that 
may not be as relevant in a machine intelligence context. Play, for example, which 
occurs only in some species and predominantly among juveniles, is mainly a way 
for the young animal to learn skills that it will need later in life. When emulations 
can be created as adults, already in possession of a mature repertoire of skills, or 
when knowledge and techniques acquired by one AI can be directly ported into 
another AI, the need for playful behavior might become less widespread.

Many of the other examples of humanistic behaviors may have evolved as hard-
to-fake signals of qualities that are difficult to observe directly, such as bodily or 
mental resilience, social status, quality of allies, ability and willingness to prevail 
in a fight, or possession of resources. The peacock’s tail is the classic instance: only 
fit peacocks can afford to sprout truly extravagant plumage, and peahens have 
evolved to find it attractive. No less than morphological traits, behavioral traits 
too can signal genetic fitness or other socially relevant attributes.31

Given that flamboyant display is so common among both humans and other 
species, one might consider whether it would not also be part of the repertoire of 
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technologically more advanced life forms. Even if there were to be no narrowly 
instrumental use for playfulness or musicality or even for consciousness in the 
future ecology of intelligent information processing, might not these traits none-
theless confer some evolutionary advantage to their possessors by virtue of being 
reliable signals of other adaptive qualities?

While the possibility of a pre-established harmony between what is valuable to 
us and what would be adaptive in a future digital ecology is hard to rule out, there 
are reasons for skepticism. Consider, first, that many of the costly displays we find 
in nature are linked to sexual selection.32 Reproduction among technologically 
mature life forms, in contrast, may be predominantly or exclusively asexual.

Second, technologically advanced agents might have available new means of 
reliably communicating information about themselves, means that do not rely 
on costly display. Even today, when professional lenders assess creditworthiness 
they tend to rely more on documentary evidence, such as ownership certificates 
and bank statements, than on costly displays, such as designer suits and Rolex 
watches. In the future, it might be possible to employ auditing firms that verify 
through detailed examination of behavioral track records, testing in simulated 
environments, or direct inspection of source code, that a client agent possesses 
a claimed attribute. Signaling one’s qualities by agreeing to such auditing might 
be more efficient than signaling via flamboyant display. Such a professionally 
mediated signal would still be costly to fake—this being the essential feature that 
makes the signal reliable—but it could be much cheaper to transmit when truthful 
than it would be to communicate an equivalent signal flamboyantly.

Third, not all possible costly displays are intrinsically valuable or socially desir-
able. Many are simply wasteful. The Kwakiutl potlatch ceremonies, a form of status 
competition between rival chiefs, involved the public destruction of vast amounts 
of accumulated wealth.33 Record-breaking skyscrapers, megayachts, and moon 
rockets may be viewed as contemporary analogs. While activities like music and 
humor could plausibly be claimed to enhance the intrinsic quality of human life, it 
is doubtful that a similar claim could be sustained with regard to the costly pursuit 
of fashion accessories and other consumerist status symbols. Worse, costly dis-
play can be outright harmful, as in macho posturing leading to gang violence or 
military bravado. Even if future intelligent life forms would use costly signaling, 
therefore, it is an open question whether the signal would be of a valuable sort—
whether it would be like the rapturous melody of a nightingale or instead like the 
toad’s monosyllabic croak (or the incessant barking of a rabid dog).

Post-transition formation of a singleton?

Even if the immediate outcome of the transition to machine intelligence were 
multipolar, the possibility would remain of a singleton developing later. Such a 
development would continue an apparent long-term trend toward larger scales of 
political integration, taking it to its natural conclusion.34 How might this occur?



POST-TRANSITION FORMATION OF A SINGLETON?  |  177

A second transition

On way in which an initially multipolar outcome could converge into a singleton 
post-transition is if there is, after the initial transition, a second technological 
transition big enough and steep enough to give a decisive strategic advantage to 
one of the remaining powers: a power which might then seize the opportunity to 
establish a singleton. Such a hypothetical second transition might be occasioned 
by a breakthrough to a higher level of superintelligence. For instance, if the first 
wave of machine superintelligence is emulation-based, then a second surge might 
result when the emulations now doing the research succeed in developing effect-
ive self-improving artificial intelligence.35 (Alternatively, a second transition 
might be triggered by a breakthrough in nanotechnology or some other military 
or general-purpose technology as yet unenvisaged.)

The pace of development after the initial transition would be extremely rapid. 
Even a short gap between the leading power and its closest competitor could there-
fore plausibly result in a decisive strategic advantage for the leading power during 
a second transition. Suppose, for example, that two projects enter the first transi-
tion only a few days apart, and that the takeoff is slow enough that this gap does 
not give the leading project a decisive strategic advantage at any point during the 
takeoff. The two projects both emerge as superintelligent powers, though one of 
them remains a few days ahead of the other. But developments are now occurring 
on the research timescales characteristic of machine superintelligence—perhaps 
thousands or millions of times faster than research conducted on a biological 
human timescale. Development of the second-transition technology might there-
fore be completed in days, hours, or minutes. Even though the frontrunner’s lead 
is a mere few days, a breakthrough could thus catapult it into a decisive strategic 
advantage. Note, however, that if technological diffusion (via espionage or other 
channels) speeds up as much as technological development, then this effect would 
be negated. What would remain relevant would be the steepness of the second 
transition, that is, the speed at which it would unfold relative to the general speed 
of events in the period after the first transition. (In this sense, the faster things 
are happening after the first transition, the less steep the second transition would 
tend to be.)

One might also speculate that a decisive strategic advantage would be more 
likely to be actually used to establish a singleton if it arises during a second (or 
subsequent) transition. After the first transition, decision makers would either be 
superintelligent or have access to advice from a superintelligence, which would 
clarify the implications of available strategic options. Furthermore, the situation 
after the first transition might be one in which a preemptive move against poten-
tial competitors would be less dangerous for the aggressor. If the decision- making 
minds after the first transition are digital, they could be copied and thereby ren-
dered less vulnerable to a counterattack. Even if a defender had the ability to 
kill nine-tenths of the aggressor’s population in a retaliatory strike, this would 
scarcely offer much deterrence if the deceased could be immediately resurrected 
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from redundant backups. Devastation of infrastructure (which can be rebuilt) 
might also be tolerable to digital minds with effectively unlimited lifespans, who 
might be planning to maximize their resources and influence on a cosmological 
timescale.

Superorganisms and scale economies

The size of coordinated human aggregates, such as firms or nations, is influenced 
by various parameters—technological, military, financial, and cultural—that 
can vary from one historical epoch to another. A machine intelligence revolution 
would entail profound changes in many these parameters. Perhaps these changes 
would facilitate the rise of a singleton. Although we cannot, without looking in 
detail at what these prospective changes are, exclude the opposite possibility—
that the changes would facilitate fragmentation rather than unification—we can 
nevertheless note that the increased variance or uncertainty that we confront 
here may itself be a ground for giving greater credence to the potential emergence 
of a singleton than we would otherwise do. A machine intelligence revolution 
might, so to speak, stir things up—might reshuffle the deck to make possible 
geopolitical realignments that seemed perhaps otherwise not to have been in the 
cards.

A comprehensive analysis of all the factors that may influence the scale of 
political integration would take us far beyond the scope of this book: a review of 
the relevant political science and economics literature could itself easily fill an 
entire volume. We must confine ourselves to making brief allusion to a couple of 
factors, aspects of the digitization of agents that may make it easier to centralize 
control.

Carl Shulman has argued that in a population of emulations, selection pres-
sures would favor the emergence of “superorganisms,” groups of emulations 
ready to sacrifice themselves for the good of their clan.36 Superorganisms would 
be spared the agency problems that beset organizations whose members pursue 
their own self-interest. Like the cells in our bodies, or the individual animals in 
a colony of eusocial insects, emulations that were wholly altruistic toward their 
copy-siblings would cooperate with one another even in the absence of elaborate 
incentive schemes.

Superorganisms would have a particularly strong advantage if nonconsensual 
deletion (or indefinite suspension) of individual emulations is disallowed. Firms 
or countries that employ emulations insisting on self-preservation would be sad-
dled with an unending commitment to pay upkeep for obsolete or redundant 
workers. In contrast, organizations whose emulations willingly deleted them-
selves when their services were no longer required could more easily adapt to fluc-
tuations in demand; and they could experiment freely, proliferating variations of 
their workers and retaining only the most productive.

If involuntary deletion is not disallowed, then the comparative advantage of 
eusocial emulations is reduced, though perhaps not eliminated. Employers of 
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cooperative self-sacrificers might still reap efficiency gains from reduced agency 
problems throughout the organization, including being spared the trouble of 
having to defeat whatever resistance emulations could put up against their own 
deletion. In general, the productivity gains of having workers willing to sacrifice 
their individual lives for the common weal are a special case of the benefits an 
organization can derive from having members who are fanatically devoted to it. 
Such members would not only leap into the grave for the organization, and work 
long hours for little pay: they would also shun office politics and try consistently 
to act in what they took to be the organization’s best interest, reducing the need 
for supervision and bureaucratic constraints.

If the only way to achieve such dedication were by restricting membership to 
copy-siblings (so that all emulations in a particular superorganism were stamped 
out from the same template), then superorganisms would suffer some disadvan-
tage in being able to draw only from a range of skills narrower than that of rival 
organizations, a disadvantage which might or might not be large enough to out-
weigh the advantages of avoiding internal agency problems.37 This disadvantage 
would be greatly alleviated if a superorganism could at least contain members 
with different training. Even if all its members were derived from a single ur- 
template, its workforce could then still contribute a diversity of skills. Starting 
with a polymathically talented emulation ur-template, lineages could be branched 
off into different training programs, one copy learning accounting, another elec-
trical engineering, and so forth. This would produce a membership with diverse 
skills though not of diverse talents. (Maximum diversity might require that more 
than one ur-template be used.)

The essential property of a superorganism is not that it consists of copies of a 
single progenitor but that all the individual agents within it are fully committed 
to a common goal. The ability to create a superorganism can thus be viewed as 
requiring a partial solution to the control problem. Whereas a completely general 
solution to the control problem would enable somebody to create an agent with 
any arbitrary final goal, the partial solution needed for the creation of a superor-
ganism requires merely the ability to fashion multiple agents with the same final 
goal (for some nontrivial but not necessarily arbitrary final goal).38

The main consideration put forward in this subsection is thus not really lim-
ited to monoclonal emulation groups, but can be stated more generally in a way 
that makes clear that it applies to a wide range of multipolar machine intelligence 
scenarios. It is that certain types of advances in motivation selection techniques, 
which may become feasible when the actors are digital, may help overcome some 
of the inefficiencies that currently hamper large human organizations and that 
counterbalance economies of scale. With these limits lifted, organizations—be 
they firms, nations, or other economic or political entities—could increase in 
size. This is one factor that could facilitate the emergence of a post-transition 
singleton.

One area in which superorganisms (or other digital agents with partially 
selected motivations) might excel is coercion. A state might use motivation 
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selection methods to ensure that its police, military, intelligence service, and civil 
administration are uniformly loyal. As Shulman notes,

Saved states [of some loyal emulation that has been carefully prepared and verified] 
could be copied billions of times to staff an ideologically uniform military, bureaucracy, 
and police force. After a short period of work, each copy would be replaced by a fresh 
copy of the same saved state, preventing ideological drift. Within a given jurisdiction, this 
capability could allow incredibly detailed observation and regulation: there might be one 
such copy for every other resident. This could be used to prohibit the development of 
weapons of mass destruction, to enforce regulations on brain emulation experimentation 
or reproduction, to enforce a liberal democratic constitution, or to create an appalling and 
perman ent totalitarianism39

The first-order effect of such a capability would seem to be to consolidate power, 
and possibly to concentrate it in fewer hands.

Unification by treaty

There may be large potential gains to be had from international collaboration 
in a post-transition multipolar world. Wars and arms races could be avoided. 
Astrophysical resources could be colonized and harvested at a globally optimum 
pace. The development of more advanced forms of machine intelligence could 
be coordinated to avoid a rush and to allow new designs to be thoroughly vet-
ted. Other developments that might pose existential risks could be postponed. 
And uniform regulations could be enforced globally, including provisions for 
a guaranteed standard of living (which would require some form of popula-
tion control) and for preventing exploitation and abuse of emulations and other 
digital and biological minds. Furthermore, agents with resource-satiable prefer-
ences (more on this in Chapter 13) would prefer a sharing agreement that would 
guarantee them a certain slice of the future to a winner-takes-all struggle in 
which they would risk getting nothing.

The presence of big potential gains from collaboration, however, does not imply 
that collaboration will actually be achieved. In the world today, many great boons 
could be obtained via better global coordination—reductions of military expend-
itures, wars, overfishing, trade barriers, and atmospheric pollution, among oth-
ers. Yet these plump fruits are left to spoil on the branch. Why is that? What stops 
a fully cooperative outcome that would maximize the common good?

One obstacle is the difficulty of ensuring compliance with any treaty that might 
be agreed, including monitoring and enforcement costs. Two nuclear rivals might 
each be better off if they both relinquished their atom bombs; yet even if they 
could reach an in-principle agreement to do so, disarmament could neverthe-
less prove elusive because of their mutual fear that the other party might cheat. 
Allaying this fear would require setting up a verification mechanism. There 
may have to be inspectors to oversee the destruction of existing stockpiles, and 
then to monitor nuclear reactors and other facilities, and to gather technical and  
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human intelligence, in order to ensure that the weapons program is not recon-
stituted. One cost is paying for these inspectors. Another cost is the risk that the 
inspectors will spy and make off with commercial or military secrets. Perhaps 
most significantly, each party might fear that the other will preserve a clandes-
tine nuclear capability. Many a potentially beneficial deal never comes off because 
compliance would be too difficult to verify.

If new inspection technologies that reduced monitoring costs became available, 
one would expect this to result in increased cooperation. Whether monitoring 
costs would on net be reduced in the post-transition era, however, is not entirely 
clear. While there would certainly be many powerful new inspection techniques, 
there would also be new means of concealment. In particular, an increasing por-
tion of the activities one might want to regulate would be taking place in cyber-
space, out of reach of physical surveillance. For example, digital minds working 
on designing a new nanotech weapons system or a new generation of artificial 
intelligence may do so without leaving much of a physical footprint. Digital foren-
sics may fail to penetrate all the layers of concealment and encryption in which a 
treaty-violator may cloak its illicit activities.

Reliable lie detection, if it could be developed, would be an extremely useful 
tool for monitoring compliance.40 An inspection protocol could include provi-
sions for interviewing key officials, to verify that they are intent on implementing 
all the provisions of the treaty and that they know of no violations despite making 
strong efforts to find out.

A decision maker planning to cheat might defeat such a lie-detection-based 
verification scheme by first issuing orders to subordinates to undertake the illicit 
activity and to conceal the activity even from the decision maker herself, and then 
subjecting herself to some procedure that erases her memory of having engaged 
in these machinations. Suitably targeted memory-erasure operations might well 
be feasible in biological brains with more advanced neurotechnology. It might be 
even easier in machine intelligences (depending on their architecture).

States could seek to overcome this problem by committing themselves to an 
ongoing monitoring scheme that regularly tests key officials with a lie detector 
to check whether they harbor any intent to subvert or circumvent any treaty to 
which the state has entered or may enter in the future. Such a commitment could 
be viewed as a kind of meta-treaty, which would facilitate the verification of other 
treaties; but states might commit themselves to it unilaterally to gain the benefit of 
being regarded as a trustworthy negotiation partner. However, this commitment 
or meta-treaty would face the same problem of subversion through a delegate-
and-forget ploy. Ideally, the meta-treaty would be put into effect before any party 
had an opportunity to make the internal arrangements necessary to subvert its 
implementation. Once villainy has had an unguarded moment to sow its mines of 
deception, trust can never set foot there again.

In some cases, the mere ability to detect treaty violations is sufficient to estab-
lish the confidence needed for a deal. In other cases, however, there is a need for 
some mechanism to enforce compliance or mete out punishment if a violation 
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should occur. The need for an enforcement mechanism may arise if the threat of 
the wronged party withdrawing from the treaty is not enough to deter violations, 
for instance if the treaty-violator would gain such an advantage that he would not 
subsequently care how the other party responds.

If highly effective motivation selection methods are available, this enforcement 
problem could be solved by empowering an independent agency with sufficient 
police or military strength to enforce the treaty even against the opposition of one 
or several of its signatories. This solution requires that the enforcement agency 
can be trusted. But with sufficiently good motivation selection techniques, the 
requisite confidence might be achieved by having all the parties to the treaty 
jointly oversee the design of the enforcement agency.

Handing over power to an external enforcement agency raises many of the 
same issues that we confronted earlier in our discussions of a unipolar outcome 
(one in which a singleton arises prior to or during the initial machine intelligence 
revolution). In order to be able to enforce treaties concerning the vital security 
interests of rival states, the external enforcement agency would in effect need 
to constitute a singleton: a global superintelligent Leviathan. One difference, 
however, is that we are now considering a post-transition situation, in which the 
agents that would have to create this Leviathan would have greater competence 
than we humans currently do. These Leviathan-creators may themselves already 
be superintelligent. This would greatly improve the odds that they could solve the 
control problem and design an enforcement agency that would serve the interests 
of all the parties that have a say in its construction.

Aside from the costs of monitoring and enforcing compliance, are there any 
other obstacles to global coordination? Perhaps the major remaining issue is 
what we can refer to as bargaining costs.41 Even when there is a possible bargain 
that would benefit everybody involved, it sometimes does not get off the ground 
because the parties fail to agree on how to divide the spoils. For example, if two 
persons could make a deal that would net them a dollar in profit, but each party 
feels she deserves sixty cents and refuses to settle for less, the deal will not happen 
and the potential gain will be forfeited. In general, negotiations can be difficult or 
protracted, or remain altogether barren, because of strategic bargaining choices 
made by some of the parties.

In real life, human beings frequently succeed in reaching agreements despite 
the possibility for strategic bargaining (though often not without considerable 
expenditure of time and patience). It is conceivable, however, that strategic bar-
gaining problems would have a different dynamic in the post-transition era. An 
AI negotiator might more consistently adhere to some particular formal con-
ception of rationality, possibly with novel or unanticipated consequences when 
matched with other AI negotiators. An AI might also have available to it moves 
in the bargaining game that are either unavailable to humans or very much more 
difficult for humans to execute, including the ability to precommit to a policy or 
a course of action. While humans (and human-run institutions) are occasionally 
able to precommit—with imperfect degrees of credibility and specificity—some 
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types of machine intelligence might be able to make arbitrary unbreakable pre-
commitments and to allow negotiating partners to confirm that such a precom-
mitment has been made.42

The availability of powerful precommitment techniques could profoundly alter 
the nature of negotiations, potentially giving an immense edge to an agent that 
has a first-mover advantage. If a particular agent’s participation is necessary for 
the realization of some prospective gains from cooperation, and if that agent is 
able to make the first move, it would be in a position to dictate the division of the 
spoils by precommitting not to accept any deal that gives it less than, say, 99% 
of the surplus value. Other agents would then be faced with the choice of either 
getting nothing (by rejecting the unfair proposal) or getting 1% of the value (by 
caving in). If the first-moving agent’s precommitment is publicly verifiable, its 
negotiating partners could be sure that these are their only two options.

To avoid being exploited in this manner, agents might precommit to refuse 
blackmail and to decline all unfair offers. Once such a precommitment has been 
made (and successfully publicized), other agents would not find it in their inter-
est to make threats or to precommit themselves to only accepting deals tilted in 
their own favor, because they would know that threats would fail and that unfair 
proposals would be rejected. But this just demonstrates again that the advantage 
is with the first-mover. The agent who moves first can choose whether to parlay its 
position of strength only to deter others from taking unfair advantage, or to make 
a grab for the lion’s share of future spoils.

Best situated of all, it might seem, would be the agent who starts out with 
a temperament or a value system that makes him impervious to extortion or 
indeed to any offer of a deal in which his participation is indispensable but he is 
not getting almost all of the gains. Some humans seem already to possess per-
sonality traits corresponding to various aspects of an uncompromising spirit.43 
A high-strung disposition, however, could backfire should it turn out that there 
are other agents around who feel entitled to more than their fair share and are 
committed to not backing down. The unstoppable force would then encounter 
the unmovable object, resulting in a failure to reach agreement (or worse: total 
war). The meek and the akratic would at least get something, albeit less than their 
fair share.

What kind of game-theoretic equilibrium would be reached in such a post-
transition bargaining game is not immediately obvious. Agents might choose 
more complicated strategies than the ones considered here. One hopes that an 
equilibrium would be reached centered on some fairness norm that would serve 
as a Schelling point—a salient feature in a big outcome space which, because of 
shared expectations, becomes a likely coordination point in an otherwise under-
determined coordination game. Such an equilibrium might be bolstered by some 
of our evolved dispositions and cultural programming: a common preference 
for fairness could, assuming we succeed in transferring our values into the post-
transition era, bias expectations and strategies in ways that lead to an attractive 
equilibrium.44
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In any case, the upshot is that with the possibility of strong and flexible forms 
of precommitment, outcomes of negotiations might take on an unfamiliar guise. 
Even if the post-transition era started out multipolar, it might be that a single-
ton would arise almost immediately as a consequence of a negotiated treaty that 
resolves all important global coordination problems. Some transaction costs, 
perhaps including monitoring and enforcement costs, might plummet with the 
new technological capabilities available to advanced machine intelligences. Other 
costs, in particular costs related to strategic bargaining, might remain signifi-
cant. But however strategic bargaining affects the nature of the agreement that 
is reached, there is no clear reason why it would long delay the reaching of some 
agreement if an agreement were ever to be reached. If no agreement is reached, 
then some form of fighting might take place; and either one faction might win, 
and form a singleton around the winning coalition, or the result might be an 
interminable conflict, in which case a singleton may never form and the overall 
outcome may fall terribly short of what could and should have been achieved if 
humanity and its descendants had acted in a more coordinated and cooperative 
fashion.

* * *
We have seen that multipolarity, even if it could be achieved in a stable form, 
would not guarantee an attractive outcome. The original principal–agent prob-
lem remains unsolved, and burying it under a new set of problems related to post-
transition global coordination failures may only make the situation worse. Let us 
therefore return to the question of how we could safely keep a single superintel-
ligent AI.
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CHAPTER 12

Acquiring values

Capability control is, at best, a temporary and auxiliary measure. Unless 
the plan is to keep superintelligence bottled up forever, it will be neces-
sary to master motivation selection. But just how could we get some 

value into an artificial agent, so as to make it pursue that value as its final goal? 
While the agent is unintelligent, it might lack the capability to understand or 
even represent any humanly meaningful value. Yet if we delay the procedure 
until the agent is superintelligent, it may be able to resist our attempt to med-
dle with its motivation system—and, as we showed in Chapter 7, it would have 
convergent instrumental reasons to do so. This value-loading problem is tough, 
but must be confronted.

The value-loading problem

It is impossible to enumerate all possible situations a superintelligence might find 
itself in and to specify for each what action it should take. Similarly, it is impos-
sible to create a list of all possible worlds and assign each of them a value. In any 
realm significantly more complicated than a game of tic-tac-toe, there are far 
too many possible states (and state-histories) for exhaustive enumeration to be 
feasible. A motivation system, therefore, cannot be specified as a comprehensive 
lookup table. It must instead be expressed more abstractly, as a formula or rule 
that allows the agent to decide what to do in any given situation.

One formal way of specifying such a decision rule is via a utility function. A 
utility function (as we recall from Chapter 1) assigns value to each outcome that 
might obtain, or more generally to each “possible world.” Given a utility function, 
one can define an agent that maximizes expected utility. Such an agent selects at 
each time the action that has the highest expected utility. (The expected utility 
is calculated by weighting the utility of each possible world with the subjective 
probability of that world being the actual world conditional on a particular action 
being taken.) In reality, the possible outcomes are too numerous for the expected 
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utility of an action to be calculated exactly. Nevertheless, the decision rule and the 
utility function together determine a normative ideal—an optimality notion—
that an agent might be designed to approximate; and the approximation might 
get closer as the agent gets more intelligent.1 Creating a machine that can compute 
a good approximation of the expected utility of the actions available to it is an 
AI-complete problem.2 This chapter addresses another problem, a problem that 
remains even if the problem of making machines intelligent is solved.

We can use this framework of a utility-maximizing agent to consider the 
predicament of a future seed-AI programmer who intends to solve the control 
problem by endowing the AI with a final goal that corresponds to some plausi-
ble human notion of a worthwhile outcome. The programmer has some particu-
lar human value in mind that he would like the AI to promote. To be concrete, 
let us say that it is happiness. (Similar issues would arise if we the programmer 
were interested in justice, freedom, glory, human rights, democracy, ecological 
balance, or self-development.) In terms of the expected utility framework, the 
programmer is thus looking for a utility function that assigns utility to possible 
worlds in proportion to the amount of happiness they contain. But how could he 
express such a utility function in computer code? Computer languages do not 
contain terms such as “happiness” as primitives. If such a term is to be used, it 
must first be defined. It is not enough to define it in terms of other high-level 
human concepts—“happiness is enjoyment of the potentialities inherent in our 
human nature” or some such philosophical paraphrase. The definition must bot-
tom out in terms that appear in the AI’s programming language, and ultimately 
in primitives such as mathematical operators and addresses pointing to the con-
tents of individual memory registers. When one considers the problem from this 
perspective, one can begin to appreciate the difficulty of the programmer’s task.

Identifying and codifying our own final goals is difficult because human goal 
representations are complex. Because the complexity is largely transparent to us, 
however, we often fail to appreciate that it is there. We can compare the case to 
visual perception. Vision, likewise, might seem like a simple thing, because we do 
it effortlessly.3 We only need to open our eyes, so it seems, and a rich, meaningful, 
eidetic, three-dimensional view of the surrounding environment comes flooding 
into our minds. This intuitive understanding of vision is like a duke’s under-
standing of his patriarchal household: as far as he is concerned, things simply 
appear at their appropriate times and places, while the mechanism that produces 
those manifestations are hidden from view. Yet accomplishing even the sim-
plest visual task—finding the pepper jar in the kitchen—requires a tremendous 
amount of computational work. From a noisy time series of two- dimensional 
patterns of nerve firings, originating in the retina and conveyed to the brain 
via the optic nerve, the visual cortex must work backwards to reconstruct an 
interpreted three-dimensional representation of external space. A sizeable por-
tion of our precious one square meter of cortical real estate is zoned for process-
ing visual information, and as you are reading this book, billions of neurons 
are working ceaselessly to accomplish this task (like so many seamstresses, bent  
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over their sewing machines in a sweatshop, sewing and re-sewing a giant quilt 
many times a second). In like manner, our seemingly simple values and wishes 
in fact contain immense complexity.4 How could our programmer transfer this 
complexity into a utility function?

One approach would be to try to directly code a complete representation of 
whatever goal we have that we want the AI to pursue; in other words, to write out 
an explicit utility function. This approach might work if we had extraordinarily 
simple goals, for example if we wanted to calculate the digits of pi—that is, if the 
only thing we wanted was for the AI to calculate the digits of pi and we were indif-
ferent to any other consequence that would result from the pursuit of this goal—
recall our earlier discussion of the failure mode of infrastructure profusion. This 
explicit coding approach might also have some promise in the use of domesticity 
motivation selection methods. But if one seeks to promote or protect any plausi-
ble human value, and one is building a system intended to become a superintel-
ligent sovereign, then explicitly coding the requisite complete goal representation 
appears to be hopelessly out of reach.5

If we cannot transfer human values into an AI by typing out full-blown repre-
sentations in computer code, what else might we try? This chapter discusses sev-
eral alternative paths. Some of these may look plausible at first sight—but much 
less so upon closer examination. Future explorations should focus on those paths 
that remain open.

Solving the value-loading problem is a research challenge worthy of some of 
the next generation’s best mathematical talent. We cannot postpone confronting 
this problem until the AI has developed enough reason to easily understand our 
intentions. As we saw in the section on convergent instrumental reasons, a generic 
system will resist attempts to alter its final values. If an agent is not already funda-
mentally friendly by the time it gains the ability to reflect on its own agency, it will 
not take kindly to a belated attempt at brainwashing or a plot to replace it with a 
different agent that better loves its neighbor.

Evolutionary selection

Evolution has produced an organism with human values at least once. This fact 
might encourage the belief that evolutionary methods are the way to solve the 
value-loading problem. There are, however, severe obstacles to achieving safety 
along this path. We have already pointed to these obstacles at the end of Chapter 
10 when we discussed how powerful search processes can be dangerous.

Evolution can be viewed as a particular class of search algorithms that involve 
the alternation of two steps, one expanding a population of solution candidates 
by generating new candidates according to some relatively simple stochastic rule 
(such as random mutation or sexual recombination), the other contracting the 
population by pruning candidates that score poorly when tested by an evalua-
tion function. As with many other types of powerful search, there is the risk that 
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the process will find a solution that satisfies the formally specified search criteria 
but not our implicit expectations. (This would hold whether one seeks to evolve 
a digital mind that has the same goals and values as a typical human being, or 
instead a mind that is, for instance, perfectly moral or perfectly obedient.) The 
risk would be avoided if we could specify a formal search criterion that accurately 
represented all dimensions of our goals, rather than just one aspect of what we 
think we desire. But this is precisely the value-loading problem, and it would of 
course beg the question in this context to assume that problem solved.

There is a further problem:

The total amount of suffering per year in the natural world is beyond all decent contem-
plation. During the minute that it takes me to compose this sentence, thousands of animals 
are being eaten alive, others are running for their lives, whimpering with fear, others are 
being slowly devoured from within by rasping parasites, thousands of all kinds are dying of 
starvation, thirst and disease.6

Even just within our species, 150,000 persons are destroyed each day while count-
less more suffer an appalling array of torments and deprivations.7 Nature might 
be a great experimentalist, but one who would never pass muster with an ethics 
review board—contravening the Helsinki Declaration and every norm of moral 
decency, left, right, and center. It is important that we not gratuitously replicate 
such horrors in silico. Mind crime seems especially difficult to avoid when evolu-
tionary methods are used to produce human-like intelligence, at least if the pro-
cess is meant to look anything like actual biological evolution.8

Reinforcement learning

Reinforcement learning is an area of machine learning that studies techniques 
whereby agents can learn to maximize some notion of cumulative reward. 
By constructing an environment in which desired performance is rewarded, a 
reinforcement- learning agent can be made to learn to solve a wide class of prob-
lems (even in the absence of detailed instruction or feedback from the program-
mers, aside from the reward signal). Often, the learning algorithm involves the 
gradual construction of some kind of evaluation function, which assigns values 
to states, state–action pairs, or policies. (For instance, a program can learn to 
play backgammon by using reinforcement learning to incrementally improve its 
evaluation of possible board positions.) The evaluation function, which is contin-
uously updated in light of experience, could be regarded as incorporating a form 
of learning about value. However, what is being learned is not new final values 
but increasingly accurate estimates of the instrumental values of reaching par-
ticular states (or of taking particular actions in particular states, or of following 
particular policies). Insofar as a reinforcement-learning agent can be described as 
having a final goal, that goal remains constant: to maximize future reward. And 
reward consists of specially designated percepts received from the environment. 
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Therefore, the wireheading syndrome remains a likely outcome in any reinforce-
ment agent that develops a world model sophisticated enough to suggest this 
alternative way of maximizing reward.9

These remarks do not imply that reinforcement-learning methods could never 
be used in a safe seed AI, only that they would have to be subordinated to a moti-
vation system that is not itself organized around the principle of reward maximi-
zation. That, however, would require that a solution to the value-loading problem 
had been found by some other means than reinforcement learning.

Associative value accretion

Now one might wonder: if the value-loading problem is so tricky, how do we our-
selves manage to acquire our values?

One possible (oversimplified) model might look something like this. We begin 
life with some relatively simple starting preferences (e.g. an aversion to noxious 
stimuli) together with a set of dispositions to acquire additional preferences in 
response to various possible experiences (e.g. we might be disposed to form a 
preference for objects and behaviors that we find to be valued and rewarded in 
our culture). Both the simple starting preferences and the dispositions are innate, 
having been shaped by natural and sexual selection over evolutionary timescales. 
Yet which preferences we end up with as adults depends on life events. Much of 
the information content in our final values is thus acquired from our experiences 
rather than preloaded in our genomes.

For example, many of us love another person and thus place great final value on 
his or her well-being. What is required to represent such a value? Many elements 
are involved, but consider just two: a representation of “person” and a representa-
tion of “well-being.” These concepts are not directly coded in our DNA. Rather, 
the DNA contains instructions for building a brain, which, when placed in a typ-
ical human environment, will over the course of several years develop a world 
model that includes concepts of persons and of well-being. Once formed, these 
concepts can be used to represent certain meaningful values. But some mech-
anism needs to be innately present that leads to values being formed around these 
concepts, rather than around other acquired concepts (like that of a flowerpot or 
a corkscrew).

The details of how this mechanism works are not well understood. In humans, 
the mechanism is probably complex and multifarious. It is easier to under-
stand the phenomenon if we consider it in a more rudimentary form, such as 
filial imprinting in nidifugous birds, where the newly hatched chick acquires a 
desire for physical proximity to an object that presents a suitable moving stimulus 
within the first day after hatching. Which particular object the chick desires to 
be near depends on its experience; only the general disposition to imprint in this 
way is genetically determined. Analogously, Harry might place a final value on 
Sally’s well-being; but had the twain never met, he might have fallen in love with 
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somebody else instead, and his final values would have been different. The ability 
of our genes to code for the construction of a goal-acquiring mechanism explains 
how we come to have final goals of great informational complexity, greater than 
could be contained in the genome itself.

We may consequently consider whether we might build the motivation sys-
tem for an artificial intelligence on the same principle. That is, instead of specify-
ing complex values directly, could we specify some mechanism that leads to the 
acquisition of those values when the AI interacts with a suitable environment?

Mimicking the value-accretion process that takes place in humans seems dif-
ficult. The relevant genetic mechanism in humans is the product of eons of work 
by evolution, work that might be hard to recapitulate. Moreover, the mechanism is 
presumably closely tailored to the human neurocognitive architecture and there-
fore not applicable in machine intelligences other than whole brain emulations. 
And if whole brain emulations of sufficient fidelity were available, it would seem 
easier to start with an adult brain that comes with full representations of some 
human values preloaded.10

Seeking to implement a process of value accretion closely mimicking that 
of human biology therefore seems an unpromising line of attack on the value- 
loading problem. But perhaps we might design a more unabashedly artificial sub-
stitute mechanism that would lead an AI to import high-fidelity representations 
of relevant complex values into its goal system? For this to succeed, it may not be 
necessary to give the AI exactly the same evaluative dispositions as a biological 
human. That may not even be desirable as an aim—human nature, after all, is 
flawed and all too often reveals a proclivity to evil which would be intolerable in 
any system poised to attain a decisive strategic advantage. Better, perhaps, to aim 
for a motivation system that departs from the human norm in systematic ways, 
such as by having a more robust tendency to acquire final goals that are altru-
istic, compassionate, or high-minded in ways we would recognize as reflecting 
exceptionally good character if they were present in a human person. To count 
as improvements, however, such deviations from the human norm would have to 
be pointed in very particular directions rather than at random; and they would 
continue to presuppose the existence of a largely undisturbed anthropocentric 
frame of reference to provide humanly meaningful evaluative generalizations 
(so as to avoid the kind of perverse instantiation of superficially plausible goal 
descriptions that we examined in Chapter 8). It is an open question whether this 
is feasible.

One further issue with associative value accretion is that the AI might dis-
able the accretion mechanism. As we saw in Chapter 7, goal-system integrity is 
a convergent instrumental value. When the AI reaches a certain stage of cogni-
tive development it may start to regard the continued operation of the accretion 
mechanism as a corrupting influence.11 This is not necessarily a bad thing, but 
care would have to be taken to make the sealing-up of the goal system occur at the 
right moment, after the appropriate values have been accreted but before they have 
been overwritten by additional unintended accretions.
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Motivational scaffolding

Another approach to the value-loading problem is what we may refer to as moti-
vational scaffolding. It involves giving the seed AI an interim goal system, with 
relatively simple final goals that we can represent by means of explicit coding 
or some other feasible method. Once the AI has developed more sophisticated 
representational faculties, we replace this interim scaffold goal system with one 
that has different final goals. This successor goal system then governs the AI as it 
develops into a full-blown superintelligence.

Because the scaffold goals are not just instrumental but final goals for the AI, 
the AI might be expected to resist having them replaced (goal-content integrity 
being a convergent instrumental value). This creates a hazard. If the AI succeeds 
in thwarting the replacement of its scaffold goals, the method fails.

To avoid this failure mode, precautions are necessary. For example, capability 
control methods could be applied to limit the AI’s powers until the mature moti-
vation system has been installed. In particular, one could try to stunt its cognitive 
development at a level that is safe but that allows it to represent the values that we 
want to include in its ultimate goals. To do this, one might try to differentially 
stunt certain types of intellectual abilities, such as those required for strategizing 
and Machiavellian scheming, while allowing (apparently) more innocuous abil-
ities to develop to a somewhat higher level.

One could also try to use motivation selection methods to induce a more col-
laborative relationship between the seed AI and the programmer team. For exam-
ple, one might include in the scaffold motivation system the goal of welcoming 
online guidance from the programmers, including allowing them to replace any 
of the AI’s current goals.12 Other scaffold goals might include being transparent to 
the programmers about its values and strategies, and developing an architecture 
that is easy for the programmers to understand and that facilitates the later imple-
mentation of a humanly meaningful final goal, as well as domesticity motivations 
(such as limiting the use of computational resources).

One could even imagine endowing the seed AI with the sole final goal of replac-
ing itself with a different final goal, one which may have been only implicitly or 
indirectly specified by the programmers. Some of the issues raised by the use of 
such a “self-replacing” scaffold goal also arise in the context of the value learning 
approach, which is discussed in the next subsection. Some further issues will be 
discussed in Chapter 13.

The motivational scaffolding approach is not without downsides. One is that 
it carries the risk that the AI could become too powerful while it is still running 
on its interim goal system. It may then thwart the human programmers’ efforts 
to install the ultimate goal system (either by forceful resistance or by quiet sub-
version). The old final goals may then remain in charge as the seed AI develops 
into a full-blown superintelligence. Another downside is that installing the ulti-
mately intended goals in a human-level AI is not necessarily that much easier than 
doing so in a more primitive AI. A human-level AI is more complex and might 
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have developed an architecture that is opaque and difficult to alter. A seed AI, by 
contrast, is like a tabula rasa on which the programmers can inscribe whatever 
structures they deem helpful. This downside could be flipped into an upside if 
one succeeded in giving the seed AI scaffold goals that made it want to develop 
an architecture helpful to the programmers in their later efforts to install the 
ultimate final values. However, it is unclear how easy it would be to give a seed 
AI scaffold goals with this property, and it is also unclear how even an ideally 
motivated seed AI would be capable of doing a much better job than the human 
programming team at developing a good architecture.

value learning

We come now to an important but subtle approach to the value-loading problem. 
It involves using the AI’s intelligence to learn the values we want it to pursue. To 
do this, we must provide a criterion for the AI that at least implicitly picks out 
some suitable set of values. We could then build the AI to act according to its best 
estimates of these implicitly defined values. It would continually refine its esti-
mates as it learns more about the world and gradually unpacks the implications of 
the value-determining criterion.

In contrast to the scaffolding approach, which gives the AI an interim scaffold 
goal and later replaces it with a different final goal, the value learning approach 
retains an unchanging final goal throughout the AI’s developmental and opera-
tional phases. Learning does not change the goal. It changes only the AI’s beliefs 
about the goal.

The AI thus must be endowed with a criterion that it can use to determine 
which percepts constitute evidence in favor of some hypothesis about what the 
ultimate goal is, and which percepts constitute evidence against. Specifying a 
suitable criterion could be difficult. Part of the difficulty, however, pertains to the 
problem of creating artificial general intelligence in the first place, which requires 
a powerful learning mechanism that can discover the structure of the environ-
ment from limited sensory inputs. That problem we can set aside here. But even 
modulo a solution to how to create superintelligent AI, there remain the difficul-
ties that arise specifically from the value-loading problem. With the value learn-
ing approach, these take the form of needing to define a criterion that connects 
perceptual bitstrings to hypotheses about values.

Before delving into the details of how value learning could be implemented, it 
might be helpful to illustrate the general idea with an example. Suppose we write 
down a description of a set of values on a piece of paper. We fold the paper and put 
it in a sealed envelope. We then create an agent with human-level general intelli-
gence, and give it the following final goal: “Maximize the realization of the values 
described in the envelope.” What will this agent do?

The agent does not initially know what is written in the envelope. But it can form 
hypotheses, and it can assign those hypotheses probabilities based on their priors 
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and any available empirical data. For instance, the agent might have encountered 
other examples of human-authored texts, or it might have observed some general 
patterns of human behavior. This would enable it to make guesses. One does not 
need a degree in psychology to predict that the note is more likely to describe 
a value such as “minimize injustice and unnecessary suffering” or “maximize 
returns to shareholders” than a value such as “cover all lakes with plastic shopping 
bags.”

When the agent makes a decision, it seeks to take actions that would be effec-
tive at realizing the values it believes are most likely to be described in the let-
ter. Importantly, the agent would see a high instrumental value in learning more 
about what the letter says. The reason is that for almost any final value that might 
be described in the letter, that value is more likely to be realized if the agent finds 
out what it is, since the agent will then pursue that value more effectively. The 
agent would also discover the convergent instrumental reasons described in 
Chapter 7—goal system integrity, cognitive enhancement, resource acquisition, 
and so forth. Yet, assuming that the agent assigns a sufficiently high probability 
to the values described in the letter involving human welfare, it would not pursue 
these instrumental values by immediately turning the planet into computronium 
and thereby exterminating the human species, because doing so would risk per-
manently destroying its ability to realize its final value.

We can liken this kind of agent to a barge attached to several tugboats that 
pull in different directions. Each tugboat corresponds to a hypothesis about the 
agent’s final value. The engine power of each tugboat corresponds to the associ-
ated hypothesis’s probability, and thus changes as new evidence comes in, pro-
ducing adjustments in the barge’s direction of motion. The resultant force should 
move the barge along a trajectory that facilitates learning about the (implicit) final 
value while avoiding the shoals of irreversible destruction; and later, when the 
open sea of more definite knowledge of the final value is reached, the one tugboat 
that still exerts significant force will pull the barge toward the realization of the 
discovered value along the straightest or most propitious route.

The envelope and barge metaphors illustrate the principle underlying the value 
learning approach, but they pass over a number of critical technical issues. They 
come into clearer focus once we start to develop the approach within a formal 
framework (see Box 10).

One outstanding issue is how to endow the AI with a goal such as “Maximize 
the realization of the values described in the envelope.” (In the terminology of 
Box 10, how to define the value criterion  .) To do this, it is necessary to identify 
the place where the values are described. In our example, this requires making a 
successful reference to the letter in the envelope. Though this might seem trivial, 
it is not without pitfalls. To mention just one: it is critical that the reference be 
not simply to a particular external physical object but to an object at a particular 
time. Otherwise the AI may determine that the best way to attain its goal is by 
overwriting the original value description with one that provides an easier target 
(such as the value that for every integer there be a larger integer). This done, the AI 
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Box 10 Formalizing value learning

Introducing some formal notation can help us see some things more clearly. 
However, readers who dislike formalism can skip this part.

Consider a simplified framework in which an agent interacts with its environ-
ment in a finite number of discrete cycles.13 In cycle k, the agent performs action 
yk, and then receives the percept xk. The interaction history of an agent with 
lifespan m is a string y1x1y2x2 . . . ymxm (which we can abbreviate as yx1:m or yx≤m). 
In each cycle, the agent selects an action based on the percept sequence it has 
received to date.

Consider first a reinforcement learner. An optimal reinforcement learner 
 (AI-RL) is one that maximizes expected future rewards. It obeys the equation14
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The reward sequence rk, . . . , rm is implied by the percept sequence xk:m, since 
the reward that the agent receives in a given cycle is part of the percept that the 
agent receives in that cycle.

As argued earlier, this kind of reinforcement learning is unsuitable in the pre-
sent context because a sufficiently intelligent agent will realize that it could secure 
maximum reward if it were able to directly manipulate its reward signal (wire-
heading). For weak agents, this need not be a problem, since we can physically 
prevent them from tampering with their own reward channel. We can also con-
trol their environment so that they receive rewards only when they act in ways 
that are agreeable to us. But a reinforcement learner has a strong incentive to 
eliminate this artificial dependence of its rewards on our whims and wishes. Our 
relationship with a reinforcement learner is therefore fundamentally antagonis-
tic. If the agent is strong, this spells danger.

Variations of the wireheading syndrome can also affect systems that do not 
seek an external sensory reward signal but whose goals are defined as the at-
tainment of some internal state. For example, in so-called “actor–critic” systems, 
there is an actor module that selects actions in order to minimize the disapproval 
of a separate critic module that computes how far the agent’s behavior falls short 
of a given performance measure. The problem with this setup is that the actor 
module may realize that it can minimize disapproval by modifying the critic or 
eliminating it altogether—much like a dictator who dissolves the parliament and 
nationalizes the press. For limited systems, the problem can be avoided simply 
by not giving the actor module any means of modifying the critic module. A suf-
ficiently intelligent and resourceful actor module, however, could always gain ac-
cess to the critic module (which, after all, is merely a physical process in some 
computer).15

Before we get to the value learner, let us consider as an intermediary step 
what has been called an observation-utility maximizer (AI-OUM). It is obtained 
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Box 10  Continued

by replacing the reward series (rk + . . . + rm) in the AI-RL with a utility function 
that is allowed to depend on the entire future interaction history of the AI:

y = U yx P yx | yx yk y
x yx

≤m ≤m <k kk

k k+ m

arg max
1:

( ) ( )∑ ..

This formulation provides a way around the wireheading problem because a 
utility function defined over an entire interaction history could be designed to 
penalize interaction histories that show signs of self-deception (or of a failure on 
the part of the agent to invest sufficiently in obtaining an accurate view of reality).

The AI-OUM thus makes it possible in principle to circumvent the wireheading 
problem. Availing ourselves of this possibility, however, would require that we 
specify a suitable utility function over the class of possible interaction histories—a 
task that looks forbiddingly difficult.

It may be more natural to specify utility functions directly in terms of possible 
worlds (or properties of possible worlds, or theories about the world) rather 
than in terms of an agent’s own interaction histories. If we use this approach, we 
could reformulate and simplify the AI-OUM optimality notion:

y = U w P w |Eyy
w

arg max ( ) ( ).∑
Here, E is the total evidence available to the agent (at the time when it is making 
its decision), and U is a utility function that assigns utility to some class of possible 
worlds. The optimal agent chooses the act that maximizes expected utility.

An outstanding problem with these formulations is the difficulty of defining 
the utility function U. This, finally, returns us to the value-loading problem. To en-
able the utility function to be learned, we must expand our formalism to allow for 
uncertainty over utility functions. This can be done as follows (AI-VL):16
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Here, (.) is a function from utility functions to propositions about utility func-
tions. (U) is the proposition that the utility function U satisfies the value criterion 
expressed by  .17

To decide which action to perform, one could hence proceed as follows: First, 
compute the conditional probability of each possible world w (given available evi-
dence and on the supposition that action y is to be performed). Second, for each 
possible utility function U, compute the conditional probability that U satisfies the 
value criterion   (conditional on w being the actual world). Third, for each pos-
sible utility function U, compute the utility of possible world w. Fourth, combine 
these quantities to compute the expected utility of action y. Fifth, repeat this pro-
cedure for each possible action, and perform the action found to have the highest 

continued
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Box 10  Continued

expected utility (using some arbitrary method to break ties). As described, this 
procedure—which involves giving explicit and separate consideration to each 
possible world—is, of course, wildly computationally intractable. The AI would 
have to use computational shortcuts that approximate this optimality notion.

The question, then, is how to define this value criterion  .18 Once the AI has an 
adequate representation of the value criterion, it could in principle use its general 
intelligence to gather information about which possible worlds are most likely to 
be the actual one. It could then apply the criterion, for each such plausible pos-
sible world w, to find out which utility function satisfies the criterion    in w. One 
can thus regard the AI-VL formula as a way of identifying and separating out this 
key challenge in the value learning approach—the challenge of how to represent 
 . The formalism also brings to light a number of other issues (such as how to 
define , , and ) which would need to be resolved before the approach could 
be made to work.19

could lean back and crack its knuckles—though more likely a malignant failure 
would ensue, for reasons we discussed in Chapter 8. So now we face the question 
of how to define time. We could point to a clock and say, “Time is defined by the 
movements of this device”—but this could fail if the AI conjectures that it can 
manipulate time by moving the hands on the clock, a conjecture which would 
indeed be correct if “time” were given the aforesaid definition. (In a realistic case, 
matters would be further complicated by the fact that the relevant values are not 
going to be conveniently described in a letter; more likely, they would have to be 
inferred from observations of pre-existing structures that implicitly contain the 
relevant information, such as human brains.)

Another issue in coding the goal “Maximize the realization of the values 
described in the envelope” is that even if all the correct values were described 
in a letter, and even if the AI’s motivation system were successfully keyed to this 
source, the AI might not interpret the descriptions the way we intended. This 
would create a risk of perverse instantiation, as discussed in Chapter 8.

To clarify, the difficulty here is not so much how to ensure that the AI can under-
stand human intentions. A superintelligence should easily develop such under-
standing. Rather, the difficulty is ensuring that the AI will be motivated to pursue 
the described values in the way we intended. This is not guaranteed by the AI’s abil-
ity to understand our intentions: an AI could know exactly what we meant and yet 
be indifferent to that interpretation of our words (being motivated instead by some 
other interpretation of the words or being indifferent to our words altogether).

The difficulty is compounded by the desideratum that, for reasons of safety, 
the correct motivation should ideally be installed in the seed AI before it becomes 
capable of fully representing human concepts or understanding human intentions. 
This requires that somehow a cognitive framework be created, with a particular 
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location in that framework designated in the AI’s motivation system as the reposi-
tory of its final value. But the cognitive framework itself must be revisable, so as to 
allow the AI to expand its representational capacities as it learns more about the 
world and grows more intelligent. The AI might undergo the equivalent of scien-
tific revolutions, in which its worldview is shaken up and it perhaps suffers onto-
logical crises in which it discovers that its previous ways of thinking about values 
were based on confusions and illusions. Yet starting at a sub-human level of devel-
opment and continuing throughout all its subsequent development into a galactic 
superintelligence, the AI’s conduct is to be guided by an essentially unchanging 
final value, a final value that becomes better understood by the AI in direct conse-
quence of its general intellectual progress—and likely quite differently understood 
by the mature AI than it was by its original programmers, though not different in 
a random or hostile way but in a benignly appropriate way. How to accomplish this 
remains an open question.20 (See Box 11.)

In summary, it is not yet known how to use the value learning approach to 
install plausible human values (though see Box 12 for some examples of recent 

Box 11 An AI that wants to be friendly

Eliezer Yudkowsky has tried to describe some features of a seed AI architecture 
intended to enable the kind of behavior described in the text above. In his ter-
minology, the AI would use “external reference semantics.”21 To illustrate the 
basic idea, let us suppose that we want the system to be “friendly.” The system 
starts out with the goal of trying to instantiate property F but does not initially 
know much about what F is. It might just know that F is some abstract property 
and that when the programmers speak of “friendliness,” they are probably try-
ing to convey information about F. Since the AI’s final goal is to instantiate F, an 
important instrumental value is to learn more about what F is. As the AI discov-
ers more about F, its behavior is increasingly guided by the actual content of F. 
Thus, hopefully, the AI becomes increasingly friendly the more it learns and the 
smarter it gets.

The programmers can help this process along, and reduce the risk of the AI 
making some catastrophic mistake while its understanding of F is still incomplete, 
by providing the AI with “programmer affirmations,” hypotheses about the na-
ture and content of F to which an initially high probability is assigned. For instance, 
the hypothesis “misleading the programmers is unfriendly” can be given a high 
prior probability. These programmer affirmations, however, are not “true by 
definition”—they are not unchallengeable axioms about the concept of friendli-
ness. Rather, they are initial hypotheses about friendliness, hypotheses to which a 
rational AI will assign a high probability at least for as long as it trusts the program-
mers’ epistemic capacities more than its own.

continued
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Yudkowsky’s proposal also involves the use of what he called “causal validity 
semantics.” The idea here is that the AI should do not exactly what the program-
mers told it to do but rather (something like) what they were trying to tell it to 
do. While the programmers are trying to explain to the seed AI what friendliness 
is, they might make errors in their explanations. Moreover, the programmers 
themselves may not fully understand the true nature of friendliness. One would 
therefore want the AI to have the ability to correct errors in the programmers’ 
thinking, and to infer the true or intended meaning from whatever imperfect 
explanations the programmers manage to provide. For example, the AI should 
be able to represent the causal processes whereby the programmers learn and 
communicate about friendliness. Thus, to pick a trivial example, the AI should 
understand that there is a possibility that a programmer might make a typo while 
inputting information about friendliness, and the AI should then seek to correct 
the error. More generally, the AI should seek to correct for whatever distortive 
influences may have corrupted the flow of information about friendliness as it 
passed from its source through the programmers to the AI (where “distortive” 
is an epistemic category). Ideally, as the AI matures, it should overcome any cog-
nitive biases and other more fundamental misconceptions that may have pre-
vented its programmers from fully understanding what friendliness is.

Box 12 Two recent (half-baked) ideas

What we might call the “Hail Mary” approach is based on the hope that else-
where in the universe there exist (or will come to exist) civilizations that suc-
cessfully manage the intelligence explosion, and that they end up with values that 
significantly overlap with our own. We could then try to build our AI so that it is 
motivated to do what these other superintelligences want it to do.22 The advan-
tage is that this might be easier than to build our AI to be motivated to do what 
we want directly.

For this scheme to work it is not necessary that our AI can establish communi-
cation with any alien superintelligence. Rather, our AI’s actions would be guided 
by its estimates of what the alien superintelligences would want it to do. Our AI 
would model the likely outcomes of intelligence explosions elsewhere, and as it 
becomes superintelligent itself its estimates should become increasingly accurate. 
Perfect knowledge is not required. There may be a range of plausible outcomes 
of intelligence explosions, and our AI would then do its best to accommodate the 
preferences of the various different kinds of superintelligence that might emerge, 
weighted by probability.

This version of the Hail Mary approach requires that we construct a final value 
for our AI that refers to the preferences of other superintelligences. Exactly how 
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to do this is not yet clear. However, superintelligent agents might be structurally 
distinctive enough that we could write a piece of code that would function as a 
detector that would look at the world model in our developing AI and designate 
the representational elements that correspond to the presence of a superin-
telligence. The detector would then, somehow, extract the preferences of the 
superintelligence in question (as it is represented within our own AI).23 If we 
could create such a detector, we could then use it to define our AI’s final values. 
One challenge is that we may need to create the detector before we know what 
representational framework our AI will develop. The detector may thus need to 
query an unknown representational framework and extract the preferences of 
whatever superintelligence may be represented therein. This looks difficult, but 
perhaps some clever solution can be found.24

If the basic setup could be made to work, various refinements immediately 
suggest themselves. For example, rather than aiming to follow (some weighted 
composition of) the preferences of every alien superintelligence, our AI’s final 
value could incorporate a filter to select a subset of alien superintelligences for 
obeisance (with the aim of selecting ones whose values are closer to our own). 
For instance, we might use criteria pertaining to a superintelligence’s causal origin 
to determine whether to include it in the obeisance set. Certain properties of 
its origination (which we might be able to define in structural terms) may correl-
ate with the degree to which the resultant superintelligence could be expected 
to share our values. Perhaps we wish to place more trust in superintelligences 
whose causal origins trace back to a whole brain emulation, or to a seed AI that 
did not make heavy use of evolutionary algorithms or that emerged slowly in a 
way suggestive of a controlled takeoff. (Taking causal origins into account would 
also let us avoid over-weighting superintelligences that create multiple copies of 
themselves—indeed would let us avoid creating an incentive for them to do so.) 
Many other refinements would also be possible.

The Hail Mary approach requires faith that there are other superintelligences 
out there that sufficiently share our values.25 This makes the approach non-ideal. 
However, the technical obstacles facing the Hail Mary approach, though very 
substantial, might possibly be less formidable than those confronting alternative 
approaches. Exploring non-ideal but more easily implementable approaches can 
make sense—not with the intention of using them, but to have something to fall 
back upon in case an ideal solution should not be ready in time.

Another idea for how to solve the value-loading problem has recently been 
proposed by Paul Christiano.26 Like the Hail Mary, it is a value learning method that 
tries to define the value criterion by means of a “trick” rather than through labori-
ous construction. By contrast to the Hail Mary, it does not presuppose the exist-
ence of other superintelligent agents that we could point to as role models for 

continued
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our own AI. Christiano’s proposal is somewhat resistant to brief explanation—it 
involves a series of arcane considerations—but we can try to at least gesture at 
its main elements.

Suppose we could obtain (a) a mathematically precise specification of a par-
ticular human brain and (b) a mathematically well-specified virtual environment 
that contains an idealized computer with an arbitrarily large amount of memory 
and CPU power. Given (a) and (b), we could define a utility function U as the 
output the human brain would produce after interacting with this environment. 
U would be a mathematically well-defined object, albeit one which (because of 
computational limitations) we may be unable to describe explicitly. Neverthe-
less, U could serve as the value criterion for a value learning AI, which could 
use various heuristics for assigning probabilities to hypotheses about what U 
implies.

Intuitively, we want U to be the utility function that a suitably prepared hu-
man would output if she had the advantage of being able use an arbitrarily large 
amount of computing power—enough computing power, for example, to run 
astronomical numbers of copies of herself to assist her with her analysis of speci-
fying a utility function, or to help her devise a better process for going about this 
analysis. (We are here foreshadowing a theme, “coherent extrapolated volition,” 
which will be further explored in Chapter 13.)

It would seem relatively easy to specify the idealized environment: we can 
give a mathematical description of an abstract computer with arbitrarily large 
capacity; and in other respects we could use a virtual reality program that gives 
a mathematical description of, say, a single room with a computer terminal in it 
(instantiating the abstract computer). But how to obtain a mathematically pre-
cise description of a particular human brain? The obvious way would be through 
whole brain emulation, but what if the technology for emulation is not available 
in time?

This is where Christiano’s proposal offers a key innovation. Christiano observes 
that in order to obtain a mathematically well-specified value criterion, we do not 
need a practically useful computational model of a mind, a model we could run. We 
just need a (possibly implicit and hopelessly complicated) mathematical definition— 
and this may be much easier to attain. Using functional neuroimaging and other 
measurements, we can perhaps collect gigabytes of data about the input–output 
behavior of a selected human. If we collect a sufficient amount of data, then it 
might be that the simplest mathematical model that accounts for all this data is in 
fact an emulation of the particular human in question. Although it would be com-
putationally intractable for us to find this simplest model from the data, it could be 
perfectly possible for us to define the model, by referring to the data and a using  
a mathematically well-defined simplicity measure (such as some variant of the 
 Kolmogorov complexity, which we encountered in Box 1, Chapter 1).27
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ideas). At present, the approach should be viewed as a research program rather 
than an available technique. If it could be made to work, it might constitute the 
most ideal solution to the value-loading problem. Among other benefits, it would 
seem to offer a natural way to prevent mind crime, since a seed AI that makes rea-
sonable guesses about which values its programmers might have installed would 
anticipate that mind crime is probably negatively evaluated by those values, and 
thus best avoided, at least until more definitive information has been obtained.

Last, but not least, there is the question of “what to write in the envelope”—or, 
less metaphorically, the question of which values we should try to get the AI to 
learn. But this issue is common to all approaches to the AI value-loading problem. 
We return to it in Chapter 13.

Emulation modulation

The value-loading problem looks somewhat different for whole brain emulation 
than it does for artificial intelligence. Methods that presuppose a fine-grained 
understanding and control of algorithms and architecture are not applicable to 
emulations. On the other hand, the augmentation motivation selection method—
inapplicable to de novo artificial intelligence—is available to be used with emula-
tions (or enhanced biological brains).28

The augmentation method could be combined with techniques to tweak the 
inherited goals of the system. For example, one could try to manipulate the moti-
vational state of an emulation by administering the digital equivalent of psycho-
active substances (or, in the case of biological systems, the actual chemicals). Even 
now it is possible to pharmacologically manipulate values and motivations to a 
limited extent.29 The pharmacopeia of the future may contain drugs with more 
specific and predictable effects. The digital medium of emulations should greatly 
facilitate such developments, by making controlled experimentation easier and by 
rendering all cerebral parts directly addressable.

Just as when biological test subjects are used, research on emulations would get 
entangled in ethical complications, not all of which could be brushed aside with a 
consent form. Such entanglements could slow progress along the emulation path 
(because of regulation or moral restraint), perhaps especially hindering studies 
on how to manipulate the motivational structure of emulations. The result could 
be that emulations are augmented to potentially dangerous superintelligent levels 
of cognitive ability before adequate work has been done to test or adjust their 
final goals. Another possible effect of the moral entanglements might be to give 
the lead to less scrupulous teams and nations. Conversely, were we to relax our 
moral standards for experimenting with digital human minds, we could become 
responsible for a substantial amount of harm and wrongdoing, which is obviously 
undesirable. Other things equal, these considerations favor taking some alterna-
tive path that does not require the extensive use of digital human research sub-
jects in a strategically high-stakes situation.
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The issue, however, is not clear-cut. One could argue that whole brain emula-
tion research is less likely to involve moral violations than artificial intelligence 
research, on the grounds that we are more likely to recognize when an emulation 
mind qualifies for moral status than we are to recognize when a completely alien 
or synthetic mind does so. If certain kinds of AIs, or their subprocesses, have a 
significant moral status that we fail to recognize, the consequent moral violations 
could be extensive. Consider, for example, the happy abandon with which con-
temporary programmers create reinforcement-learning agents and subject them 
to aversive stimuli. Countless such agents are created daily, not only in computer 
science laboratories but in many applications, including some computer games 
containing sophisticated non-player characters. Presumably, these agents are still 
too primitive to have any moral status. But how confident can we really be that 
this is so? More importantly, how confident can we be that we will know to stop 
in time, before our programs become capable of experiencing morally relevant 
suffering?

(We will return in Chapter 14 to some of the broader strategic questions that 
arise when we compare the desirability of emulation and artificial intelligence 
paths.)

Institution design

Some intelligent systems consist of intelligent parts that are themselves capable of 
agency. Firms and states exemplify this in the human world: whilst largely com-
posed of humans they can, for some purposes, be viewed as autonomous agents 
in their own right. The motivations of such composite systems depend not only 
on the motivations of their constituent subagents but also on how those subagents 
are organized. For instance, a group that is organized under strong dictatorship 
might behave as if it had a will that was identical to the will of the subagent that 
occupies the dictator role, whereas a democratic group might sometimes behave 
more as if it had a will that was a composite or average of the wills of its various 
constituents. But one can also imagine governance institutions that would make 
an organization behave in a way that is not a simple function of the wills of its sub-
agents. (Theoretically, at least, there could exist a totalitarian state that everybody 
hated, because the state had mechanisms to prevent its citizens from coordinating 
a revolt. Each citizen could be worse off by revolting alone than by playing their 
part in the state machinery.)

By designing appropriate institutions for a composite system, one could thus 
try to shape its effective motivation. In Chapter 9, we discussed social inte-
gration as a possible capability control method. But there we focused on the 
incentives faced by an agent as a consequence of its existence in a social world 
of near-equals. Here we are focusing on what happens inside a given agent: how 
its will is determined by its internal organization. We are therefore looking at 
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a motivation selection method. Moreover, since this kind of internal institu-
tion design does not depend on large-scale social engineering or reform, it is 
a method that might be available to an individual project developing superin-
telligence even if the wider socioeconomic or international milieu is less than 
ideally favorable.

Institution design is perhaps most plausible in contexts where it would be com-
bined with augmentation. If we could start with agents that are already suitably 
motivated or that have human-like motivations, institutional arrangements could 
be used as an extra safeguard to increase the chances that the system will stay on 
course.

For example, suppose that we start with some well-motivated human-like 
agents—let us say emulations. We want to boost the cognitive capacities of 
these agents, but we worry that the enhancements might corrupt their moti-
vations. One way to deal with this challenge would be to set up a system in 
which individual emulations function as subagents. When a new enhancement 
is introduced, it is first applied to a small subset of the subagents. Its effects are 
then studied by a review panel composed of subagents who have not yet had the 
enhancement applied to them. Only when these peers have satisfied themselves 
that the enhancement is not corrupting is it rolled out to the wider subagent 
population. If the enhanced subagents are found to be corrupted, they are not 
given further enhancements and are excluded from key decision-making func-
tions (at least until the system as a whole has advanced to a point where the 
corrupted subagents can be safely reintegrated).30 Although the corrupted sub-
agents might have gained some advantage from the enhancement, the institu-
tional structure in which they are embedded, and the fact that they constitute 
a small minority of all subagents, would hopefully prevent them from seizing 
power or spreading their corruption to the overall system. Thus, the collec-
tive intelligence and capability of the system could be gradually enhanced in a 
sequence of small steps, where the soundness of each step is verified by suba-
gents only slightly less capable than the new subagents that are introduced in 
that step.

The amount of safety obtainable by this kind of institution design is limited 
by the accuracy of the tests that are used to evaluate the enhanced subagents. 
The problem of test construction is complicated by the fact that the test batter-
ies could only be validated within the pre-existing range of cognitive ability yet 
must be applied to agents outside this range. One could mitigate this problem 
by taking small enhancement steps and by letting the test run for a long time. 
Such caution, however, would raise the cost and slow progress (which, if a race 
dynamic is occurring, could mean a project employing these safety measures 
would place itself at a disadvantage). Even with small steps and extensive test-
ing, there would remain some risk of subtle flaws being introduced, leading to a 
gradual corruption of the goal system, a corruption that might become manifest 
only when the system reaches superintelligence. This risk could be reduced by 
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letting the testing condition extend for many steps of cognitive enhancement, so 
that even agents that have been initially certified as sound and that have received 
several subsequent enhancements would continue to be under review by a panel 
of unmodified and uncorrupted original peers and would remain subject to 
reversion.

Ideally, the testing should be ongoing rather than confined to an initial eval-
uation period. Human-level subagents have the ability to strategize and might 
thus choose to conceal certain goals while their behavior was being monitored. 
To enable continuous testing, a hierarchy might be created in which subagents at 
a certain level of capability are tasked with monitoring subagents at a somewhat 
higher level of capability. At the bottom of the capability hierarchy (but at the top 
of the power hierarchy) would sit the relatively dumb and slow principal. This 
human principal would be like a demented king who reigns over an incompetent 
court that oversees a mediocre administration which governs a capable people. 
Alternatively, he might be likened to the evolutionarily ancient “reptilian brain” 
which ensures that the newer and much cleverer neocortex is employed in the 
service of goals such as feeding and copulation.

One might question whether such an inverse meritocracy could remain stable. 
If the bulk of the superintelligent subagents were found to be corrupt, and the 
humans in charge of the whole thing attempted to roll back many of the preceding 
enhancements, would the institutional structure be strong enough to withstand 
the opposition that such a move would engender? In the context of historical or 
contemporary human societies, the answer perhaps is that this would be implau-
sible. (Not that the most capable people consistently rise to power, but we are not 
literally ruled by chimpanzees either.) The issue is less clear, however, in a context 
where society is implemented as software.31

Imagine a digital hierarchy that has one highly trained police agent for every 
two proletarians. It also has one special-police agent for every two police agents. It 
also has one special-special-police agent for every two special-police agents—and 
so forth, so that each layer of overseers has at least half the numbers of the layer 
it oversees. Imagine, further, that this society is architected in such a way that a 
supervisor has big advantages over his subordinates. For example, the supervisor 
is able to monitor and record everything his subordinates say and do, whereas 
the supervisor himself is hidden behind a one-way glass, so that his subordinates 
can only hear the orders and instructions that the superior chooses to transmit. 
Imagine that supervisors have a panel of buttons that they can press at any time 
to cause a subordinate to be punished or rewarded, paused, deleted, or reverted to 
an earlier state. These capabilities would greatly boost the powers of a supervising 
agent, beyond what has been possible historically in even the most totalitarian of 
organizations.

Even this does not exhaust the possible instruments of control. Supervisors might 
also have at their disposal realistic virtual reality simulations that they can use to 
probe subordinates’ reactions to hypothetical scenarios (such as simulated offers 
to join a conspiracy or to slack when they think nobody is watching). Supervisors 
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might, additionally, have the ability to eavesdrop on internal monologues in the 
subordinates’ minds and to directly manipulate their emotional states.

The upshot is a series of massive advantages for the supervisor.32 Each super-
visor would be a subordinate to another, higher-level supervisor, who would 
monitor his every move and make sure he did not slacken in the execution of 
his managerial duties. With this kind of arrangement, it might be possible for 
the structure to be stable even if each supervisory level is intellectually some-
what weaker than the level it supervises.33 And the entire structure, which could 
include many highly superintelligent agents, may be controlled by a small number 
of humans with root access.34

The cost of such an internal control structure would be significant but not 
necessarily prohibitive. For example, in the model where each level of supervi-
sion has half the numbers of the layer below, the extra computational overhead is 
bounded at a mere 100% of what the proletarian part of the system costs—less if 
the dumber boss layers require fewer computations per subagent. Oversight could 
be tightened by increasing the ratio, or cost lowered by decreasing it. The extra 
computational cost would be a major factor in a competitive market scenario  
(cf. Chapter 11) but looks affordable in the context of a project that is not facing 
strong immediate competition. There would also be a cost in terms of the devel-
opment time needed to create and test these supervisory functionalities. A well-
resourced project could reduce this time cost by parallelizing the development of 
the control structure with the development of the machine intelligence; but the 
extra task load could be prohibitive for smaller projects and for projects caught in 
a close technology race.

One other type of cost also deserves consideration: the risk of mind crimes 
being committed in this kind of structure.35 As described, the institution sounds 
like a rather horrible North Korean labor camp. Yet there are ways of at least miti-
gating the moral problems with running this kind of institution, even if the sub-
agents contained in the institution are emulations with full human moral status. 
At a minimum, the system could rely on volunteering emulations. Each subagent 
could have the option at any time of withdrawing its participation.36 Terminated 
emulations could be stored to memory, with a commitment to restart them under 
much more ideal conditions once the dangerous phase of the intelligence explo-
sion is over. Meanwhile, subagents who chose to participate could be housed in 
very comfortable virtual environments and allowed ample time for sleep and rec-
reation. These measures would impose a cost, one that should be manageable for a 
well-resourced project under noncompetitive conditions. In a highly competitive 
situation, the cost may be unaffordable unless an enterprise could be assured that 
its competitors would incur the same cost.

In the example, we imagined the subagents as emulations. One might wonder, 
does the institution design approach require that the subagents be anthropomor-
phic? Or is it equally applicable to systems composed of artificial subagents?

One’s first thought here might be skeptical. One notes that despite our plentiful 
experience with human-like agents, we still cannot precisely predict the outbreak 
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or outcomes of revolutions; social science can, at most, describe some statistical 
tendencies.37 Since we cannot reliably predict the stability of social structures for 
ordinary human beings (about which we have much data), it is tempting to infer 
that we have little hope of precision-engineering stable social structures for cog-
nitively enhanced human-like agents (about which we have no data), and that we 
have still less hope of doing so for advanced artificial agents (which are not even 
similar to agents that we have data about).

Yet the matter is not so cut-and-dried. Humans and human-like beings 
are complex; but artificial agents could have relatively simple architectures. 
Artificial agents could also have simple and explicitly characterized motiv-
ations. Furthermore, digital agents in general (whether emulations or artificial 
intelligences) are copyable: an affordance that may revolutionize management, 
much like interchangeable parts revolutionized manufacturing. These dif-
ferences, together with the opportunity to work with agents that are initially 
powerless and to create institutional structures that use the various above-
mentioned control measures, might combine to make it possible to achieve 
particular institutional outcomes—such as a system that does not revolt—
more reliably than if one were working with human beings under historical 
conditions.

But then again, artificial agents might lack many of the attributes that help us 
predict the behavior of human-like agents. Artificial agents need not have any of 
the social emotions that bind human behavior, emotions such as fear, pride, and 
remorse. Nor need artificial agents develop attachments to friends and family. 
Nor need they exhibit the unconscious body language that makes it difficult for us 
humans to conceal our intentions. These deficits might destabilize institutions of 
artificial agents. Moreover, artificial agents might be capable of making big leaps 
in cognitive performance as a result of seemingly small changes in their algo-
rithms or architecture. Ruthlessly optimizing artificial agents might be willing to 
take extreme gambles from which humans would shrink.38 And superintelligent 
agents might show a surprising ability to coordinate with little or no communica-
tion (e.g. by internally modeling each other’s hypothetical responses to various 
contingencies). These and other differences could make sudden institutional fail-
ure more likely, even in the teeth of what seem like Kevlar-clad methods of social 
control.

It is unclear, therefore, how promising the institution design approach is, and 
whether it has a greater chance of working with anthropomorphic than with 
artificial agents. It might be thought that creating an institution with appropri-
ate checks and balances could only increase safety—or, at any rate, not reduce 
safety—so that from a risk-mitigation perspective it would always be best if the 
method were used. But even this cannot be said with certainty. The approach 
adds parts and complexity, and thus may also introduce new ways for things 
to go wrong that do not exist in the case of an agent that does not have intel-
ligent subagents as parts. Nevertheless, institution design is worthy of further 
exploration.39
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Synopsis

Goal system engineering is not yet an established discipline. It is not currently 
known how to transfer human values to a digital computer, even given human-
level machine intelligence. Having investigated a number of approaches, we found 
that some of them appear to be dead ends; but others appear to hold promise and 
deserve to be explored further. A summary is provided in Table 12.

Table 12 Summary of value-loading techniques

Explicit representation May hold promise as a way of loading domesticity values. 
Does not seem promising as a way of loading more 
complex values.

Evolutionary selection Less promising. Powerful search may find a design that 
satisfies the formal search criteria but not our inten-
tions. Furthermore, if designs are evaluated by running 
them—including designs that do not even meet the 
formal criteria—a potentially grave additional danger is 
created. Evolution also makes it difficult to avoid massive 
mind crime, especially if one is aiming to fashion human-
like minds.

Reinforcement learning A range of different methods can be used to solve “rein-
forcement-learning problems,” but they typically involve 
creating a system that seeks to maximize a reward signal. 
This has an inherent tendency to produce the wireheading 
failure mode when the system becomes more intelligent. 
Reinforcement learning therefore looks unpromising.

Value accretion We humans acquire much of our specific goal content from 
our reactions to experience. While value accretion could in 
principle be used to create an agent with human motiva-
tions, the human value-accretion dispositions might be com-
plex and difficult to replicate in a seed AI. A bad approxima-
tion may yield an AI that generalizes differently than humans 
do and therefore acquires unintended final goals. More 
research is needed to determine how difficult it would be 
to make value accretion work with sufficient precision.

Motivational scaffolding It is too early to tell how difficult it would be to encour-
age a system to develop internal high-level representa-
tions that are transparent to humans (while keeping the 
system’s capabilities below the dangerous level) and then 
to use those representations to design a new goal system. 
The approach might hold considerable promise. (How-
ever, as with any untested approach that would postpone 
much of the hard work on safety engineering until the 
development of human-level AI, one should be careful 
not to allow it to become an excuse for a lackadaisical 
attitude to the control problem in the interim.)

Continued
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If we knew how to solve the value-loading problem, we would confront a fur-
ther problem: the problem of deciding which values to load. What, in other words, 
would we want a superintelligence to want? This is the more philosophical prob-
lem to which we turn next.

Value learning A potentially promising approach, but more research is 
needed to determine how difficult it would be to formally 
specify a reference that successfully points to the relevant 
external information about human value (and how dif-
ficult it would be to specify a correctness criterion for a 
utility function in terms of such a reference). Also worth 
exploring within the value learning category are proposals 
of the Hail Mary type or along the lines of Paul Chris-
tiano’s construction (or other such shortcuts).

Emulation modulation If machine intelligence is achieved via the emulation 
pathway, it would likely be possible to tweak motivations 
through the digital equivalent of drugs or by other means. 
Whether this would enable values to be loaded with suf-
ficient precision to ensure safety even as the emulation is 
boosted to superintelligence is an open question. (Ethical 
constraints might also complicate developments in this 
direction.)

Institution design Various strong methods of social control could be applied 
in an institution composed of emulations. In principle, so-
cial control methods could also be applied in an institution 
composed of artificial intelligences. Emulations have some 
properties that would make them easier to control via 
such methods, but also some properties that might make 
them harder to control than AIs. Institution design seems 
worthy of further exploration as a potential value-loading 
technique.

Table 12 Continued
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CHAPTER 13

Choosing the criteria 
for choosing

Suppose we could install any arbitrary final value into a seed AI. The deci-
sion as to which value to install could then have the most far-reaching 
consequences. Certain other basic parameter choices—concerning the 

axioms of the AI’s decision theory and epistemology—could be similarly conse-
quential. But foolish, ignorant, and narrow-minded that we are, how could we 
be trusted to make good design decisions? How could we choose without lock-
ing in forever the prejudices and preconceptions of the present generation? In 
this chapter, we explore how indirect normativity can let us offload much of the 
cognitive work involved in making these decisions onto the superintelligence 
itself while still anchoring the outcome in deeper human values.

The need for indirect normativity

How can we get a superintelligence to do what we want? What do we want the 
superintelligence to want? Up to this point, we have focused on the former ques-
tion. We now turn to the second question.

Suppose that we had solved the control problem so that we were able to load 
any value we chose into the motivation system of a superintelligence, making it 
pursue that value as its final goal. Which value should we install? The choice is no 
light matter. If the superintelligence obtains a decisive strategic advantage, the 
value would determine the disposition of the cosmic endowment.

Clearly, it is essential that we not make a mistake in our value selection. But how 
could we realistically hope to achieve errorlessness in a matter like this? We might 
be wrong about morality; wrong also about what is good for us; wrong even about 
what we truly want. Specifying a final goal, it seems, requires making one’s way 
through a thicket of thorny philosophical problems. If we try a direct approach, 
we are likely to make a hash of things. The risk of mistaken choosing is especially 
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high when the decision context is unfamiliar—and selecting the final goal for a 
machine superintelligence that will shape all of humanity’s future is an extremely 
unfamiliar decision context if any is.

The dismal odds in a frontal assault are reflected in the pervasive dissensus 
about the relevant issues in value theory. No ethical theory commands major-
ity support among philosophers, so most philosophers must be wrong.1 It is 
also reflected in the marked changes that the distribution of moral belief has 
undergone over time, many of which we like to think of as progress. In medi-
eval Europe, for instance, it was deemed respectable entertainment to watch a 
political prisoner being tortured to death. Cat-burning remained popular in 
sixteenth-century Paris.2 A mere hundred and fifty years ago, slavery still was 
widely practiced in the American South, with full support of the law and moral 
custom. When we look back, we see glaring deficiencies not just in the behav-
ior but in the moral beliefs of all previous ages. Though we have perhaps since 
gleaned some moral insight, we could hardly claim to be now basking in the high 
noon of perfect moral enlightenment. Very likely, we are still laboring under 
one or more grave moral misconceptions. In such circumstances to select a final 
value based on our current convictions, in a way that locks it in forever and pre-
cludes any possibility of further ethical progress, would be to risk an existential 
moral calamity.

Even if we could be rationally confident that we have identified the correct 
 ethical theory—which we cannot be—we would still remain at risk of  making 
mistakes in developing important details of this theory. Seemingly simple 
moral theories can have a lot of hidden complexity.3 For example, consider the 
 (un usually simple) consequentialist theory of hedonism. This theory states, 
roughly, that all and only pleasure has value, and all and only pain has disvalue.4 
Even if we placed all our moral chips on this one theory, and the theory turned 
out to be right, a great many questions would remain open. Should “higher 
 pleasures” be given priority over “lower pleasures,” as John Stuart Mill argued? 
How should the  intensity and duration of a pleasure be factored in? Can pains 
and pleasures cancel each other out? What kinds of brain states are associated 
with morally relevant pleasures? Would two exact copies of the same brain 
state correspond to twice the amount of pleasure?5 Can there be subconscious 
 pleasures? How should we deal with extremely small chances of extremely great 
pleasures?6 How should we aggregate over infinite populations?7

Giving the wrong answer to any one of these questions could be catastrophic. 
If by selecting a final value for the superintelligence we had to place a bet not just 
on a general moral theory but on a long conjunction of specific claims about how 
that theory is to be interpreted and integrated into an effective decision-making 
process, then our chances of striking lucky would dwindle to something close to 
hopeless. Fools might eagerly accept this challenge of solving in one swing all the 
important problems in moral philosophy, in order to infix their favorite answers 
into the seed AI. Wiser souls would look hard for some alternative approach, some 
way to hedge.
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This takes us to indirect normativity. The obvious reason for building a super-
intelligence is so that we can offload to it the instrumental reasoning required to 
find effective ways of realizing a given value. Indirect normativity would enable 
us also to offload to the superintelligence some of the reasoning needed to select 
the value that is to be realized.

Indirect normativity is a way to answer the challenge presented by the fact that 
we may not know what we truly want, what is in our interest, or what is morally 
right or ideal. Instead of making a guess based on our own current understanding 
(which is probably deeply flawed), we would delegate some of the cognitive work 
required for value selection to the superintelligence. Since the superintelligence is 
better at cognitive work than we are, it may see past the errors and confusions that 
cloud our thinking. One could generalize this idea and emboss it as a heuristic 
principle:

The principle of epistemic deference

A future superintelligence occupies an epistemically superior vantage point: its 
beliefs are (probably, on most topics) more likely than ours to be true. We should 
therefore defer to the superintelligence’s opinion whenever feasible.8

Indirect normativity applies this principle to the value-selection problem. 
Lacking confidence in our ability to specify a concrete normative standard, we 
would instead specify some more abstract condition that any normative standard 
should satisfy, in the hope that a superintelligence could find a concrete stand-
ard that satisfies the abstract condition. We could give a seed AI the final goal of 
continuously acting according to its best estimate of what this implicitly defined 
standard would have it do.

Some examples will serve to make the idea clearer. First we will consider “coher-
ent extrapolated volition,” an indirect normativity proposal outlined by Eliezer 
Yudkowsky. We will then introduce some variations and alternatives, to give us a 
sense of the range of available options.

Coherent extrapolated volition

Yudkowsky has proposed that a seed AI be given the final goal of carrying out 
humanity’s “coherent extrapolated volition” (CEV), which he defines as follows:

Our coherent extrapolated volition is our wish if we knew more, thought faster, were 
more the people we wished we were, had grown up farther together; where the extrap-
olation converges rather than diverges, where our wishes cohere rather than interfere; 
extrapolated as we wish that extrapolated, interpreted as we wish that interpreted.9

When Yudkowsky wrote this, he did not purport to present a blueprint for how 
to implement this rather poetic prescription. His aim was to give a preliminary 
sketch of how CEV might be defined, along with some arguments for why an 
approach along these lines is needed.
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Many of the ideas behind the CEV proposal have analogs and antecedents in 
the philosophical literature. For example, in ethics ideal observer theories seek to 
analyze normative concepts like “good” or “right” in terms of the judgments that 
a hypothetical ideal observer would make (where an “ideal observer” is defined as 
one that is omniscient about non-moral facts, is logically clear-sighted, is impar-
tial in relevant ways and is free from various kinds of biases, and so on).10 The 
CEV approach, however, is not (or need not be construed as) a moral theory. It is 
not committed to the claim that there is any necessary link between value and the 
preferences of our coherent extrapolated volition. CEV can be thought of simply 
as a useful way to approximate whatever has ultimate value, or it can be consid-
ered aside from any connection to ethics. As the main prototype of the indirect 
normativity approach, it is worth examining in a little more detail.

Some explications

Some terms in the above quotation require explication. “Thought faster,” in 
Yudkowsky’s terminology, means if we were smarter and had thought things 
through more. “Grown up farther together” seems to mean if we had done our 
learning, our cognitive enhancing, and our self-improving under conditions of suit-
able social interaction with one another.

“Where the extrapolation converges rather than diverges” may be understood 
as follows. The AI should act on some feature of the result of its extrapolation 
only insofar as that feature can be predicted by the AI with a fairly high degree 
of confidence. To the extent that the AI cannot predict what we would wish if we 
were idealized in the manner indicated, the AI should not act on a wild guess; 
instead, it should refrain from acting. However, even though many details of our 
idealized wishing may be undetermined or unpredictable, there might neverthe-
less be some broad outlines that the AI can apprehend, and it can then at least 
act to ensure that the future course of events unfolds within those outlines. For 
example, if the AI can reliably estimate that our extrapolated volition would wish 
that we not all be in constant agony, or that the universe not be tiled over with 
paperclips, then the AI should act to prevent those outcomes.11

“Where our wishes cohere rather than interfere” may be read as follows. The 
AI should act where there is fairly broad agreement between individual humans’ 
extrapolated volitions. A smaller set of strong, clear wishes might sometimes out-
weigh the weak and muddled wishes of a majority. Also, Yudkowsky thinks that 
it should require less consensus for the AI to prevent some particular narrowly 
specified outcome, and more consensus for the AI to act to funnel the future into 
some particular narrow conception of the good. “The initial dynamic for CEV,” he 
writes, “should be conservative about saying ‘yes,’ and listen carefully for ‘no.’ ”12

“Extrapolated as we wish that extrapolated, interpreted as we wish that inter-
preted”: The idea behind these last modifiers seems to be that the rules for extrap-
olation should themselves be sensitive to the extrapolated volition. An individual 
might have a second-order desire (a desire concerning what to desire) that some 
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of her first-order desires not be given weight when her volition is extrapolated. 
For example, an alcoholic who has a first-order desire for booze might also have 
a second-order desire not to have that first-order desire. Similarly, we might have 
desires over how various other parts of the extrapolation process should unfold, 
and these should be taken into account by the extrapolation process.

It might be objected that even if the concept of humanity’s coherent extrapo-
lated volition could be properly defined, it would anyway be impossible—even for 
a superintelligence—to find out what humanity would actually want under the 
hypothetical idealized circumstances stipulated in the CEV approach. Without 
some information about the content of our extrapolated volition, the AI would 
be bereft of any substantial standard to guide its behavior. However, although it 
would be difficult to know with precision what humanity’s CEV would wish, it 
is possible to make informed guesses. This is possible even today, without super-
intelligence. For example, it is more plausible that our CEV would wish for there 
to be people in the future who live rich and happy lives than that it would wish 
that we should all sit on stools in a dark room experiencing pain. If we can make 
at least some such judgments sensibly, so can a superintelligence. From the out-
set, the superintelligence’s conduct could thus be guided by its estimates of the 
content of our CEV. It would have strong instrumental reason to refine these ini-
tial estimates (e.g. by studying human culture and psychology, scanning human 
brains, and reasoning about how we might behave if we knew more, thought more 
clearly, etc.). In investigating these matters, the AI would be guided by its initial 
estimates of our CEV; so that, for instance, the AI would not unnecessarily run 
myriad simulations replete with unredeemed human suffering if it estimated that 
our CEV would probably condemn such simulations as mind crime.

Another objection is that there are so many different ways of life and moral 
codes in the world that it might not be possible to “blend” them into one CEV. 
Even if one could blend them, the result might not be particularly appetizing—one 
would be unlikely to get a delicious meal by mixing together all the best flavors 
from everyone’s different favorite dish.13 In answer to this, one could point out that 
the CEV approach does not require that all ways of life, moral codes, or personal 
values be blended together into one stew. The CEV dynamic is supposed to act only 
when our wishes cohere. On issues on which there is widespread irreconcilable 
disagreement, even after the various idealizing conditions have been imposed, the 
dynamic should refrain from determining the outcome. To continue the cooking 
analogy, it might be that individuals or cultures will have different favorite dishes, 
but that they can nevertheless broadly agree that aliments should be nontoxic. The 
CEV dynamic could then act to prevent food poisoning while otherwise allowing 
humans to work out their culinary practices without its guidance or interference.

Rationales for CEV

Yudkowsky’s article offered seven arguments for the CEV approach. Three of 
these were basically different ways of making the point that while the aim should 



214  |  CHOOSING THE CRITERIA FOR CHOOSING

be to do something that is humane and helpful, it would be very difficult to lay 
down an explicit set of rules that does not have unintended interpretations and 
undesirable consequences.14 The CEV approach is meant to be robust and self-
correcting; it is meant to capture the source of our values instead of relying on 
us correctly enumerating and articulating, once and for all, each of our essential 
values.

The remaining four arguments go beyond that first basic (but important) point, 
spelling out desiderata on candidate solutions to the value-specification problem 
and suggesting that CEV meets these desiderata.

“Encapsulate moral growth”

This is the desideratum that the solution should allow for the possibility of moral 
progress. As suggested earlier, there are reasons to believe that our current moral 
beliefs are flawed in many ways; perhaps deeply flawed. If we were to stipulate a 
specific and unalterable moral code for the AI to follow, we would in effect be 
locking in our present moral convictions, including their errors, destroying any 
hope of moral growth. The CEV approach, by contrast, allows for the possibility 
of such growth because it has the AI try to do that which we would have wished 
it to do if we had developed further under favorable conditions, and it is possible 
that if we had thus developed our moral beliefs and sensibilities would have been 
purged of their current defects and limitations.

“Avoid hijacking the destiny of humankind”

Yudkowsky has in mind a scenario in which a small group of programmers creates 
a seed AI that then grows into a superintelligence that obtains a decisive strategic 
advantage. In this scenario, the original programmers hold in their hands the 
entirety of humanity’s cosmic endowment. Obviously, this is a hideous respon-
sibility for any mortal to shoulder. Yet it is not possible for the programmers to 
completely shirk the onus once they find themselves in this situation: any choice 
they make, including abandoning the project, would have world-historical conse-
quences. Yudkowsky sees CEV as a way for the programmers to avoid arrogating 
to themselves the privilege or burden of determining humanity’s future. By set-
ting up a dynamic that implements humanity’s coherent extrapolated volition—as 
opposed to their own volition, or their own favorite moral theory—they in effect 
distribute their influence over the future to all of humanity.

“Avoid creating a motive for modern­day humans to fight over the initial dynamic”

Distributing influence over humanity’s future is not only morally preferable to 
the programming team implementing their own favorite vision, it is also a way to 
reduce the incentive to fight over who gets to create the first superintelligence. In 
the CEV approach, the programmers (or their sponsors) exert no more influence 
over the content of the outcome than any other person—though they of course 
play a starring causal role in determining the structure of the extrapolation and 
in deciding to implement humanity’s CEV instead of some alternative. Avoiding 
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conflict is important not only because of the immediate harm that conflict tends 
to cause but also because it hinders collaboration on the difficult challenge of 
developing superintelligence safely and beneficially.

CEV is meant to be capable of commanding wide support. This is not just 
because it allocates influence equitably. There is also a deeper ground for the 
irenic potential of CEV, namely that it enables many different groups to hope that 
their preferred vision of the future will prevail totally. Imagine a member of the 
Afghan Taliban debating with a member of the Swedish Humanist Association. 
The two have very different worldviews, and what is a utopia for one might be a 
dystopia for the other. Nor might either be thrilled by any compromise position, 
such as permitting girls to receive an education but only up to ninth grade, or 
permitting Swedish girls to be educated but Afghan girls not. However, both the 
Taliban and the Humanist might be able to endorse the principle that the future 
should be determined by humanity’s CEV. The Taliban could reason that if his 
religious views are in fact correct (as he is convinced they are) and if good grounds 
for accepting these views exist (as he is also convinced) then humankind would in 
the end come to accept these views if only people were less prejudiced and biased, 
if they spent more time studying scripture, if they could more clearly understand 
how the world works and recognize essential priorities, if they could be freed from 
irrational rebelliousness and cowardice, and so forth.15 The Humanist, similarly, 
would believe that under these idealized conditions, humankind would come to 
embrace the principles she espouses.

“Keep humankind ultimately in charge of its own destiny”

We might not want an outcome in which a paternalistic superintelligence watches 
over us constantly, micromanaging our affairs with an eye towards optimizing 
every detail in accordance with a grand plan. Even if we stipulate that the super-
intelligence would be perfectly benevolent, and free from presumptuousness, 
arrogance, overbearingness, narrow-mindedness, and other human shortcom-
ings, one might still resent the loss of autonomy entailed by such an arrangement. 
We might prefer to create our destiny as we go along, even if it means that we 
sometimes fumble. Perhaps we want the superintelligence to serve as a safety net, 
to support us when things go catastrophically wrong, but otherwise to leave us to 
fend for ourselves.

CEV allows for this possibility. CEV is meant to be an “initial dynamic,” a 
process that runs once and then replaces itself with whatever the extrapolated 
volition wishes. If humanity’s extrapolated volition wishes that we live under the 
supervision of a paternalistic AI, then the CEV dynamic would create such an AI 
and hand it the reins. If humanity’s extrapolated volition instead wishes that a 
democratic human world government be created, then the CEV dynamic might 
facilitate the establishment of such an institution and otherwise remain invis-
ible. If humanity’s extrapolated volition is instead that each person should get 
an endowment of resources that she can use as she pleases so long as she respects 
the equal rights of others, then the CEV dynamic could make this come true by 
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operating in the background much like a law of nature, to prevent trespass, theft, 
assault, and other nonconsensual impingements.16

The structure of the CEV approach thus allows for a virtually unlimited range 
of outcomes. It is also conceivable that humanity’s extrapolated volition would 
wish that the CEV does nothing at all. In that case, the AI implementing CEV 
should, upon having established with sufficient probability that this is what 
humanity’s extrapolated volition would wish it to do, safely shut itself down.

Further remarks

The CEV proposal, as outlined above, is of course the merest schematic. It has a 
number of free parameters that could be specified in various ways, yielding dif-
ferent versions of the proposal.

One parameter is the extrapolation base: Whose volitions are to be included? 
We might say “everybody,” but this answer spawns a host of further questions. 
Does the extrapolation base include so-called “marginal persons” such as 
embryos, fetuses, brain-dead persons, patients with severe dementias or who are 
in permanent vegetative states? Does each of the hemispheres of a “split-brain” 
patient get its own weight in the extrapolation and is this weight the same as that 
of the entire brain of a normal subject? What about people who lived in the past 
but are now dead? People who will be born in the future? Higher animals and 
other sentient creatures? Digital minds? Extraterrestrials?

One option would be to include only the population of adult human beings 
on Earth who are alive at the start of the time of the AI’s creation. An initial 
extrapolation from this base could then decide whether and how the base should 
be expanded. Since the number of “marginals” at the periphery of this base is 
relatively small, the result of the extrapolation may not depend much on exactly 
where the boundary is drawn—on whether, for instance, it includes fetuses or not.

That somebody is excluded from the original extrapolation base does not 
imply that their wishes and well-being are disregarded. If the coherent extrapo-
lated volition of those in the extrapolation base (e.g. living adult human beings) 
wishes that moral consideration be extended to other beings, then the outcome 
of the CEV dynamic would reflect that preference. Nevertheless, it is possible 
that the interests of those who are included in the original extrapolation base 
would be accommodated to a greater degree than the interests of outsiders. In 
particular, if the dynamic acts only where there is broad agreement between 
individual extrapolated volitions (as in Yudkowsky’s original proposal), there 
would seem to be a significant risk of an ungenerous blocking vote that could 
prevent, for instance, the welfare of nonhuman animals or digital minds from 
being protected. The result might potentially be morally rotten.17

One motivation for the CEV proposal was to avoid creating a motive for 
humans to fight over the creation of the first superintelligent AI. Although the 
CEV proposal scores better on this desideratum than many alternatives, it does 
not entirely eliminate motives for conflict. A selfish individual, group, or nation 
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might seek to enlarge its slice of the future by keeping others out of the extrapola-
tion base.

A power grab of this sort might be rationalized in various ways. It might be 
argued, for instance, that the sponsor who funds the development of the AI 
deserves to own the outcome. This moral claim is probably false. It could be 
objected, for example, that the project that launches the first successful seed AI 
imposes a vast risk externality on the rest of humanity, which therefore is entitled 
to compensation. The amount of compensation owed is so great that it can only 
take the form of giving everybody a stake in the upside if things turn out well.18

Another argument that might be used to rationalize a power grab is that large 
segments of humanity have base or evil preferences and that including them in 
the extrapolation base would risk turning humanity’s future into a dystopia. It 
is difficult to know the share of good and bad in the average person’s heart. It is 
also difficult to know how much this balance varies between different groups, 
social strata, cultures, or nations. Whether one is optimistic or pessimistic about 
human nature, one may prefer not to wager humanity’s cosmic endowment on 
the speculation that, for a sufficient majority of the seven billion people currently 
alive, their better angels would prevail in their extrapolated volitions. Of course, 
omitting a certain set of people from the extrapolation base does not guarantee 
that light would triumph; and it might well be that the souls that would soon-
est exclude others or grab power for themselves tend rather to contain unusually 
large amounts of darkness.

Yet another reason for fighting over the initial dynamic is that one might 
believe that somebody else’s AI will not work as advertised, even if the AI is billed 
as a way to implement humanity’s CEV. If different groups have different beliefs 
about which implementation is most likely to succeed, they might fight to prevent 
the others from launching. It would be better in such situations if the competing 
projects could settle their epistemic differences by some method that more reli-
ably ascertains who is right than the method of armed conflict.19

Morality models

The CEV proposal is not the only possible form of indirect normativity. For exam-
ple, instead of implementing humanity’s coherent extrapolated volition, one could 
try to build an AI with the goal of doing what is morally right, relying on the AI’s 
superior cognitive capacities to figure out just which actions fit that description. 
We can call this proposal “moral rightness” (MR). The idea is that we humans 
have an imperfect understanding of what is right and wrong, and perhaps an even 
poorer understanding of how the concept of moral rightness is to be philosophi-
cally analyzed: but a superintelligence could understand these things better.20

What if we are not sure whether moral realism is true? We could still attempt 
the MR proposal. We should just have to make sure to specify what the AI should 
do in the eventuality that its presupposition of moral realism is false. For example, 
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we could stipulate that if the AI estimates with a sufficient probability that there 
are no suitable non-relative truths about moral rightness, then it should revert to 
implementing coherent extrapolated volition instead, or simply shut itself down.21

MR appears to have several advantages over CEV. MR would do away with 
various free parameters in CEV, such as the degree of coherence among extrapo-
lated volitions that is required for the AI to act on the result, the ease with which 
a majority can overrule dissenting minorities, and the nature of the social envi-
ronment within which our extrapolated selves are to be supposed to have “grown 
up farther together.” It would seem to eliminate the possibility of a moral failure 
resulting from the use of an extrapolation base that is too narrow or too wide. 
Furthermore, MR would orient the AI toward morally right action even if our 
coherent extrapolated volitions happen to wish for the AI to take actions that are 
morally odious. As noted earlier, this seems a live possibility with the CEV pro-
posal. Moral goodness might be more like a precious metal than an abundant 
element in human nature, and even after the ore has been processed and refined 
in accordance with the prescriptions of the CEV proposal, who knows whether 
the principal outcome will be shining virtue, indifferent slag, or toxic sludge?

MR would also appear to have some disadvantages. It relies on the notion of 
“morally right,” a notoriously difficult concept, one with which philosophers have 
grappled since antiquity without yet attaining consensus as to its analysis. Picking 
an erroneous explication of “moral rightness” could result in outcomes that would 
be morally very wrong. This difficulty of defining “moral rightness” might seem 
to count heavily against the MR proposal. However, it is not clear that the MR 
proposal is really at a material disadvantage in this regard. The CEV proposal, 
too, uses terms and concepts that are difficult to explicate (such as “knowledge,” 
“being more the people we wished we were,” “grown up farther together,” among 
others).22 Even if these concepts are marginally less opaque than “moral right-
ness,” they are still miles removed from anything that programmers can currently 
express in code.23 The path to endowing an AI with any of these concepts might 
involve giving it general linguistic ability (comparable, at least, to that of a normal 
human adult). Such a general ability to understand natural language could then 
be used to understand what is meant by “morally right.” If the AI could grasp the 
meaning, it could search for actions that fit. As the AI develops superintelligence, 
it could then make progress on two fronts: on the philosophical problem of under-
standing what moral rightness is, and on the practical problem of applying this 
understanding to evaluate particular actions.24 While this would not be easy, it is 
not clear that it would be any more difficult than extrapolating humanity’s coher-
ent extrapolated volition.25

A more fundamental issue with MR is that even if can be implemented, it might 
not give us what we want or what we would choose if we were brighter and bet-
ter informed. This is of course the essential feature of MR, not an accidental bug. 
However, it might be a feature that would be extremely harmful to us.26

One might try to preserve the basic idea of the MR model while reducing 
its demandingness by focusing on moral permissibility: the idea being that we 
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could let the AI pursue humanity’s CEV so long as it did not act in ways that are 
morally impermissible. For example, one might formulate the following goal 
for the AI:

Among the actions that are morally permissible for the AI, take one that humanity’s CEV 
would prefer. However, if some part of this instruction has no well-specified meaning, or if 
we are radically confused about its meaning, or if moral realism is false, or if we acted mor-
ally impermissibly in creating an AI with this goal, then undergo a controlled shutdown.27 
Follow the intended meaning of this instruction.

One might still worry that this moral permissibility model (MP) represents an 
unpalatably high degree of respect for the requirements of morality. How big a 
sacrifice it would entail depends on which ethical theory is true.28 If ethics is sat-
isficing, in the sense that it counts as morally permissible any action that con-
forms to a few basic moral constraints, then MP may leave ample room for our 
coherent extrapolated volition to influence the AI’s actions. However, if ethics is 
maximizing— for example, if the only morally permissible actions are those that 
have the morally best consequences—then MP may leave little or no room for our 
own preferences to shape the outcome.

To illustrate this concern, let us return for a moment to the example of hedon-
istic consequentialism. Suppose that this ethical theory is true, and that the AI 
knows it to be so. For present purposes, we can define hedonistic consequential-
ism as the claim that an action is morally right (and morally permissible) if and 
only if, among all feasible actions, no other action would produce a greater bal-
ance of pleasure over suffering. The AI, following MP, might maximize the surfeit 
of pleasure by converting the accessible universe into hedonium, a process that 
may involve building computronium and using it to perform computations that 
instantiate pleasurable experiences. Since simulating any existing human brain is 
not the most efficient way of producing pleasure, a likely consequence is that we 
all die.

By enacting either the MR or the MP proposal, we would thus risk sacrificing 
our lives for a greater good. This would be a bigger sacrifice than one might think, 
because what we stand to lose is not merely the chance to live out a normal human 
life but the opportunity to enjoy the far longer and richer lives that a friendly 
superintelligence could bestow.

The sacrifice looks even less appealing when we reflect that the superintelli-
gence could realize a nearly-as-great good (in fractional terms) while sacrificing 
much less of our own potential well-being. Suppose that we agreed to allow almost 
the entire accessible universe to be converted into hedonium—everything except 
a small preserve, say the Milky Way, which would be set aside to accommodate 
our own needs. Then there would still be a hundred billion galaxies devoted to the 
maximization of pleasure. But we would have one galaxy within which to create 
wonderful civilizations that could last for billions of years and in which humans 
and nonhuman animals could survive and thrive, and have the opportunity to 
develop into beatific posthuman spirits.29
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If one prefers this latter option (as I would be inclined to do) it implies that one 
does not have an unconditional lexically dominant preference for acting morally 
permissibly. But it is consistent with placing great weight on morality.

Even from a purely moral point of view, it might be better to advocate 
some proposal that is less morally ambitious than MR or MP. If the morally 
best has no chance of being implemented—perhaps because of its frowning 
 demandingness—it might be morally better to promote some other proposal, 
one that would be near-ideal and whose chances of being implemented could be 
significantly increased by our promoting it.30

Do What I Mean

We might feel unsure whether to go for CEV, MR, MP, or something else. Could 
we punt on this higher-level decision as well, offloading even more cognitive work 
onto the AI? Where is the limit to our possible laziness?

Consider, for example, the following “reasons-based” goal:

Do whatever we would have had most reason to ask the AI to do.

This goal might boil down to extrapolated volition or morality or something else, 
but it would seem to spare us the effort and risk involved in trying to figure out 
for ourselves which of these more specific objectives we would have most reason 
to select.

Some of the problems with the morality-based goals, however, also apply 
here. First, we might fear that this reasons-based goal would leave too little 
room for our own desires. Some philosophers maintain that a person always 
has most reason to do what it would be morally best for her to do. If those phi-
losophers are right, then the reason-based goal collapses into MR—with the 
concomitant risk that a superintelligence implementing such a dynamic would 
kill everyone within reach. Second, as with all proposals couched in technical 
language, there is a possibility that we might have misunderstood the meaning 
of our own assertions. We saw that, in the case of the morality-based goals, 
asking the AI to do what is right may lead to unforeseen and unwanted conse-
quences such that, had we anticipated them, we would not have implemented 
the goal in question. The same applies to asking the AI to do what we have most 
reason to do.

What if we try to avoid these difficulties by couching a goal in emphatically 
nontechnical language—such as in terms of “niceness”:31

Take the nicest action; or, if no action is nicest, then take an action that is at least super-
duper nice.

How could there be anything objectionable about building a nice AI? But we must 
ask what precisely is meant by this expression. The lexicon lists various meanings 
of “nice” that are clearly not intended to be used here: we do not intend that the AI 
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should be courteous and polite nor overdelicate or fastidious. If we can count on 
the AI recognizing the intended interpretation of “niceness” and being motivated 
to pursue niceness in just that sense, then this goal would seem to amount to a 
command to do what the programmers meant for the AI to do.32 An injunction to 
similar effect was included in the formulation of CEV (“. . . interpreted as we wish 
that interpreted”) and in the moral-permissibility criterion as rendered earlier 
(“. . . follow the intended meaning of this instruction”). By affixing such a “Do 
What I Mean” clause we may indicate that the other words in the goal description 
should be construed charitably rather than literally. But saying that the AI should 
be “nice” adds almost nothing: the real work is done by the “Do What I Mean” 
instruction. If we knew how to code “Do What I Mean” in a general and powerful 
way, we might as well use that as a standalone goal.

How might one implement such a “Do What I Mean” dynamic? That is, how 
might we create an AI motivated to charitably interpret our wishes and unspoken 
intentions and to act accordingly? One initial step could be to try to get clearer 
about what we mean by “Do What I Mean.” It might help if we could explicate 
this in more behavioristic terms, for example in terms of revealed preferences in 
various hypothetical situations—such as situations in which we had more time 
to consider the options, in which we were smarter, in which we knew more of 
the relevant facts, and in which in various other ways conditions would be more 
favorable for us accurately manifesting in concrete choices what we mean when 
we say that we want an AI that is friendly, beneficial, nice . . .

Here, of course, we come full circle. We have returned to the indirect norma-
tivity approach with which we started—the CEV proposal, which, in essence, 
expunges all concrete content from the value specification, leaving only an 
abstract value defined in purely procedural terms: to do that which we would have 
wished for the AI to do in suitably idealized circumstances. By means of such 
indirect normativity, we could hope to offload to the AI much of the cognitive 
work that we ourselves would be trying to perform if we attempted to articulate 
a more concrete description of what values the AI is to pursue. In seeking to take 
full advantage of the AI’s epistemic superiority, CEV can thus be seen as an appli-
cation of the principle of epistemic deference.

Component list

So far we have considered different options for what content to put into the goal 
system. But an AI’s behavior will also be influenced by other design choices. In 
particular, it can make a critical difference which decision theory and which epis-
temology it uses. Another important question is whether the AI’s plans will be 
subject to human review before being put into action.

Table 13 summarizes these design choices. A project that aims to build a super-
intelligence ought to be able to explain what choices it has made regarding each of 
these components, and to justify why those choices were made.33
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Goal content

We have already discussed how indirect normativity might be used in specifying 
the values that the AI is to pursue. We discussed some options, such as morality-
based models and coherent extrapolated volition. Each such option creates fur-
ther choices that need to be made. For instance, the CEV approach comes in many 
varieties, depending on who is included in the extrapolation base, the structure 
of the extrapolation, and so forth. Other forms of motivation selection methods 
might call for different types of goal content. For example, an oracle might be built 
to place a value on giving accurate answers. An oracle constructed with domes-
ticity motivation might also have goal content that disvalues the excessive use of 
resources in producing its answers.

Another design choice is whether to include special provisions in the goal con-
tent to reward individuals who contribute to the successful realization of the AI, 
for example by giving them extra resources or influence over the AI’s behavior. 
We can term any such provisions “incentive wrapping.” Incentive wrapping could 
be seen as a way to increase the likelihood that the project will be successful, at the 
cost of compromising to some extent the goal that the project set out to achieve.

For example, if the project’s goal is to create a dynamic that implements 
humanity’s coherent extrapolated volition, then an incentive wrapping scheme 
might specify that certain individuals’ volitions should be given extra weight 
in the extrapolation. If such a project is successful, the result is not necessarily 
the implementation of humanity’s coherent extrapolated volition. Instead, some 
approximation to this goal might be achieved.34

Since incentive wrapping would be a piece of goal content that would be inter-
preted and pursued by a superintelligence, it could take advantage of indirect nor-
mativity to specify subtle and complicated provisions that would be difficult for a 
human manager to implement. For example, instead of rewarding programmers 
according to some crude but easily accessible metric, such as how many hours they 
worked or how many bugs they corrected, the incentive wrapping could specify that 

Table 13 Component list

Goal content What objective should the AI pursue? How should a description of 
this objective be interpreted? Should the objective include giving 
special rewards to those who contributed to the project’s success?

Decision theory Should the AI use causal decision theory, evidential decision theory, 
updateless decision theory, or something else?

Epistemology What should the AI’s prior probability function be, and what other 
explicit or implicit assumptions about the world should it make? 
What theory of anthropics should it use?

Ratification Should the AI’s plans be subjected to human review before being 
put into effect? If so, what is the protocol for that review process?
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programmers “are to be rewarded in proportion to how much their contributions 
increased some reasonable ex ante probability of the project being successfully com-
pleted in the way the sponsors intended.” Further, there would be no reason to limit 
the incentive wrapping to project staff. It could instead specify that every person 
should be rewarded according to their just deserts. Credit allocation is a difficult 
problem, but a superintelligence could be expected to do a reasonable job of approx-
imating the criteria specified, explicitly or implicitly, by the incentive wrapping.

It is conceivable that the superintelligence might even find some way of 
rewarding individuals who have died prior to the superintelligence’s creation.35 
The incentive wrapping could then be extended to embrace at least some of the 
deceased, potentially including individuals who died before the project was con-
ceived, or even antedating the first enunciation of the concept of incentive wrap-
ping. Although the institution of such a retroactive policy would not causally 
incentivize those people who are already resting in their graves as these words are 
being put to the page, it might be favored for moral reasons—though it could be 
argued that insofar as fairness is a goal, it should be included as part of the target 
specification proper rather than in the surrounding incentive wrapping.

We cannot here delve into all the ethical and strategic issues associated with 
incentive wrapping. A project’s position on these issues, however, would be an 
important aspect of its fundamental design concept.

Decision theory

Another important design choice is which decision theory the AI should be built 
to use. This might affect how the AI behaves in certain strategically fateful situ-
ations. It might determine, for instance, whether the AI is open to trade with, or 
extortion by, other superintelligent civilizations whose existence it hypothesizes. 
The particulars of the decision theory could also matter in predicaments involv-
ing finite probabilities of infinite payoffs (“Pascalian wagers”) or extremely small 
probabilities of extremely large finite payoffs (“Pascalian muggings”) or in con-
texts where the AI is facing fundamental normative uncertainty or where there 
are multiple instantiations of the same agent program.36

The options on the table include causal decision theory (in a variety of flavors) 
and evidential decision theory, along with newer candidates such as “timeless 
decision theory” and “updateless decision theory,” which are still under develop-
ment.37 It may prove difficult to identify and articulate the correct decision theory, 
and to have justified confidence that we have got it right. Although the prospects 
for directly specifying an AI’s decision theory are perhaps more hopeful than 
those of directly specifying its final values, we are still confronted with a substan-
tial risk of error. Many of the complications that might break the currently most 
popular decision theories were discovered only recently, suggesting that there 
might exist further problems that have not yet come into sight. The result of giv-
ing the AI a flawed decision theory might be disastrous, possibly amounting to an 
existential catastrophe.
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In view of these difficulties, one might consider an indirect approach to speci-
fying the decision theory that the AI should use. Exactly how to do this is not yet 
clear. We might want the AI to use “that decision theory D which we would have 
wanted it to use had we thought long and hard about the matter.” However, the AI 
would need to be able to make decisions before learning what D is. It would thus 
need some effective interim decision theory Dʹ that would govern its search for 
D. One might try to define Dʹ to be some sort of superposition of the AI’s current 
hypotheses about D (weighed by their probabilities), though there are unsolved 
technical problems with how to do this in a fully general way.38 There is also cause 
for concern that the AI might make irreversibly bad decisions (such as rewrit-
ing itself to henceforth run on some flawed decision theory) during the learning 
phase, before the AI has had the opportunity to determine which particular deci-
sion theory is correct. To reduce the risk of derailment during this period of vul-
nerability we might instead try to endow the seed AI with some form of restricted 
rationality: a deliberately simplified but hopefully dependable decision theory 
that staunchly ignores esoteric considerations, even ones we think may ultimately 
be legitimate, and that is designed to replace itself with a more sophisticated (indi-
rectly specified) decision theory once certain conditions are met.39 It is an open 
research question whether and how this could be made to work.

Epistemology

A project will also need to make a fundamental design choice in selecting the 
AI’s epistemology, specifying the principles and criteria whereby empirical 
hypotheses are to be evaluated. Within a Bayesian framework, we can think of 
the epistemology as a prior probability function—the AI’s implicit assignment of 
probabilities to possible worlds before it has taken any perceptual evidence into 
account. In other frameworks, the epistemology might take a different form; but 
in any case some inductive learning rule is necessary if the AI is to generalize 
from past observations and make predictions about the future.40 As with the goal 
content and the decision theory, however, there is a risk that our epistemology 
specification could miss the mark.

One might think that there is a limit to how much damage could arise from 
an incorrectly specified epistemology. If the epistemology is too dysfunctional, 
then the AI could not be very intelligent and it could not pose the kind of risk dis-
cussed in this book. But the concern is that we may specify an epistemology that 
is sufficiently sound to make the AI instrumentally effective in most situations, 
yet which has some flaw that leads the AI astray on some matter of crucial impor-
tance. Such an AI might be akin to a quick-witted person whose worldview is 
predicated on a false dogma, held to with absolute conviction, who consequently 
“tilts at windmills” and gives his all in pursuit of fantastical or harmful objectives.

Certain kinds of subtle difference in an AI’s prior could turn out to make a 
drastic difference to how it behaves. For example, an AI might be given a prior 
that assigns zero probability to the universe being infinite. No matter how much 
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astronomical evidence it accrues to the contrary, such an AI would stubbornly 
reject any cosmological theory that implied an infinite universe; and it might 
make foolish choices as a result.41 Or an AI might be given a prior that assigns 
a zero probability to the universe not being Turing-computable (this is in fact 
a common feature of many of the priors discussed in the literature, including 
the Kolmogorov complexity prior mentioned in Chapter 1), again with poorly 
understood consequences if the embedded assumption—known as the “Church–
Turing thesis”—should turn out to be false. An AI could also end up with a prior 
that makes strong metaphysical commitments of one sort or another, for instance 
by ruling out a priori the possibility that any strong form of mind–body dual-
ism could be true or the possibility that there are irreducible moral facts. If any 
of those commitments is mistaken, the AI might seek to realize its final goals 
in ways that we would regard as perverse instantiations. Yet there is no obvious 
reason why such an AI, despite being fundamentally wrong about one important 
matter, could not be sufficiently instrumentally effective to secure a decisive stra-
tegic advantage. (Anthropics, the study of how to make inferences from indexical 
information in the presence of observation selection effects, is another area where 
the choice of epistemic axioms could prove pivotal.42)

We might reasonably doubt our ability to resolve all foundational issues in epis-
temology in time for the construction of the first seed AI. We may, therefore, con-
sider taking an indirect approach to specifying the AI’s epistemology. This would 
raise many of the same issues as taking an indirect approach to specifying its deci-
sion theory. In the case of epistemology, however, there may be greater hope of 
benign convergence, with any of a wide class of epistemologies providing an ade-
quate foundation for safe and effective AI and ultimately yielding similar doxastic 
results. The reason for this is that sufficiently abundant empirical evidence and 
analysis would tend to wash out any moderate differences in prior expectations.43

A good aim would be to endow the AI with fundamental epistemological prin-
ciples that match those governing our own thinking. Any AI diverging from this 
ideal is an AI that we would judge to be reasoning incorrectly if we consistently 
applied our own standards. Of course, this applies only to our fundamental epis-
temological principles. Non-fundamental principles should be continuously cre-
ated and revised by the seed AI itself as it develops its understanding of the world. 
The point of superintelligence is not to pander to human preconceptions but to 
make mincemeat out of our ignorance and folly.

Ratification

The final item in our list of design choices is ratification. Should the AI’s plans 
be subjected to human review before being put into effect? For an oracle, this 
question is implicitly answered in the affirmative. The oracle outputs information; 
human reviewers choose whether and how to act upon it. For genies, sovereigns, 
and tool-AIs, however, the question of whether to use some form of ratification 
remains open.
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To illustrate how ratification might work, consider an AI intended to func-
tion as a sovereign implementing humanity’s CEV. Instead of launching this AI 
directly, imagine that we first built an oracle AI for the sole purpose of answering 
questions about what the sovereign AI would do. As earlier chapters revealed, 
there are risks in creating a superintelligent oracle (such as risks of mind crime or 
infrastructure profusion). But for purposes of this example let us assume that the 
oracle AI has been successfully implemented in a way that avoided these pitfalls.

We thus have an oracle AI that offers us its best guesses about the consequences 
of running some piece of code intended to implement humanity’s CEV. The ora-
cle may not be able to predict in detail what would happen, but its predictions 
are likely to be better than our own. (If it were impossible even for a superintel-
ligence to predict anything about the code would do, we would be crazy to run 
it.) So the oracle ponders for a while and then presents its forecast. To make the 
answer intelligible, the oracle may offer the operator a range of tools with which to 
explore various features of the predicted outcome. The oracle could show pictures 
of what the future looks like and provide statistics about the number of sentient 
beings that will exist at different times, along with average, peak, and lowest lev-
els of well-being. It could offer intimate biographies of several randomly selected 
individuals (perhaps imaginary people selected to be probably representative). It 
could highlight aspects of the future that the operator might not have thought of 
inquiring about but which would be regarded as pertinent once pointed out.

Being able to preview the outcome in this manner has obvious advantages. The 
preview could reveal the consequences of an error in a planned sovereign’s design 
specifications or source code. If the crystal ball shows a ruined future, we could 
scrap the code for the planned sovereign AI and try something else. A strong case 
could be made that we should familiarize ourselves with the concrete ramifica-
tions of an option before committing to it, especially when the entire future of the 
race is on the line.

What is perhaps less obvious is that ratification also has potentially significant 
disadvantages. The irenic quality of CEV might be undermined if opposing fac-
tions, instead of submitting to the arbitration of superior wisdom in confident 
expectation of being vindicated, could see in advance what the verdict would 
be. A proponent of the morality-based approach might worry that the spon-
sor’s resolve would collapse if all the sacrifices required by the morally optimal 
were to be revealed. And we might all have reason to prefer a future that holds 
some surprises, some dissonance, some wildness, some opportunities for self- 
overcoming—a future whose contours are not too snugly tailored to present 
preconceptions but provide some give for dramatic movement and unplanned 
growth. We might be less likely to take such an expansive view if we could cherry-
pick every detail of the future, sending back to the drawing board any draft that 
does not fully conform to our fancy at that moment.

The issue of sponsor ratification is therefore less clear-cut than it might initially 
seem. Nevertheless, on balance it would seem prudent to take advantage of an 
opportunity to preview, if that functionality is available. But rather than letting 
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the reviewer fine-tune every aspect of the outcome, we might give her a simple 
veto which could be exercised only a few times before the entire project would be 
aborted.44

Getting close enough

The main purpose of ratification would be to reduce the probability of catastrophic 
error. In general, it seems wise to aim at minimizing the risk of catastrophic error 
rather than at maximizing the chance of every detail being fully optimized. There 
are two reasons for this. First, humanity’s cosmic endowment is astronomically 
large—there is plenty to go around even if our process involves some waste or 
accepts some unnecessary constraints. Second, there is a hope that if we but get 
the initial conditions for the intelligence explosion approximately right, then the 
resulting superintelligence may eventually home in on, and precisely hit, our ulti-
mate objectives. The important thing is to land in the right attractor basin.

With regard to epistemology, it is plausible that a wide range of priors will ulti-
mately converge to very similar posteriors (when computed by a superintelligence 
and conditionalized on a realistic amount of data). We therefore need not worry 
about getting the epistemology exactly right. We must just avoid giving the AI a 
prior that is so extreme as to render the AI incapable of learning vital truths even 
with the benefit of copious experience and analysis.45

With regard to decision theory, the risk of irrecoverable error seems larger. 
We might still hope to directly specify a decision theory that is good enough. 
A superintelligent AI could switch to a new decision theory at any time; however, 
if it starts out with a sufficiently wrong decision theory it may not see the reason 
to switch. Even if an agent comes to see the benefits of having a different deci-
sion theory, the realization might come too late. For example, an agent designed 
to refuse blackmail might enjoy the benefit of deterring would-be extortionists. 
For this reason, blackmailable agents might do well to proactively adopt a non-
exploitable decision theory. Yet once a blackmailable agent receives the threat and 
regards it as credible, the damage is done.

Given an adequate epistemology and decision theory, we could try to design 
the system to implement CEV or some other indirectly specified goal content. 
Again there is hope of convergence: that different ways of implementing a CEV-
like dynamic would lead to the same utopian outcome. Short of such convergence, 
we may still hope that many of the different possible outcomes are good enough 
to count as existential success.

It is not necessary for us to create a highly optimized design. Rather, our focus 
should be on creating a highly reliable design, one that can be trusted to retain 
enough sanity to recognize its own failings. An imperfect superintelligence, 
whose fundamentals are sound, would gradually repair itself; and having done 
so, it would exert as much beneficial optimization power on the world as if it had 
been perfect from the outset.



228  |  THE STRATEGIC PICTURE

CHAPTER 14

The strategic picture

It is now time to consider the challenge of superintelligence in a broader con-
text. We would like to orient ourselves in the strategic landscape sufficiently 
to know at least which general direction we should be heading. This, it turns 

out, is not at all easy. Here in the penultimate chapter, we introduce some  general 
analytical concepts that help us think about long-term science and technology 
policy issues. We then apply them to the issue of machine intelligence.

It can be illuminating to make a rough distinction between two different norma-
tive stances from which a proposed policy may be evaluated. The person-affecting 
perspective asks whether a proposed change would be in “our interest”—that is to 
say, whether it would (on balance, and in expectation) be in the interest of those 
morally considerable creatures who either already exist or will come into exist-
ence independently of whether the proposed change occurs or not. The imper-
sonal perspective, in contrast, gives no special consideration to currently existing 
people, or to those who will come to exist independently of whether the proposed 
change occurs. Instead, it counts everybody equally, independently of their tem-
poral location. The impersonal perspective sees great value in bringing new peo-
ple into existence, provided they have lives worth living: the more happy lives 
created, the better.

This distinction, although it barely hints at the moral complexities associated 
with a machine intelligence revolution, can be useful in a first-cut analysis. Here we 
will first examine matters from the impersonal perspective. We will later see what 
changes if person-affecting considerations are given weight in our deliberations.

Science and technology strategy

Before we zoom in on issues specific to machine superintelligence, we must intro-
duce some strategic concepts and considerations that pertain to scientific and 
technological development more generally.
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Differential technological development

Suppose that a policymaker proposes to cut funding for a certain research field, 
out of concern for the risks or long-term consequences of some hypothetical tech-
nology that might eventually grow from its soil. She can then expect a howl of 
opposition from the research community.

Scientists and their public advocates often say that it is futile to try to control 
the evolution of technology by blocking research. If some technology is feasible 
(the argument goes) it will be developed regardless of any particular policymak-
er’s scruples about speculative future risks. Indeed, the more powerful the capa-
bilities that a line of development promises to produce, the surer we can be that 
somebody, somewhere, will be motivated to pursue it. Funding cuts will not stop 
progress or forestall its concomitant dangers.

Interestingly, this futility objection is almost never raised when a policymaker 
proposes to increase funding to some area of research, even though the argument 
would seem to cut both ways. One rarely hears indignant voices protest: “Please 
do not increase our funding. Rather, make some cuts. Researchers in other coun-
tries will surely pick up the slack; the same work will get done anyway. Don’t 
squander the public’s treasure on domestic scientific research!”

What accounts for this apparent doublethink? One plausible explanation, 
of course, is that members of the research community have a self-serving bias 
which leads us to believe that research is always good and tempts us to embrace 
almost any argument that supports our demand for more funding. However, it 
is also possible that the double standard can be justified in terms of national self-
interest. Suppose that the development of a technology has two effects:  giving a 
small benefit B to its inventors and the country that sponsors them, while impos-
ing an aggregately larger harm H—which could be a risk externality—on every-
body. Even somebody who is largely altruistic might then choose to develop 
the overall harmful technology. They might reason that the harm H will result 
no matter what they do, since if they refrain somebody else will develop the 
 technology anyway; and given that total welfare cannot be affected, they might 
as well grab the benefit B for themselves and their nation. (“Unfortunately, there 
will soon be a device that will destroy the world. Fortunately, we got the grant 
to build it!”)

Whatever the explanation for the futility objection’s appeal, it fails to show that 
there is in general no impersonal reason for trying to steer technological develop-
ment. It fails even if we concede the motivating idea that with continued scientific 
and technological development efforts, all relevant technologies will eventually 
be developed—that is, even if we concede the following:

Technological completion conjecture

If scientific and technological development efforts do not effectively cease, then all 
important basic capabilities that could be obtained through some possible technol-
ogy will be obtained.1
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There are at least two reasons why the technological completion conjecture does 
not imply the futility objection. First, the antecedent might not hold, because it is 
not in fact a given that scientific and technological development efforts will not 
effectively cease (before the attainment of technological maturity). This reserva-
tion is especially pertinent in a context that involves existential risk. Second, even 
if we could be certain that all important basic capabilities that could be obtained 
through some possible technology will be obtained, it could still make sense to 
attempt to influence the direction of technological research. What matters is not 
only whether a technology is developed, but also when it is developed, by whom, 
and in what context. These circumstances of birth of a new technology, which 
shape its impact, can be affected by turning funding spigots on or off (and by 
wielding other policy instruments).

These reflections suggest a principle that would have us attend to the relative 
speed with which different technologies are developed:2

The principle of differential technological development

Retard the development of dangerous and harmful technologies, especially ones 
that raise the level of existential risk; and accelerate the development of beneficial 
technologies, especially those that reduce the existential risks posed by nature or by 
other technologies.

A policy could thus be evaluated on the basis of how much of a differential advan-
tage it gives to desired forms of technological development over undesired forms.3

Preferred order of arrival

Some technologies have an ambivalent effect on existential risks, increasing some 
existential risks while decreasing others. Superintelligence is one such technology.

We have seen in earlier chapters that the introduction of machine super-
intelligence would create a substantial existential risk. But it would reduce 
many other existential risks. Risks from nature—such as asteroid impacts, 
supervolcanoes, and natural pandemics—would be virtually eliminated, since 
superintelligence could deploy countermeasures against most such hazards, 
or at least demote them to the non-existential category (for instance, via space 
colonization).

These existential risks from nature are comparatively small over the relevant 
timescales. But superintelligence would also eliminate or reduce many anthropo-
genic risks. In particular, it would reduce risks of accidental destruction, includ-
ing risk of accidents related to new technologies. Being generally more capable 
than humans, a superintelligence would be less likely to make mistakes, and 
more likely to recognize when precautions are needed, and to implement precau-
tions competently. A well-constructed superintelligence might sometimes take a 
risk, but only when doing so is wise. Furthermore, at least in scenarios where the 
superintelligence forms a singleton, many non-accidental anthropogenic existen-
tial risks deriving from global coordination problems would be eliminated. These 
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include risks of wars, technology races, undesirable forms of competition and 
evolution, and tragedies of the commons.

Since substantial peril would be associated with human beings developing syn-
thetic biology, molecular nanotechnology, climate engineering, instruments for 
biomedical enhancement and neuropsychological manipulation, tools for social 
control that may facilitate totalitarianism or tyranny, and other technologies as-
yet unimagined, eliminating these types of risk would be a great boon. An argu-
ment could therefore be mounted that earlier arrival dates of superintelligence 
are preferable. However, if risks from nature and from other hazards unrelated 
to future technology are small, then this argument could be refined: what mat-
ters is that we get superintelligence before other dangerous technologies, such 
as advanced nanotechnology. Whether it happens sooner or later may not be so 
important (from an impersonal perspective) so long as the order of arrival is right.

The ground for preferring superintelligence to come before other potentially 
dangerous technologies, such as nanotechnology, is that superintelligence would 
reduce the existential risks from nanotechnology but not vice versa.4 Hence, if 
we create superintelligence first, we will face only those existential risks that are 
associated with superintelligence; whereas if we create nanotechnology first, we 
will face the risks of nanotechnology and then, additionally, the risks of superin-
telligence.5 Even if the existential risks from superintelligence are very large, and 
even if superintelligence is the riskiest of all technologies, there could thus be a 
case for hastening its arrival.

These “sooner-is-better” arguments, however, presuppose that the riskiness of 
creating superintelligence is the same regardless of when it is created. If, instead, 
its riskiness declines over time, it might be better to delay the machine intelli-
gence revolution. While a later arrival would leave more time for other existential 
catastrophes to intercede, it could still be preferable to slow the development of 
superintelligence. This would be especially plausible if the existential risks asso-
ciated with superintelligence are much larger than those associated with other 
disruptive technologies.

There are several quite strong reasons to believe that the riskiness of an intel-
ligence explosion will decline significantly over a multidecadal timeframe. One 
reason is that a later date leaves more time for the development of solutions to 
the control problem. The control problem has only recently been recognized, and 
most of the current best ideas for how to approach it were discovered only within 
the past decade or so (and in several cases during the time that this book was 
being written). It is plausible that the state of the art will advance greatly over the 
next several decades; and if the problem turns out to be very difficult, a signifi-
cant rate of progress might continue for a century or more. The longer it takes for 
superintelligence to arrive, the more such progress will have been made when it 
does. This is an important consideration in favor of later arrival dates—and a very 
strong consideration against extremely early arrival dates.

Another reason why superintelligence later might be safer is that this would 
allow more time for various beneficial background trends of human civilization 
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to play themselves out. How much weight one attaches to this consideration will 
depend on how optimistic one is about these trends.

An optimist could certainly point to a number of encouraging indicators and 
hopeful possibilities. People might learn to get along better, leading to reductions 
in violence, war, and cruelty; and global coordination and the scope of politi-
cal integration might increase, making it easier to escape undesirable technology 
races (more on this below) and to work out an arrangement whereby the hoped-
for gains from an intelligence explosion would be widely shared. There appear to 
be long-term historical trends in these directions.6

Further, an optimist could expect that the “sanity level” of humanity will rise 
over the course of this century—that prejudices will (on balance) recede, that 
insights will accumulate, and that people will become more accustomed to think-
ing about abstract future probabilities and global risks. With luck, we could see a 
general uplift of epistemic standards in both individual and collective cognition. 
Again, there are trends pushing in these directions. Scientific progress means that 
more will be known. Economic growth may give a greater portion of the world’s 
population adequate nutrition (particularly during the early years of life that are 
important for brain development) and access to quality education. Advances in 
information technology will make it easier to find, integrate, evaluate, and com-
municate data and ideas. Furthermore, by the century’s end, humanity will have 
made an additional hundred years’ worth of mistakes, from which something 
might have been learned.

Many potential developments are ambivalent in the abovementioned sense—
increasing some existential risks and decreasing others. For example, advances in 
surveillance, data mining, lie detection, biometrics, and psychological or neuro-
chemical means of manipulating beliefs and desires could reduce some existential 
risks by making it easier to coordinate internationally or to suppress terrorists 
and renegades at home. These same advances, however, might also increase some 
existential risks by amplifying undesirable social dynamics or by enabling the 
formation of permanently stable totalitarian regimes.

One important frontier is the enhancement of biological cognition, such as 
through genetic selection. When we discussed this in Chapters 2 and 3, we 
concluded that the most radical forms of superintelligence would be more 
likely to arise in the form of machine intelligence. That claim is consistent with 
cognitive enhancement playing an important role in the lead-up to, and crea-
tion of, machine superintelligence. Cognitive enhancement might seem obvi-
ously risk-reducing: the smarter the people working on the control problem, 
the more likely they are to find a solution. However, cognitive enhancement 
could also hasten the development of machine intelligence, thus reducing the 
time available to work on the problem. Cognitive enhancement would also 
have many other relevant consequences. These issues deserve a closer look. 
(Most of the following remarks about “cognitive enhancement” apply equally 
to non-biological means of increasing our individual or collective epistemic 
effectiveness.)
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Rates of change and cognitive enhancement

An increase in either the mean or the upper range of human intellectual ability 
would likely accelerate technological progress across the board, including pro-
gress toward various forms of machine intelligence, progress on the control prob-
lem, and progress on a wide swath of other technical and economic objectives. 
What would be the net effect of such acceleration?

Consider the limiting case of a “universal accelerator,” an imaginary interven-
tion that accelerates literally everything. The action of such a universal accelerator 
would correspond merely to an arbitrary rescaling of the time metric, producing 
no qualitative change in observed outcomes.7

If we are to make sense of the idea that cognitive enhancement might gener-
ally speed things up, we clearly need some other concept than that of universal 
acceleration. A more promising approach is to focus on how cognitive enhance-
ment might increase the rate of change in one type of process relative to the rate of 
change in some other type of process. Such differential acceleration could affect a 
system’s dynamics. Thus, consider the following concept:

Macro­structural development accelerator—A lever that accelerates the rate at which 
macro-structural features of the human condition develop, while leaving unchanged the 
rate at which micro-level human affairs unfold.

Imagine pulling this lever in the decelerating direction. A brake pad is lowered 
onto the great wheel of world history; sparks fly and metal screeches. After the 
wheel has settled into a more leisurely pace, the result is a world in which tech-
nological innovation occurs more slowly and in which fundamental or globally 
significant change in political structure and culture happens less frequently and 
less abruptly. A greater number of generations come and go before one era gives 
way to another. During the course of a lifespan, a person sees little change in the 
basic structure of the human condition.

For most of our species’ existence, macro-structural development was slower 
than it is now. Fifty thousand years ago, an entire millennium might have 
elapsed without a single significant technological invention, without any notice-
able increase in human knowledge and understanding, and without any glob-
ally meaningful political change. On a micro-level, however, the kaleidoscope of 
human affairs churned at a reasonable rate, with births, deaths, and other person-
ally and locally significant events. The average person’s day might have been more 
action-packed in the Pleistocene than it is today.

If you came upon a magic lever that would let you change the rate of macro-
structural development, what should you do? Ought you to accelerate, decelerate, 
or leave things as they are?

Assuming the impersonal standpoint, this question requires us to consider the 
effects on existential risk. Let us distinguish between two kinds of risk: “state 
risks” and “step risks.” A state risk is one that is associated with being in a certain 
state, and the total amount of state risk to which a system is exposed is a direct 
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function of how long the system remains in that state. Risks from nature are typi-
cally state risks: the longer we remain exposed, the greater the chance that we 
will get struck by an asteroid, supervolcanic eruption, gamma ray burst, naturally 
arising pandemic, or some other slash of the cosmic scythe. Some anthropogenic 
risks are also state risks. At the level of an individual, the longer a soldier pokes his 
head up above the parapet, the greater the cumulative chance he will be shot by an 
enemy sniper. There are anthropogenic state risks at the existential level as well: 
the longer we live in an internationally anarchic system, the greater the cumula-
tive chance of a thermonuclear Armageddon or of a great war fought with other 
kinds of weapons of mass destruction, laying waste to civilization.

A step risk, by contrast, is a discrete risk associated with some necessary or 
desirable transition. Once the transition is completed, the risk vanishes. The 
amount of step risk associated with a transition is usually not a simple function of 
how long the transition takes. One does not halve the risk of traversing a minefield 
by running twice as fast. Conditional on a fast takeoff, the creation of superintel-
ligence might be a step risk: there would be a certain risk associated with the 
takeoff, the magnitude of which would depend on what preparations had been 
made; but the amount of risk might not depend much on whether the takeoff 
takes twenty milliseconds or twenty hours.

We can then say the following regarding a hypothetical macro-structural 
development accelerator:

•	 Insofar as we are concerned with existential state risks, we should favor 
acceleration— provided we think we have a realistic prospect of making it through 
to a post-transition era in which any further existential risks are greatly reduced.

•	 If it were known that there is some step ahead destined to cause an existential ca-
tastrophe, then we ought to reduce the rate of macro-structural development (or 
even put it in reverse) in order to give more generations a chance to exist before the 
curtain is rung down. But, in fact, it would be overly pessimistic to be so confident 
that humanity is doomed.

•	 At present, the level of existential state risk appears to be relatively low. If we imag-
ine the technological macro-conditions for humanity frozen in their current state, 
it seems very unlikely that an existential catastrophe would occur on a timescale of, 
say, a decade. So a delay of one decade—provided it occurred at our current stage 
of development or at some other time when state risk is low—would incur only a 
very minor existential state risk, whereas a postponement by one decade of subse-
quent technological developments might well have a significant beneficial impact on 
later existential step risks, for example by allowing more time for preparation.

Upshot: the main way that the speed of macro-structural development is 
important is by affecting how well prepared humanity is when the time comes to 
confront the key step risks.8

So the question we must ask is how cognitive enhancement (and concomitant 
acceleration of macro-structural development) would affect the expected level 
of preparedness at the critical juncture. Should we prefer a shorter period of 
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preparation with higher intelligence? With higher intelligence, the preparation 
time could be used more effectively, and the final critical step would be taken by a 
more intelligent humanity. Or should we prefer to operate with closer to current 
levels of intelligence if that gives us more time to prepare?

Which option is better depends on the nature of the challenge being prepared 
for. If the challenge were to solve a problem for which learning from experience 
is key, then the chronological length of the preparation period might be the 
determining factor, since time is needed for the requisite experience to accumu-
late. What would such a challenge look like? One hypothetical example would 
be a new weapons technology that we could predict would be developed at some 
point in the future and that would make it the case that any subsequent war 
would have, let us say, a one-in-ten chance of causing an existential catastro-
phe. If such were the nature of the challenge facing us, then we might wish the 
rate of macro-structural development to be slow, so that our species would have 
more time to get its act together before the critical step when the new weapons 
technology is invented. One could hope that during the grace period secured  
through the deceleration, our species might learn to avoid war—that interna-
tional relations around the globe might come to resemble those between the 
countries of the European Union, which, having fought one another ferociously 
for centuries, now coexist in peace and relative harmony. The pacification might 
occur as a result of the gentle edification from various civilizing processes or 
through the shock therapy of sub-existential blows (e.g. small nuclear confla-
grations, and the recoil and resolve they might engender to finally create the 
global institutions necessary for the abolishment of interstate wars). If this kind 
of learning or adjusting would not be much accelerated by increased intelli-
gence, then cognitive enhancement would be undesirable, serving merely to 
burn the fuse faster.

A prospective intelligence explosion, however, may present a challenge of a 
different kind. The control problem calls for foresight, reasoning, and theoreti-
cal insight. It is less clear how increased historical experience would help. Direct 
experience of the intelligence explosion is not possible (until too late), and many 
features conspire to make the control problem unique and lacking in relevant his-
torical precedent. For these reasons, the amount of time that will elapse before the 
intelligence explosion may not matter much per se. Perhaps what matters, instead, 
is (a) the amount of intellectual progress on the control problem achieved by the 
time of the detonation; and (b) the amount of skill and intelligence available at 
the time to implement the best available solutions (and to improvise what is miss-
ing).9 That this latter factor should respond positively to cognitive enhancement is 
obvious. How cognitive enhancement would affect factor (a) is a somewhat subtler 
matter.

Suppose, as suggested earlier, that cognitive enhancement would be a general 
macro-structural development accelerator. This would hasten the arrival of the 
intelligence explosion, thus reducing the amount of time available for prepar-
ation and for making progress on the control problem. Normally this would be a  
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bad thing. However, if the only reason why there is less time available for intel-
lectual progress is that intellectual progress is speeded up, then there need be no 
net reduction in the amount of intellectual progress that will have taken place by 
the time the intelligence explosion occurs.

At this point, cognitive enhancement might appear to be neutral with respect 
to factor (a): the same intellectual progress that would otherwise have been made 
prior to the intelligence explosion—including progress on the control problem—
still gets made, only compressed within a shorter time interval. In actuality, how-
ever, cognitive enhancement may well prove a positive influence on (a).

One reason why cognitive enhancement might cause more progress to have 
been made on the control problem by the time the intelligence explosion occurs 
is that progress on the control problem may be especially contingent on extreme 
levels of intellectual performance—even more so than the kind of work nec-
essary to create machine intelligence. The role for trial and error and accu-
mulation of experimental results seems quite limited in relation to the control 
problem, whereas experimental learning will probably play a large role in the 
development of artificial intelligence or whole brain emulation. The extent to 
which time can substitute for wit may therefore vary between tasks in a way that 
should make cognitive enhancement promote progress on the control problem 
more than it would promote progress on the problem of how to create machine 
intelligence.

Another reason why cognitive enhancement should differentially promote 
progress on the control problem is that the very need for such progress is more 
likely to be appreciated by cognitively more capable societies and individuals. It 
requires foresight and reasoning to realize why the control problem is important 
and to make it a priority.10 It may also require uncommon sagacity to find promis-
ing ways of approaching such an unfamiliar problem.

From these reflections we might tentatively conclude that cognitive enhance-
ment is desirable, at least insofar as the focus is on the existential risks of an intel-
ligence explosion. Parallel lines of thinking apply to other existential risks arising 
from challenges that require foresight and reliable abstract reasoning (as opposed 
to, e.g., incremental adaptation to experienced changes in the environment or a 
multigenerational process of cultural maturation and institution-building).

Technology couplings

Suppose that one thinks that solving the control problem for artificial intelligence 
is very difficult, that solving it for whole brain emulations is much easier, and that 
it would therefore be preferable that machine intelligence be reached via the whole 
brain emulation path. We will return later to the question of whether whole brain 
emulation would be safer than artificial intelligence. But for now we want to make 
the point that even if we accept this premiss, it would not follow that we ought to 
promote whole brain emulation technology. One reason, discussed earlier, is that 
a later arrival of superintelligence may be preferable, in order to allow more time 
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for progress on the control problem and for other favorable background trends 
to culminate—and thus, if one were confident that whole brain emulation would 
precede AI anyway, it would be counterproductive to further hasten the arrival of 
whole brain emulation.

But even if it were the case that it would be best for whole brain emulation to 
arrive as soon as possible, it still would not follow that we ought to favor pro-
gress toward whole brain emulation. For it is possible that progress toward whole 
brain emulation will not yield whole brain emulation. It may instead yield neuro-
morphic artificial intelligence—forms of AI that mimic some aspects of cortical 
organization but do not replicate neuronal functionality with sufficient fidelity 
to constitute a proper emulation. If—as there is reason to believe—such neuro-
morphic AI is worse than the kind of AI that would otherwise have been built, 
and if by promoting whole brain emulation we would make neuromorphic AI 
arrive first, then our pursuit of the supposed best outcome (whole brain emula-
tion) would lead to the worst outcome (neuromorphic AI); whereas if we had pur-
sued the second-best outcome (synthetic AI) we might actually have attained the 
second-best (synthetic AI).

We have just described an (hypothetical) instance of what we might term a 
“technology coupling.”11 This refers to a condition in which two technologies have 
a predictable timing relationship, such that developing one of the technologies 
has a robust tendency to lead to the development of the other, either as a neces-
sary precursor or as an obvious and irresistible application or subsequent step. 
Technology couplings must be taken into account when we use the principle of 
differential technological development: it is no good accelerating the develop-
ment of a desirable technology Y if the only way of getting Y is by developing an 
extremely undesirable precursor technology X, or if getting Y would immediately 
produce an extremely undesirable related technology Z. Before you marry your 
sweetheart, consider the prospective in-laws.

In the case of whole brain emulation, the degree of technology coupling 
is debatable. We noted in Chapter 2 that while whole brain emulation would 
require massive progress in various enabling technologies, it might not require 
any major new theoretical insight. In particular, it does not require that we 
understand how human cognition works, only that we know how to build com-
putational models of small parts of the brain, such as different species of neuron. 
Nevertheless, in the course of developing the ability to emulate human brains, 
a wealth of neuroanatomical data would be collected, and functional models of 
cortical networks would surely be greatly improved. Such progress would seem 
to have a good chance of enabling neuromorphic AI before full-blown whole 
brain emulation.12 Historically, there are quite a few examples of AI techniques 
gleaned from neuroscience or biology. (For example: the McCulloch–Pitts neu-
ron, perceptrons, and other artificial neurons and neural networks, inspired by 
neuroanatomical work; reinforcement learning, inspired by behaviorist psychol-
ogy; genetic algorithms, inspired by evolution theory; subsumption architec-
tures and perceptual hierarchies, inspired by cognitive science theories about 
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motor planning and sensory perception; artificial immune systems, inspired by 
theoretical immunology; swarm intelligence, inspired by the ecology of insect 
colonies and other self-organizing systems; and reactive and behavior-based 
control in robotics, inspired by the study of animal locomotion.) Perhaps more 
significantly, there are plenty of important AI-relevant questions that could 
potentially be answered through further study of the brain. (For example: How 
does the brain store structured representations in working memory and long-
term memory? How is the binding problem solved? What is the neural code? 
How are concepts represented? Is there some standard unit of cortical processing 
machinery, such as the cortical column, and if so how is it wired and how does 
its functionality depend on the wiring? How can such columns be linked up, and 
how can they learn?)

We will shortly have more to say about the relative danger of whole brain emula-
tion, neuromorphic AI, and synthetic AI, but we can already flag another impor-
tant technology coupling: that between whole brain emulation and AI. Even if a 
push toward whole brain emulation actually resulted in whole brain emulation (as 
opposed to neuromorphic AI), and even if the arrival of whole brain emulation 
could be safely handled, a further risk would still remain: the risk associated with 
a second transition, a transition from whole brain emulation to AI, which is an 
ultimately more powerful form of machine intelligence.

There are many other technology couplings, which could be considered in a 
more comprehensive analysis. For instance, a push toward whole brain emulation 
would boost neuroscience progress more generally.13 That might produce various 
effects, such as faster progress toward lie detection, neuropsychological manipu-
lation techniques, cognitive enhancement, and assorted medical advances. 
Likewise, a push toward cognitive enhancement might (depending on the specific 
path pursued) create spillovers such as faster development of genetic selection and 
genetic engineering methods not only for enhancing cognition but for modifying 
other traits as well.

Second-guessing

We encounter another layer of strategic complexity if we take into account that 
there is no perfectly benevolent, rational, and unified world controller who simply 
implements what has been discovered to be the best option. Any abstract point 
about “what should be done” must be embodied in the form of a concrete mes-
sage, which is entered into the arena of rhetorical and political reality. There it 
will be ignored, misunderstood, distorted, or appropriated for various conflicting 
purposes; it will bounce around like a pinball, causing actions and reactions, ush-
ering in a cascade of consequences, the upshot of which need bear no straightfor-
ward relationship to the intentions of the original sender.

A sophisticated operator might try to anticipate these kinds of effect. Consider, 
for example, the following argument template for proceeding with research to 
develop a dangerous technology X. (One argument fitting this template can  
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be found in the writings of Eric Drexler. In Drexler’s case, X = molecular 
nanotechnology.14)

 1 The risks of X are great.
 2 Reducing these risks will require a period of serious preparation.
 3 Serious preparation will begin only once the prospect of X is taken seriously 

by broad sectors of society.
 4 Broad sectors of society will take the prospect of X seriously only once a large 

research effort to develop X is underway.
 5 The earlier a serious research effort is initiated, the longer it will take to deliver 

X (because it starts from a lower level of pre-existing enabling technologies).
 6 Therefore, the earlier a serious research effort is initiated, the longer the 

 period during which serious preparation will be taking place, and the greater 
the reduction of the risks.

 7 Therefore, a serious research effort toward X should be initiated immediately.

What initially looks like a reason for going slow or stopping—the risks of 
X being great—ends up, on this line of thinking, as a reason for the opposite 
conclusion.

A related type of argument is that we ought—rather callously—to welcome 
small and medium-scale catastrophes on grounds that they make us aware of our 
vulnerabilities and spur us into taking precautions that reduce the probability of 
an existential catastrophe. The idea is that a small or medium-scale catastrophe 
acts like an inoculation, challenging civilization with a relatively survivable form 
of a threat and stimulating an immune response that readies the world to deal 
with the existential variety of the threat.15

These “shock’em-into-reacting” arguments advocate letting something bad 
happen in the hope that it will galvanize a public reaction. We mention them 
here not to endorse them, but as a way to introduce the idea of (what we will term) 
“second-guessing arguments.” Such arguments maintain that by treating others 
as irrational and playing to their biases and misconceptions it is possible to elicit 
a response from them that is more competent than if a case had been presented 
honestly and forthrightly to their rational faculties.

It may seem unfeasibly difficult to use the kind of stratagems recommended by 
second-guessing arguments to achieve long-term global goals. How could any-
body predict the final course of a message after it has been jolted hither and thither 
in the pinball machine of public discourse? Doing so would seem to require pre-
dicting the rhetorical effects on myriad constituents with varied idiosyncrasies 
and fluctuating levels of influence over long periods of time during which the sys-
tem may be perturbed by unanticipated events from the outside while its topology 
is also undergoing a continuous endogenous reorganization: surely an impossible 
task!16 However, it may not be necessary to make detailed predictions about the 
system’s entire future trajectory in order to identify an intervention that can be 
reasonably expected to increase the chances of a certain long-term outcome. One 
might, for example, consider only the relatively near-term and predictable effects 
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in a detailed way, selecting an action that does well in regard to those, while mod-
eling the system’s behavior beyond the predictability horizon as a random walk.

There may, however, be a moral case for de-emphasizing or refraining from 
second-guessing moves. Trying to outwit one another looks like a zero-sum 
game—or negative-sum, when one considers the time and energy that would be 
dissipated by the practice as well as the likelihood that it would make it generally 
harder for anybody to discover what others truly think and to be trusted when 
expressing their own opinions.17 A full-throttled deployment of the practices of 
strategic communication would kill candor and leave truth bereft to fend for her-
self in the backstabbing night of political bogeys.

Pathways and enablers

Should we celebrate advances in computer hardware? What about advances on 
the path toward whole brain emulation? We will look at these two questions in 
turn.

Effects of hardware progress

Faster computers make it easier to create machine intelligence. One effect of accel-
erating progress in hardware, therefore, is to hasten the arrival of machine intel-
ligence. As discussed earlier, this is probably a bad thing from the impersonal 
perspective, since it reduces the amount of time available for solving the control 
problem and for humanity to reach a more mature stage of civilization. The case 
is not a slam dunk, though. Since superintelligence would eliminate many other 
existential risks, there could be reason to prefer earlier development if the level of 
these other existential risks were very high.18

Hastening or delaying the onset of the intelligence explosion is not the only 
channel through which the rate of hardware progress can affect existential risk. 
Another channel is that hardware can to some extent substitute for software; 
thus, better hardware reduces the minimum skill required to code a seed AI. Fast 
computers might also encourage the use of approaches that rely more heavily on 
brute-force techniques (such as genetic algorithms and other generate-evaluate-
discard methods) and less on techniques that require deep understanding to use. 
If brute-force techniques lend themselves to more anarchic or imprecise system  
designs, where the control problem is harder to solve than in more precisely 
 engineered and theoretically controlled systems, this would be another way in 
which faster computers would increase the existential risk.

Another consideration is that rapid hardware progress increases the likelihood 
of a fast takeoff. The more rapidly the state of the art advances in the semiconduc-
tor industry, the fewer the person-hours of programmers’ time spent exploiting 
the capabilities of computers at any given performance level. This means that an 
intelligence explosion is less likely to be initiated at the lowest level of hardware 
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performance at which it is feasible. An intelligence explosion is thus more likely 
to be initiated when hardware has advanced significantly beyond the minimum 
level at which the eventually successful programming approach could first have 
succeeded. There is then a hardware overhang when the takeoff eventually does 
occur. As we saw in Chapter 4, hardware overhang is one of the main factors that 
reduce recalcitrance during the takeoff. Rapid hardware progress, therefore, will 
tend to make the transition to superintelligence faster and more explosive.

A faster takeoff via a hardware overhang can affect the risks of the transition 
in several ways. The most obvious is that a faster takeoff offers less opportunity 
to respond and make adjustments whilst the transition is in progress, which 
would tend to increase risk. A related consideration is that a hardware overhang 
would reduce the chances that a dangerously self-improving seed AI could be 
contained by limiting its ability to colonize sufficient hardware: the faster each 
processor is, the fewer processors would be needed for the AI to quickly boot-
strap itself to superintelligence. Yet another effect of a hardware overhang is to 
level the playing field between big and small projects by reducing the importance 
of one of the advantages of larger projects—the ability to afford more powerful 
computers. This effect, too, might increase existential risk, if larger projects are 
more likely to solve the control problem and to be pursuing morally acceptable 
objectives.19

There are also advantages to a faster takeoff. A faster takeoff would increase 
the likelihood that a singleton will form. If establishing a singleton is sufficiently 
important for solving the post-transition coordination problems, it might be 
worth accepting a greater risk during the intelligence explosion in order to miti-
gate the risk of catastrophic coordination failures in its aftermath.

Developments in computing can affect the outcome of a machine intelligence 
revolution not only by playing a direct role in the construction of machine intel-
ligence but also by having diffuse effects on society that indirectly help shape 
the initial conditions of the intelligence explosion. The Internet, which required 
hardware to be good enough to enable personal computers to be mass produced 
at low cost, is now influencing human activity in many areas, including work 
in artificial intelligence and research on the control problem. (This book might 
not have been written, and you might not have found it, without the Internet.) 
However, hardware is already good enough for a great many applications that 
could facilitate human communication and deliberation, and it is not clear that 
the pace of progress in these areas is strongly bottlenecked by the rate of hardware 
improvement.20

On balance, it appears that faster progress in computing hardware is undesir-
able from the impersonal evaluative standpoint. This tentative conclusion could 
be overturned, for example if the threats from other existential risks or from 
post-transition coordination failures turn out to be extremely large. In any case, 
it seems difficult to have much leverage on the rate of hardware advancement. 
Our efforts to improve the initial conditions for the intelligence explosion should 
therefore probably focus on other parameters.
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Note that even when we cannot see how to influence some parameter, it can be 
useful to determine its “sign” (i.e. whether an increase or decrease in that param-
eter would be desirable) as a preliminary step in mapping the strategic lay of the 
land. We might later discover a new leverage point that does enable us to manipu-
late the parameter more easily. Or we might discover that the parameter’s sign 
correlates with the sign of some other more manipulable parameter, so that our 
initial analysis helps us decide what to do with this other parameter.

Should whole brain emulation research be promoted?

The harder it seems to solve the control problem for artificial intelligence, the 
more tempting it is to promote the whole brain emulation path as a less risky 
alternative. There are several issues, however, that must be analyzed before one 
can arrive at a well-considered judgment.21

First, there is the issue of technology coupling, already discussed earlier. We 
pointed out that an effort to develop whole brain emulation could result in neuro-
morphic AI instead, a form of machine intelligence that may be especially unsafe.

But let us assume, for the sake of argument, that we actually achieve whole 
brain emulation (WBE). Would this be safer than AI? This, itself, is a complicated 
issue. There are at least three putative advantages of WBE: (i) that its performance 
characteristics would be better understood than those of AI; (ii) that it would 
inherit human motives; and (iii) that it would result in a slower takeoff. Let us very 
briefly reflect on each.

 i That it should be easier to understand the intellectual performance character-
istics of an emulation than of an AI sounds plausible. We have abundant expe-
rience with the strengths and weaknesses of human intelligence but no experi-
ence with human-level artificial intelligence. However, to understand what a 
snapshot of a digitized human intellect can and cannot do is not the same as to 
understand how such an intellect will respond to modifications aimed at en-
hancing its performance. An artificial intellect, by contrast, might be carefully 
designed to be understandable, in both its static and dynamic dispositions. So 
while whole brain emulation may be more predictable in its intellectual per-
formance than a generic AI at a comparable stage of development, it is unclear 
whether whole brain emulation would be dynamically more predictable than 
an AI engineered by competent safety-conscious programmers.

 ii As for an emulation inheriting the motivations of its human template, this is 
far from guaranteed. Capturing human evaluative dispositions might require a 
very high-fidelity emulation. Even if some individual’s motivations were perfect-
ly captured, it is unclear how much safety would be purchased. Humans can be 
untrustworthy, selfish, and cruel. While templates would hopefully be selected 
for exceptional virtue, it may be hard to foretell how someone will act when 
transplanted into radically alien circumstances, superhumanly enhanced in in-
telligence, and tempted with an opportunity for world domination. It is true 
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that emulations would at least be more likely to have human­like motivations 
(as opposed to valuing only paperclips or discovering digits of pi). Depending 
on one’s views on human nature, this might or might not be reassuring.22

 iii It is not clear why whole brain emulation should result in a slower takeoff than 
artificial intelligence. Perhaps with whole brain emulation one should expect 
less hardware overhang, since whole brain emulation is less computationally 
efficient than artificial intelligence can be. Perhaps, also, an AI system could 
more easily absorb all available computing power into one giant integrated in-
tellect, whereas whole brain emulation would forego quality superintelligence 
and pull ahead of humanity only in speed and size of population. If whole brain 
emulation does lead to a slower takeoff, this could have benefits in terms of 
alleviating the control problem. A slower takeoff would also make a multipolar 
outcome more likely. But whether a multipolar outcome is desirable is very 
doubtful.

There is another important complication with the general idea that getting 
whole brain emulation first is safer: the need to cope with a second transition. 
Even if the first form of human-level machine intelligence is emulation-based, it 
would still remain feasible to develop artificial intelligence. AI in its mature form 
has important advantages over WBE, making AI the ultimately more powerful 
technology.23 While mature AI would render WBE obsolete (except for the special 
purpose of preserving individual human minds), the reverse does not hold.

What this means is that if AI is developed first, there might be a single wave of 
the intelligence explosion. But if WBE is developed first, there may be two waves: 
first, the arrival of WBE; and later, the arrival of AI. The total existential risk along 
the WBE-first path is the sum of the risk in the first transition and the risk in the 
second transition (conditional on having made it through the first); see Figure 13.24

How much safer would the AI transition be in a WBE world? One considera-
tion is that the AI transition would be less explosive if it occurs after some form 
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Figure 13 Artificial intelligence or whole brain emulation first? In an AI-first scenario, there is 
one transition that creates an existential risk. In a WBE-first scenario, there are two risky transi-
tions, first the development of WBE and then the development of AI. The total existential risk 
along the WBE-first scenario is the sum of these. However, the risk of an AI transition might be 
lower if it occurs in a world where WBE has already been successfully introduced.
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of machine intelligence has already been realized. Emulations, running at digital 
speeds and in numbers that might far exceed the biological human population, 
would reduce the cognitive differential, making it easier for emulations to con-
trol the AI. This consideration is not too weighty, since the gap between AI and 
WBE could still be wide. However, if the emulations were not just faster and more 
numerous but also somewhat qualitatively smarter than biological humans (or at 
least drawn from the top end of the human distribution) then the WBE-first scen-
ario would have advantages paralleling those of human cognitive enhancement, 
which we discussed above.

Another consideration is that the transition to WBE would extend the lead of 
the frontrunner. Consider a scenario in which the frontrunner has a six-month 
lead over the closest follower in developing whole brain emulation technology. 
Suppose that the first emulations to be created are cooperative, safety-focused, 
and patient. If they run on fast hardware, these emulations could spend subjective 
eons pondering how to create safe AI. For example, if they run at a speedup of 
100,000× and are able to work on the control problem undisturbed for six months 
of sidereal time, they could hammer away at the control problem for fifty millen-
nia before facing competition from other emulations. Given sufficient hardware, 
they could hasten their progress by fanning out myriad copies to work indepen-
dently on subproblems. If the frontrunner uses its six-month lead to form a sin-
gleton, it could buy its emulation AI-development team an unlimited amount of 
time to work on the control problem.25

On balance, it looks like the risk of the AI transition would be reduced if WBE 
comes before AI. However, when we combine the residual risk in the AI transition 
with the risk of an antecedent WBE transition, it becomes very unclear how the 
total existential risk along the WBE-first path stacks up against the risk along the 
AI-first path. Only if one is quite pessimistic about biological humanity’s ability  
to manage an AI transition—after taking into account that human nature or 
 civilization might have improved by the time we confront this challenge—should 
the WBE-first path seem attractive.

To figure out whether whole brain emulation technology should be promoted, 
there are some further important points to place in the balance. Most signifi-
cantly, there is the technology coupling mentioned earlier: a push toward WBE 
could instead produce neuromorphic AI. This is a reason against pushing for 
WBE.26 No doubt, there are some synthetic AI designs that are less safe than 
some neuromorphic designs. In expectation, however, it seems that neuromor-
phic designs are less safe. One ground for this is that imitation can substitute for 
understanding. To build something from the ground up one must usually have a 
reasonably good understanding of how the system will work. Such understanding 
may not be necessary to merely copy features of an existing system. Whole brain 
emulation relies on wholesale copying of biology, which may not require a com-
prehensive computational systems-level understanding of cognition (though a 
large amount of component-level understanding would undoubtedly be needed). 
Neuromorphic AI may be like whole brain emulation in this regard: it would be 
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achieved by cobbling together pieces plagiarized from biology without the engi-
neers necessarily having a deep mathematical understanding of how the system 
works. But neuromorphic AI would be unlike whole brain emulation in another 
regard: it would not have human motivations by default.27 This consideration 
argues against pursuing the whole brain emulation approach to the extent that it 
would likely produce neuromorphic AI.

A second point to put in the balance is that WBE is more likely to give us 
advance notice of its arrival. With AI it is always possible that somebody will 
make an unexpected conceptual breakthrough. WBE, by contrast, will require 
many laborious precursor steps—high-throughput scanning facilities, image 
processing software, detailed neural modeling work. We can therefore be confi-
dent that WBE is not imminent (not less than, say, fifteen or twenty years away). 
This means that efforts to accelerate WBE will make a difference mainly in scen-
arios in which machine intelligence is developed comparatively late. This could 
make WBE investments attractive to somebody who wants the intelligence explo-
sion to preempt other existential risks but is wary of supporting AI for fear of 
triggering an intelligence explosion prematurely, before the control problem has 
been solved. However, the uncertainty over the relevant timescales is probably 
currently too large to enable this consideration to carry much weight.28

A strategy of promoting WBE is thus most attractive if (a) one is very pessimis-
tic about humans solving the control problem for AI, (b) one is not too worried 
about neuromorphic AI, multipolar outcomes, or the risks of a second transition, 
(c) one thinks that the default timing of WBE and AI is close, and (d) one prefers 
superintelligence to be developed neither very late nor very early.

The person-affecting perspective favors speed

I fear the blog commenter “washbash” may speak for many when he or she writes:

I instinctively think go faster. Not because I think this is better for the world. Why should I 
care about the world when I am dead and gone? I want it to go fast, damn it! This increases 
the chance I have of experiencing a more technologically advanced future.29

From the person-affecting standpoint, we have greater reason to rush forward 
with all manner of radical technologies that could pose existential risks. This 
is because the default outcome is that almost everyone who now exists is dead 
within a century.

The case for rushing is especially strong with regard to technologies that could 
extend our lives and thereby increase the expected fraction of the currently existing 
population that may still be around for the intelligence explosion. If the machine 
intelligence revolution goes well, the resulting superintelligence could almost 
certainly devise means to indefinitely prolong the lives of the then still-existing 
humans, not only keeping them alive but restoring them to health and youth-
ful vigor, and enhancing their capacities well beyond what we currently think of 
as the human range; or helping them shuffle off their mortal coils altogether by 
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uploading their minds to a digital substrate and endowing their liberated spirits 
with exquisitely good-feeling virtual embodiments. With regard to technologies 
that do not promise to save lives, the case for rushing is weaker, though perhaps 
still sufficiently supported by the hope of raised standards of living.30

The same line of reasoning makes the person-affecting perspective favor many 
risky technological innovations that promise to hasten the onset of the intelligence 
explosion, even when those innovations are disfavored in the impersonal perspec-
tive. Such innovations could shorten the wolf hours during which we individually 
must hang on to our perch if we are to live to see the daybreak of the posthuman 
age. From the person-affecting standpoint, faster hardware progress thus seems 
desirable, as does faster progress toward WBE. Any adverse effect on existential 
risk is probably outweighed by the personal benefit of an increased chance of the 
intelligence explosion happening in the lifetime of currently existing people.31

Collaboration

One important parameter is the degree to which the world will manage to coor-
dinate and collaborate in the development of machine intelligence. Collaboration 
would bring many benefits. Let us take a look at how this parameter might affect 
the outcome and what levers we might have for increasing the extent and intensity 
of collaboration.

The race dynamic and its perils

A race dynamic exists when one project fears being overtaken by another. This 
does not require the actual existence of multiple projects. A situation with only 
one project could exhibit a race dynamic if that project is unaware of its lack of 
competitors. The Allies would probably not have developed the atomic bomb as 
quickly as they did had they not believed (erroneously) that the Germans might 
be close to the same goal.

The severity of a race dynamic (that is, the extent to which competitors prior-
itize speed over safety) depends on several factors, such as the closeness of the 
race, the relative importance of capability and luck, the number of competitors, 
whether competing teams are pursuing different approaches, and the degree to 
which projects share the same aims. Competitors’ beliefs about these factors are 
also relevant. (See Box 13.)

In the development of machine superintelligence, it seems likely that there will 
be at least a mild race dynamic, and it is possible that there will be a severe race 
dynamic. The race dynamic has important consequences for how we should think 
about the strategic challenge posed by the possibility of an intelligence explosion.

The race dynamic could spur projects to move faster toward superintelligence 
while reducing investment in solving the control problem. Additional detrimen-
tal effects of the race dynamic are also possible, such as direct hostilities between 
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Box 13 A risk-race to the bottom

Consider a hypothetical AI arms race in which several teams compete to develop 
superintelligence.32 Each team decides how much to invest in safety—knowing 
that resources spent on developing safety precautions are resources not spent 
on developing the AI. Absent a deal between all the competitors (which might be 
stymied by bargaining or enforcement difficulties), there might then be a risk-race 
to the bottom, driving each team to take only a minimum of precautions.

One can model each team’s performance as a function of its capability (meas-
uring its raw ability and luck) and a penalty term corresponding to the cost of its 
safety precautions. The team with the highest performance builds the first AI. 
The riskiness of that AI is determined by how much its creators invested in safety. 
In the worst-case scenario, all teams have equal levels of capability. The winner 
is then determined exclusively by investment in safety: the team that took the 
fewest safety precautions wins. The Nash equilibrium for this game is for every 
team to spend nothing on safety. In the real world, such a situation might arise 
via a risk ratchet: some team, fearful of falling behind, increments its risk-taking to 
catch up with its competitors—who respond in kind, until the maximum level of 
risk is reached.

Capability versus risk

The situation changes when there are variations in capability. As variations in ca-
pability become more important relative to the cost of safety precautions, the risk 
ratchet weakens: there is less incentive to incur an extra bit of risk if doing so is 
unlikely to change the order of the race. This is illustrated under various scenarios 
in Figure 14, which plots how the riskiness of the AI depends on the  importance 
of capability. Safety investment ranges from 1 (resulting in perfectly safe AI)  

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0(a) (b)

Relative importance of capability

A
I r

isk
 le

ve
l

Relative importance of capability

A
I r

isk
 le

ve
l

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Figure 14 Risk levels in AI technology races. Levels of risk of dangerous AI in a simple model 
of a technology race involving either (a) two teams or (b) five teams, plotted against the rela-
tive importance of capability (as opposed to investment in safety) in determining which project 
wins the race. The graphs show three information-level scenarios: no capability information 
(straight), private capability information (dashed), and full capability information (dotted).

continued
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Box 13  Continued

to 0 (completely unsafe AI). The x-axis represents the relative importance of 
capability versus safety investment in determining the speed of a team’s progress 
toward AI. (At 0.5, the safety investment level is twice are important as capability; 
at 1, the two are equal; at 2, capability is twice as important as safety level; and so 
forth.) The y-axis represents the level of AI risk (the expected fraction of their 
maximum utility that the winner of the race gets).

We see that, under all scenarios, the dangerousness of the resultant AI is 
maximal when capability plays no role, gradually decreasing as capability grows 
in importance.

Compatible goals

Another way of reducing the risk is by giving teams more of a stake in each 
other’s success. If competitors are convinced that coming second means the to-
tal loss of everything they care about, they will take whatever risk necessary to 
bypass their rivals. Conversely, teams will invest more in safety if less depends 
on winning the race. This suggests that we should encourage various forms of 
cross-investment.

The number of competitors

The greater the number of competing teams, the more dangerous the race be-
comes: each team, having less chance of coming first, is more willing to throw 
caution to the wind. This can be seen by contrasting Figure 14a (two teams) with 
Figure 14b (five teams). In every scenario, more competitors means more risk. 
Risk would be reduced if teams coalesce into a smaller number of competing 
coalitions.

The curse of too much information

Is it good if teams know about their positions in the race (knowing their capabil-
ity scores, for instance)? Here, opposing factors are at play. It is desirable that a 
leader knows it is leading (so that it knows it has some margin for additional safety 
precautions). Yet it is undesirable that a laggard knows it has fallen behind (since 
this would confirm that it must cut back on safety to have any hope of catching 
up). While intuitively it may seem this trade-off could go either way, the models 
are unequivocal: information is (in expectation) bad.33 Figures 14a and 14b each 
plot three scenarios: the straight lines correspond to situations in which no team 
knows any of the capability scores, its own included. The dashed lines show situa-
tions where each team knows its own capability only. (In those situations, a team 
takes extra risk only if its capability is low.) And the dotted lines show what hap-
pens when all teams know each other’s capabilities. (They take extra risks if their 
capability scores are close to one another.) With each increase in information 
level, the race dynamic becomes worse.
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competitors. Suppose that two nations are racing to develop the first superintel-
ligence, and that one of them is seen to be pulling ahead. In a winner-takes-all 
situation, a lagging project might be tempted to launch a desperate strike against 
its rival rather than passively await defeat. Anticipating this possibility, the front-
runner might be tempted to strike preemptively. If the antagonists are powerful  
states, the clash could be bloody.34 (A “surgical strike” against the rival’s AI pro-
ject might risk triggering a larger confrontation and might in any case not be 
feasible if the host country has taken precautions.35)

Scenarios in which the rival developers are not states but smaller entities, such 
as corporate labs or academic teams, would probably feature much less direct 
destruction from conflict. Yet the overall consequences of competition may be 
almost as bad. This is because the main part of the expected harm from competi-
tion stems not from the smashup of battle but from the downgrade of precaution. 
A race dynamic would, as we saw, reduce investment in safety; and conflict, even 
if nonviolent, would tend to scotch opportunities for collaboration, since projects 
would be less likely to share ideas for solving the control problem in a climate of 
hostility and mistrust.36

On the benefits of collaboration

Collaboration thus offers many benefits. It reduces the haste in developing 
machine intelligence. It allows for greater investment in safety. It avoids violent 
conflicts. And it facilitates the sharing of ideas about how to solve the control 
problem. To these benefits we can add another: collaboration would tend to  
produce outcomes in which the fruits of a successfully controlled intelligence 
explosion get distributed more equitably.

That broader collaboration should result in wider sharing of gains is not axi-
omatic. In principle, a small project run by an altruist could lead to an outcome 
where the benefits are shared evenly or equitably among all morally consid-
erable beings. Nevertheless, there are several reasons to suppose that broader 
collaborations, involving a greater number of sponsors, are (in expectation) dis-
tributionally superior. One such reason is that sponsors presumably prefer an 
outcome in which they themselves get (at least) their fair share. A broad collabor-
ation then means that relatively many individuals get at least their fair share, 
assuming the project is successful. Another reason is that a broad collaboration  
also seems likelier to benefit people outside the collaboration. A broader collabor-
ation contains more members, so more outsiders would have personal ties to 
somebody on the inside looking out for their interests. A broader collaboration 
is also more likely to include at least some altruist who wants to benefit every-
one. Furthermore, a broader collaboration is more likely to operate under public 
oversight, which might reduce the risk of the entire pie being captured by a clique 
of programmers or private investors.37 Note also that the larger the successful 
collaboration is, the lower the costs to it of extending the benefits to all outsiders. 
(For instance, if 90% of all people were already inside the collaboration, it would 
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cost them no more than 10% of their holdings to bring all outsiders up to their 
own level.)

It is thus plausible that broader collaborations would tend to lead to a wider 
distribution of the gains (though some projects with few sponsors might also have 
distributionally excellent aims). But why is a wide distribution of gains desirable?

There are both moral and prudential reasons for favoring outcomes in which 
everybody gets a share of the bounty. We will not say much about the moral case, 
except to note that it need not rest on any egalitarian principle. The case might be 
made, for example, on grounds of fairness. A project that creates machine super-
intelligence imposes a global risk externality. Everybody on the planet is placed in 
jeopardy, including those who do not consent to having their own lives and those 
of their family imperiled in this way. Since everybody shares the risk, it would 
seem to be a minimal requirement of fairness that everybody also gets a share of 
the upside.

The fact that the total (expected) amount of good seems greater in collabora-
tion scenarios is another important reason such scenarios are morally preferable.

The prudential case for favoring a wide distribution of gains is two-pronged. 
One prong is that wide distribution should promote collaboration, thereby miti-
gating the negative consequences of the race dynamic. There is less incentive to 
fight over who gets to build the first superintelligence if everybody stands to ben-
efit equally from any project’s success. The sponsors of a particular project might 
also benefit from credibly signaling their commitment to distributing the spoils 
universally, a certifiably altruistic project being likely to attract more supporters 
and fewer enemies.38

The other prong of the prudential case for favoring a wide distribution of gains 
has to do with whether agents are risk-averse or have utility functions that are 
sublinear in resources. The central fact here is the enormousness of the potential 
resource pie. Assuming the observable universe is as uninhabited as it looks, it 
contains more than one vacant galaxy for each human being alive. Most people 
would much rather have certain access to one galaxy’s worth of resources than 
a lottery ticket offering a one-in-a-billion chance of owning a billion galaxies.39 
Given the astronomical size of humanity’s cosmic endowment, it seems that self-
interest should generally favor deals that would guarantee each person a share, 
even if each share corresponded to a small fraction of the total. The important 
thing, when such an extravagant bonanza is in the offing, is to not be left out in 
the cold.

This argument from the enormousness of the resource pie presupposes that 
preferences are resource-satiable.40 That supposition does not necessarily hold. 
For instance, several prominent ethical theories—including especially aggre-
gative consequentialist theories—correspond to utility functions that are risk- 
neutral and linear in resources. A billion galaxies could be used to create a billion 
times more happy lives than a single galaxy. They are thus, to a utilitarian, worth 
a billion times as much.41 Ordinary selfish human preference functions, however, 
appear to be relatively resource-satiable.
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This last statement must be flanked by two important qualifications. The first is 
that many people care about rank. If multiple agents each wants to top the Forbes 
rich list, then no resource pie is large enough to give everybody full satisfaction.

The second qualification is that the post-transition technology base would ena-
ble material resources to be converted into an unprecedented range of products, 
including some goods that are not currently available at any price even though 
they are highly valued by many humans. A billionaire does not live a thousand 
times longer than a millionaire. In the era of digital minds, however, the billion-
aire could afford a thousandfold more computing power and could thus enjoy a 
thousandfold longer subjective lifespan. Mental capacity, likewise, could be for 
sale. In such circumstances, with economic capital convertible into vital goods at 
a constant rate even for great levels of wealth, unbounded greed would make more 
sense than it does in today’s world where the affluent (those among them lacking a 
philanthropic heart) are reduced to spending their riches on airplanes, boats, art 
collections, or a fourth and a fifth residence.

Does this mean that an egoist should be risk-neutral with respect to his or her 
post-transition resource endowment? Not quite. Physical resources may not be 
convertible into lifespan or mental performance at arbitrary scales. If a life must 
be lived sequentially, so that observer moments can remember earlier events and 
be affected by prior choices, then the life of a digital mind cannot be extended arbi-
trarily without utilizing an increasing number of sequential computational opera-
tions. But physics limits the extent to which resources can be transformed into 
sequential computations.42 The limits on sequential computation may also con-
strain some aspects of cognitive performance to scale radically sublinearly beyond 
a relatively modest resource endowment. Furthermore, it is not obvious that an 
egoist would or should be risk-neutral even with regard to highly normatively rele-
vant outcome metrics such as number of quality-adjusted subjective life years. If 
offered the choice between an extra 2,000 years of life for certain and a one-in-ten 
chance of an extra 30,000 years of life, I think most people would select the former 
(even under the stipulation that each life year would be of equal quality).43

In reality, the prudential case for favoring a wide distribution of gains is presum-
ably subject-relative and situation-dependent. Yet, on the whole, people would be 
more likely to get (almost all of) what they want if a way is found to achieve a wide 
distribution—and this holds even before taking into account that a commitment 
to a wider distribution would tend to foster collaboration and thereby increase the 
chances of avoiding existential catastrophe. Favoring a broad distribution, there-
fore, appears to be not only morally mandated but also prudentially advisable.

There is a further set of consequences to collaboration that should be given 
at least some shrift: the possibility that pre-transition collaboration influences 
the level of post-transition collaboration. Assume humanity solves the control 
problem. (If the control problem is not solved, it may scarcely matter how much 
collaboration there is post transition.) There are two cases to consider. The first is 
that the intelligence explosion does not create a winner-takes-all dynamic (pre-
sumably because the takeoff is relatively slow). In this case it is plausible that if 
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pre-transition collaboration has any systematic effect on post-transition collabo-
ration, it has a positive effect, tending to promote subsequent collaboration. The 
original collaborative relationships may endure and continue beyond the tran-
sition; also, pre-transition collaboration may offer more opportunity for people 
to steer developments in desirable (and, presumably, more collaborative) post-
transition directions.

The second case is that the nature of the intelligence explosion does encourage 
a winner-takes-all dynamic (presumably because the takeoff is relatively fast). In 
this case, if there is no extensive collaboration before the takeoff, a singleton is 
likely to emerge—a single project would undergo the transition alone, at some 
point obtaining a decisive strategic advantage combined with superintelligence. 
A singleton, by definition, is a highly collaborative social order.44 The absence of 
extensive collaboration pre-transition would thus lead to an extreme degree of 
collaboration post-transition. By contrast, a somewhat higher level of collabora-
tion in the run-up to the intelligence explosion opens up a wider variety of pos-
sible outcomes. Collaborating projects could synchronize their ascent to ensure 
they transition in tandem without any of them getting a decisive strategic advan-
tage. Or different sponsor groups might merge their efforts into a single project, 
while refusing to give that project a mandate to form a singleton. For example, 
one could imagine a consortium of nations forming a joint scientific project to 
develop machine superintelligence, yet not authorizing this project to evolve into 
anything like a supercharged United Nations, electing instead to maintain the 
factious world order that existed before.

Particularly in the case of a fast takeoff, therefore, the possibility exists that 
greater pre-transition collaboration would result in less post-transition collabora-
tion. However, to the extent that collaborating entities are able to shape the out-
come, they may allow the emergence or continuation of non-collaboration only if 
they foresee that no catastrophic consequences would follow from post-transition 
factiousness. Scenarios in which pre-transition collaboration leads to reduced 
post-transition collaboration may therefore mostly be ones in which reduced 
post-transition collaboration is innocuous.

In general, greater post-transition collaboration appears desirable. It would 
reduce the risk of dystopian dynamics in which economic competition and a rap-
idly expanding population lead to a Malthusian condition, or in which evolution-
ary selection erodes human values and selects for non-eudaemonic forms, or in 
which rival powers suffer other coordination failures such as wars and technology 
races. The last of these issues, the prospect of technology races, may be particu-
larly problematic if the transition is to an intermediary form of machine intel-
ligence (whole brain emulation) since it would create a new race dynamic that 
would harm the chances of the control problem being solved for the subsequent 
second transition to a more advanced form of machine intelligence (artificial 
intelligence).

We described earlier how collaboration can reduce conflict in the run-up to 
the intelligence explosion, increasing the chances that the control problem will 
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be solved, and improve both the moral legitimacy and the prudential desirability 
of the resulting resource allocation. To these benefits of collaboration it may thus 
be possible to add one more: that broader collaboration pre-transition could help 
with important coordination problems in the post-transition era.

Working together

Collaboration can take different forms depending on the scale of the collaborat-
ing entities. At a small scale, individual AI teams who believe themselves to be in 
competition with one another could choose to pool their efforts.45 Corporations 
could merge or cross-invest. At a larger scale, states could join in a big inter-
national project. There are precedents to large-scale international collaboration 
in science and technology (such as CERN, the Human Genome Project, and the 
International Space Station), but an international project to develop safe super-
intelligence would pose a different order of challenge because of the security 
implications of the work. It would have to be constituted not as an open academic 
collaboration but as an extremely tightly controlled joint enterprise. Perhaps 
the scientists involved would have to be physically isolated and prevented from 
communicating with the rest of the world for the duration of the project, except 
through a single carefully vetted communication channel. The required level of 
security might be nearly unattainable at present, but advances in lie detection and 
surveillance technology could make it feasible later this century. It is also worth 
bearing in mind that broad collaboration does not necessarily mean that large 
numbers of researchers would be involved in the project; it simply means that 
many people would have a say in the project’s aims. In principle, a project could 
involve a maximally broad collaboration comprising all of humanity as spon-
sors (represented, let us say, by the General Assembly of the United Nations), yet 
employ only a single scientist to carry out the work.46

There is a reason for starting collaboration as early as possible, namely to take 
advantage of the veil of ignorance that hides from our view any specific informa-
tion about which individual project will get to superintelligence first. The closer 
to the finishing line we get, the less uncertainty will remain about the relative 
chances of competing projects; and the harder it may consequently be to make 
a case based on the self-interest of the frontrunner to join a collaborative pro-
ject that would distribute the benefits to all of humanity. On the other hand, it 
also looks hard to establish a formal collaboration of worldwide scope before the 
prospect of superintelligence has become much more widely recognized than it 
currently is and before there is a clearly visible road leading to the creation of 
machine superintelligence. Moreover, to the extent that collaboration would pro-
mote progress along that road, it may actually be counterproductive in terms of 
safety, as discussed earlier.

The ideal form of collaboration for the present may therefore be one that does 
not initially require specific formalized agreements and that does not expedite 
advances in machine intelligence. One proposal that fits these criteria is that we 
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propound an appropriate moral norm, expressing our commitment to the idea 
that superintelligence should be for the common good. Such a norm could be 
formulated as follows:

The common good principle

Superintelligence should be developed only for the benefit of all of humanity and in 
the service of widely shared ethical ideals.47

Establishing from an early stage that the immense potential of superintelli-
gence belongs to all of humanity will give more time for such a norm to become 
entrenched.

The common good principle does not preclude commercial incentives for indi-
viduals or firms active in related areas. For example, a firm might satisfy the call 
for universal sharing of the benefits of superintelligence by adopting a “windfall 
clause” to the effect that all profits up to some very high ceiling (say, a trillion dol-
lars annually) would be distributed in the ordinary way to the firm’s shareholders 
and other legal claimants, and that only profits in excess of the threshold would be 
distributed to all of humanity evenly (or otherwise according to universal moral 
criteria). Adopting such a windfall clause should be substantially costless, any 
given firm being extremely unlikely ever to exceed the stratospheric profit thresh-
old (and such low-probability scenarios ordinarily playing no role in the decisions 
of the firm’s managers and investors). Yet its widespread adoption would give 
humankind a valuable guarantee (insofar as the commitments could be trusted) 
that if ever some private enterprise were to hit the jackpot with the intelligence 
explosion, everybody would share in most of the benefits. The same idea could be 
applied to entities other than firms. For example, states could agree that if ever 
any one state’s GDP exceeds some very high fraction (say, 90%) of world GDP, the 
overshoot should be distributed evenly to all.48

The common good principle (and particular instantiations, such as windfall 
clauses) could be adopted initially as a voluntary moral commitment by respon-
sible individuals and organizations that are active in areas related to machine 
intelligence. Later, it could be endorsed by a wider set of entities and enacted into 
law and treaty. A vague formulation, such as the one given here, may serve well as 
a starting point; but it would ultimately need to be sharpened into a set of specific 
verifiable requirements.
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CHAPTER 15

Crunch time

We find ourselves in a thicket of strategic complexity, surrounded by 
a dense mist of uncertainty. Though many considerations have been 
discerned, their details and interrelationships remain unclear and 

iffy—and there might be other factors we have not even thought of yet. What are 
we to do in this predicament?

Philosophy with a deadline

A colleague of mine likes to point out that a Fields Medal (the highest honor 
in mathematics) indicates two things about the recipient: that he was capable 
of accomplishing something important, and that he didn’t. Though harsh, the 
remark hints at a truth.

Think of a “discovery” as an act that moves the arrival of information from 
a later point in time to an earlier time. The discovery’s value does not equal the 
value of the information discovered but rather the value of having the information 
available earlier than it otherwise would have been. A scientist or a mathematician 
may show great skill by being the first to find a solution that has eluded many oth-
ers; yet if the problem would soon have been solved anyway, then the work prob-
ably has not much benefited the world. There are cases in which having a solution 
even slightly sooner is immensely valuable, but this is most plausible when the 
solution is immediately put to use, either being deployed for some practical end or 
serving as a foundation to further theoretical work. And in the latter case, where 
a solution is immediately used only in the sense of serving as a building block for 
further theorizing, there is great value in obtaining a solution slightly sooner only 
if the further work it enables is itself both important and urgent.1

The question, then, is not whether the result discovered by the Fields Medalist 
is in itself “important” (whether instrumentally or for knowledge’s own sake). 
Rather, the question is whether it was important that the medalist enabled the 
publication of the result to occur at an earlier date. The value of this temporal 
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transport should be compared to the value that a world-class mathematical mind 
could have generated by working on something else. At least in some cases, the 
Fields Medal might indicate a life spent solving the wrong problem—for instance, 
a problem whose allure consisted primarily in being famously difficult to solve.

Similar barbs could be directed at other fields, such as academic philosophy. 
Philosophy covers some problems that are relevant to existential risk mitigation—
we encountered several in this book. Yet there are also subfields within philoso-
phy that have no apparent link to existential risk or indeed any practical concern. 
As with pure mathematics, some of the problems that philosophy studies might 
be regarded as intrinsically important, in the sense that humans have reason to 
care about them independently of any practical application. The fundamental 
nature of reality, for instance, might be worth knowing about, for its own sake. 
The world would arguably be less glorious if nobody studied metaphysics, cosmol-
ogy, or string theory. However, the dawning prospect of an intelligence explosion 
shines a new light on this ancient quest for wisdom.

The outlook now suggests that philosophic progress can be maximized via an 
indirect path rather than by immediate philosophizing. One of the many tasks on 
which superintelligence (or even just moderately enhanced human intelligence) 
would outperform the current cast of thinkers is in answering fundamental ques-
tions in science and philosophy. This reflection suggests a strategy of deferred 
gratification. We could postpone work on some of the eternal questions for a little 
while, delegating that task to our hopefully more competent successors—in order 
to focus our own attention on a more pressing challenge: increasing the chance 
that we will actually have competent successors. This would be high-impact phil-
osophy and high-impact mathematics.2

What is to be done?

We thus want to focus on problems that are not only important but urgent in 
the sense that their solutions are needed prior to the intelligence explosion. We 
should also take heed not to work on problems that are negative-value (such that 
solving them is harmful). Some technical problems in the field of artificial intel-
ligence, for instance, might be negative-value inasmuch as their solution would 
speed the development of machine intelligence without doing as much to expedite 
the development of control methods that could render the machine intelligence 
revolution survivable and beneficial.

It can be hard to identify problems that are both urgent and important and are 
such that we can confidently take them to be positive-value. The strategic uncer-
tainty surrounding existential risk mitigation means that we must worry that 
even well-intentioned interventions may turn out to be not only unproductive 
but counterproductive. To limit the risk of doing something actively harmful or 
morally wrong, we should prefer to work on problems that seem robustly positive-
value (i.e., whose solution would make a positive contribution across a wide range 
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of scenarios) and to employ means that are robustly justifiable (i.e., acceptable 
from a wide range of moral views).

There is a further desideratum to consider in selecting which problems to prior-
itize. We want to work on problems that are elastic to our efforts at solving them. 
Highly elastic problems are those that can be solved much faster, or solved to a 
much greater extent, given one extra unit of effort. Encouraging more kindness in 
the world is an important and urgent problem—one, moreover, that seems quite 
robustly positive-value: yet absent a breakthrough idea for how to go about it, prob-
ably a problem of quite low elasticity. Achieving world peace, similarly, would be 
highly desirable; but considering the numerous efforts already targeting that prob-
lem, and the formidable obstacles arrayed against a quick solution, it seems unlikely 
that the contributions of a few extra individuals would make a large difference.

To reduce the risks of the machine intelligence revolution, we will propose 
two objectives that appear to best meet all those desiderata: strategic analysis 
and capacity-building. We can be relatively confident about the sign of these 
parameters— more strategic insight and more capacity being better. Furthermore, 
the parameters are elastic: a small extra investment can make a relatively large 
difference. Gaining insight and capacity is also urgent because early boosts to 
these parameters may compound, making subsequent efforts more effective. In 
addition to these two broad objectives, we will point to a few other potentially 
worthwhile aims for initiatives.

Seeking the strategic light

Against a backdrop of perplexity and uncertainty, analysis stands out as being of 
particularly high expected value.3 Illumination of our strategic situation would 
help us target subsequent interventions more effectively. Strategic analysis is espe-
cially needful when we are radically uncertain not just about some detail of some 
peripheral matter but about the cardinal qualities of the central things. For many 
key parameters, we are radically uncertain even about their sign—that is, we 
know not which direction of change would be desirable and which undesirable. 
Our ignorance might not be irremediable. The field has been little prospected, and 
glimmering strategic insights could still be awaiting their unearthing just a few 
feet beneath the surface.

What we mean by “strategic analysis” here is a search for crucial considerations: 
ideas or arguments with the potential to change our views not merely about the 
fine-structure of implementation but about the general topology of desirability.4 
Even a single missed crucial consideration could vitiate our most valiant efforts 
or render them as actively harmful as those of a soldier who is fighting on the 
wrong side. The search for crucial considerations (which must explore norma-
tive as well as descriptive issues) will often require crisscrossing the boundaries 
between different academic disciplines and other fields of knowledge. As there is 
no established methodology for how to go about this kind of research, difficult 
original thinking is necessary.
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Building good capacity

Another high-value activity, one that shares with strategic analysis the robustness 
property of being beneficial across a wide range of scenarios, is the development 
of a well-constituted support base that takes the future seriously. Such a base can 
immediately provide resources for research and analysis. If and when other pri-
orities become visible, resources can be redirected accordingly. A support base 
is thus a general-purpose capability whose use can be guided by new insights as 
they emerge.

One valuable asset would be a donor network comprising individuals devoted 
to rational philanthropy, informed about existential risk, and discerning about 
the means of mitigation. It is especially desirable that the early-day funders be 
astute and altruistic, because they may have opportunities to shape the field’s 
culture before the usual venal interests take up position and entrench. The focus 
during these opening gambits should thus be to recruit the right kinds of people 
into the field. It could be worth foregoing some technical advances in the short 
term in order to fill the ranks with individuals who genuinely care about safety 
and who have a truth-seeking orientation (and who are likely to attract more of 
their own kind).

One important variable is the quality of the “social epistemology” of the AI-field 
and its leading projects. Discovering crucial considerations is valuable, but only 
if it affects action. This cannot always be taken for granted. Imagine a project that 
invests millions of dollars and years of toil to develop a prototype AI, and that 
after surmounting many technical challenges the system is finally beginning to 
show real progress. There is a chance that with just a bit more work it could turn 
into something useful and profitable. Now a crucial consideration is discovered, 
indicating that a completely different approach would be a bit safer. Does the pro-
ject kill itself off like a dishonored samurai, relinquishing its unsafe design and all 
the progress that had been made? Or does it react like a worried octopus, puffing 
out a cloud of motivated skepticism in the hope of eluding the attack? A project 
that would reliably choose the samurai option in such a dilemma would be a far 
preferable developer.5 Yet building processes and institutions that are willing to 
commit seppuku based on uncertain allegations and speculative reasoning is not 
easy. Another dimension of social epistemology is the management of sensitive 
information, in particular the ability to avoid leaking information that ought be 
kept secret. (Information continence may be especially challenging for academic 
researchers, accustomed as they are to constantly disseminating their results on 
every available lamppost and tree.)

Particular measures

In addition to the general objectives of strategic light and good capacity, some 
more specific objectives could also present cost-effective opportunities for action.
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One such is progress on the technical challenges of machine intelligence safety. 
In pursing this objective, care should be taken to manage information hazards. 
Some work that would be useful for solving the control problem would also be 
useful for solving the competence problem. Work that burns down the AI fuse 
could easily be a net negative.

Another specific objective is to promote “best practices” among AI researchers. 
Whatever progress has been made on the control problem needs to be dissemi-
nated. Some forms of computational experimentation, particularly if involving 
strong recursive self-improvement, may also require the use of  capability  control 
to mitigate the risk of an accidental takeoff. While the actual implementation 
of safety methods is not so relevant today, it will increasingly become so as 
the state of the art advances. And it is not too soon to call for  practitioners to 
express a commitment to safety, including endorsing the  common good principle 
and promising to ramp up safety if and when the prospect of machine super-
intelligence begins to look more imminent. Pious words are not sufficient and 
will not by themselves make a dangerous technology safe: but where the mouth 
goeth, the mind might gradually follow.

Other opportunities may also occasionally arise to push on some pivotal 
parameter, for example to mitigate some other existential risk, or to promote 
 biological cognitive enhancement and improvements of our collective wisdom, or 
even to shift world politics into a more harmonious register.

Will the best in human nature please stand up

Before the prospect of an intelligence explosion, we humans are like small chil-
dren playing with a bomb. Such is the mismatch between the power of our play-
thing and the immaturity of our conduct. Superintelligence is a challenge for 
which we are not ready now and will not be ready for a long time. We have little 
idea when the detonation will occur, though if we hold the device to our ear we 
can hear a faint ticking sound.

For a child with an undetonated bomb in its hands, a sensible thing to do would 
be to put it down gently, quickly back out of the room, and contact the nearest 
adult. Yet what we have here is not one child but many, each with access to an 
independent trigger mechanism. The chances that we will all find the sense to put 
down the dangerous stuff seem almost negligible. Some little idiot is bound to 
press the ignite button just to see what happens.

Nor can we attain safety by running away, for the blast of an intelligence explo-
sion would bring down the entire firmament. Nor is there a grown-up in sight.

In this situation, any feeling of gee-wiz exhilaration would be out of place. 
Consternation and fear would be closer to the mark; but the most appropriate atti-
tude may be a bitter determination to be as competent as we can, much as if we were 
preparing for a difficult exam that will either realize our dreams or obliterate them.
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This is not a prescription of fanaticism. The intelligence explosion might still be 
many decades off in the future. Moreover, the challenge we face is, in part, to hold 
on to our humanity: to maintain our groundedness, common sense, and good-
humored decency even in the teeth of this most unnatural and inhuman problem. 
We need to bring all our human resourcefulness to bear on its solution.

Yet let us not lose track of what is globally significant. Through the fog of every-
day trivialities, we can perceive—if but dimly—the essential task of our age. In 
this book, we have attempted to discern a little more feature in what is otherwise 
still a relatively amorphous and negatively defined vision—one that presents as 
our principal moral priority (at least from an impersonal and secular perspective) 
the reduction of existential risk and the attainment of a civilizational trajectory 
that leads to a compassionate and jubilant use of humanity’s cosmic endowment.
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NOTES

PRELIMS

 1. Not all endnotes contain useful information, however.
 2. I don’t know which ones.

CHAPTER 1: PAST DEvELOPMENTS AND PRESENT CAPABILITIES

 1. A subsistence-level income today is about $400 (Chen and Ravallion 2010). A million 
subsistence-level incomes is thus $400,000,000. The current world gross product is about 
$60,000,000,000,000 and in recent years has grown at an annual rate of about 4% (compound 
annual growth rate since 1950, based on Maddison [2010]). These figures yield the estimate 
mentioned in the text, which of course is only an order-of-magnitude approximation. If we look 
directly at population figures, we find that it currently takes the world population about one and 
a half weeks to grow by one million; but this underestimates the growth rate of the economy 
since per capita income is also increasing. By 5000 bc, following the Agricultural Revolution, 
the world population was growing at a rate of about 1 million per 200 years—a great accelera-
tion since the rate of perhaps 1 million per million years in early humanoid prehistory—so a 
great deal of acceleration had already occurred by then. Still, it is impressive that an amount of 
economic growth that took 200 years seven thousand years ago takes just ninety minutes now, 
and that the world population growth that took two centuries then takes one and a half weeks 
now. See also Maddison (2005).

 2. Such dramatic growth and acceleration might suggest one notion of a possible coming “singu-
larity,” as adumbrated by John von Neumann in a conversation with the mathematician Stani-
slaw Ulam:

 Our conversation centred on the ever accelerating progress of technology and changes in the 
mode of human life, which gives the appearance of approaching some essential singularity in 
the history of the race beyond which human affairs, as we know them, could not continue. 
(Ulam 1958)

 3. Hanson (2000).
 4. Vinge (1993); Kurzweil (2005).
 5. Sandberg (2010).
 6. Van Zanden (2003); Maddison (1999, 2001); De Long (1998).
 7. Two oft-repeated optimistic statements from the 1960s: “Machines will be capable, within 

twenty years, of doing any work a man can do” (Simon 1965, 96); “Within a generation . . . the 
problem of creating artificial intelligence will substantially be solved” (Minsky 1967, 2). For a 
systematic review of AI predictions, see Armstrong and Sotala (2012).

 8. See, for example, Baum et al. (2011) and Armstrong and Sotala (2012).
 9. It might suggest, however, that AI researchers know less about development timelines than they 

think they do—but this could cut both ways: they might overestimate as well as underestimate 
the time to AI.

 10. Good (1965, 33).
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 11. One exception is Norbert Wiener, who did have some qualms about the possible consequences. 
He wrote, in 1960: “If we use, to achieve our purposes, a mechanical agency with whose op-
eration we cannot efficiently interfere once we have started it, because the action is so fast and 
irrevocable that we have not the data to intervene before the action is complete, then we had 
better be quite sure that the purpose put into the machine is the purpose which we really desire 
and not merely a colourful imitation of it” (Wiener 1960). Ed Fredkin spoke about his wor-
ries about superintelligent AI in an interview described in McCorduck (1979). By 1970, Good 
himself writes about the risks, and even calls for the creation of an association to deal with the 
dangers (Good [1970]; see also his later article [Good 1982] where he foreshadows some of the 
ideas of “indirect normativity” that we discuss in Chapter 13). By 1984, Marvin Minsky was also 
writing about many of the key worries (Minsky 1984).

 12. Cf. Yudkowsky (2008a). On the importance of assessing the ethical implications of potentially 
dangerous future technologies before they become feasible, see Roache (2008).

 13. McCorduck (1979).
 14. Newell et al. (1959).
 15. The SAINTS program, the ANALOGY program, and the STUDENT program, respectively. See 

Slagle (1963), Evans (1964, 1968), and Bobrow (1968).
 16. Nilsson (1984).
 17. Weizenbaum (1966).
 18. Winograd (1972).
 19. Cope (1996); Weizenbaum (1976); Moravec (1980); Thrun et al. (2006); Buehler et al. (2009); 

Koza et al. (2003). The Nevada Department of Motor Vehicles issued the first license for a 
 driverless car in May 2012.

 20. The STANDUP system (Ritchie et al. 2007).
 21. Schwartz (1987). Schwartz is here characterizing a skeptical view that he thought was repre-

sented by the writings of Hubert Dreyfus.
 22. One vocal critic during this period was Hubert Dreyfus. Other prominent skeptics from this 

era include John Lucas, Roger Penrose, and John Searle. However, among these only Dreyfus 
was mainly concerned with refuting claims about what practical accomplishments we should 
expect from existing paradigms in AI (though he seems to have been open to the possibility that 
new paradigms could go further). Searle’s target was functionalist theories in the philosophy 
of mind, not the instrumental powers of AI systems. Lucas and Penrose denied that a classical 
computer could ever be programmed to do everything that a human mathematician can do, but 
they did not deny that any particular function could in principle be automated or that AIs might 
eventually become very instrumentally powerful. Cicero remarked that “there is nothing so ab-
surd but some philosopher has said it” (Cicero 1923, 119); yet it is surprisingly hard to think of 
any significant thinker who has denied the possibility of machine superintelligence in the sense 
used in this book.

 23. For many applications, however, the learning that takes place in a neural network is little differ-
ent from the learning that takes place in linear regression, a statistical technique developed by 
Adrien-Marie Legendre and Carl Friedrich Gauss in the early 1800s.

 24. The basic algorithm was described by Arthur Bryson and Yu-Chi Ho as a multi-stage dynam-
ic optimization method in 1969 (Bryson and Ho 1969). The application to neural networks 
was suggested by Paul Werbos in 1974 (Werbos 1994), but it was only after the work by David 
Rumelhart, Geoffrey Hinton, and Ronald Williams in 1986 (Rumelhart et al. 1986) that the 
method gradually began to seep into the awareness of a wider community.

 25. Nets lacking hidden layers had previously been shown to have severely limited functionality 
(Minsky and Papert 1969).

 26. E.g., MacKay (2003).
 27. Murphy (2012).
 28. Pearl (2009).
 29. We suppress various technical details here in order not to unduly burden the exposition. We 

will have occasion to revisit some of these ignored issues in Chapter 12.
 30. A program p is a description of string x if p, run on (some particular) universal Turing ma-

chine U, outputs x; we write this as U(p) = x. (The string x here represents a possible world.) The 
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 Kolmogorov complexity of x is then K(x) := minp {ℓ(p) : U(p) = x}, where ℓ(p) is the length of p in 
bits. The “Solomonoff” probability of x is then defined as M(x) :=∑ p:U(p)=x2

−ℓ(p), where the sum is 
defined over all (“minimal,” i.e. not necessarily halting) programs p for which U outputs a string 
starting with x (Hutter 2005).

 31. Bayesian conditioning on evidence E gives

P w P w E
P E w P w

posterior prior
prior prior( ) ( )

( ) (
= =

))
( )

.
P wprior

  (The probability of a proposition [like E] is the sum of the probability of the possible worlds in 
which it is true.)

 32. Or randomly picks one of the possible actions with the highest expected utility, in case there is a 
tie.

 33. More concisely, the expected utility of an action can be written as EU a U w P w a
w

( ) ( ) ( ),= ∑
∈

|  
where the sum is over all possible worlds.

 34. See, e.g., Howson and Urbach (1993); Bernardo and Smith (1994); Russell and Norvig (2010).
 35. Wainwright and Jordan (2008). The application areas of Bayes nets are myriad; see, e.g., Pourret 

et al. (2008).
 36. One might wonder why so much detail is given to game AI here, which to some might seem like 

an unimportant application area. The answer is that game-playing offers some of the clearest 
measures of human vs. AI performance.

 37. Samuel (1959); Schaeffer (1997, ch. 6).
 38. Schaeffer et al. (2007).
 39. Berliner (1980a, b).
 40. Tesauro (1995).
 41. Such programs include GNU (see Silver [2006]) and Snowie (see Gammoned.net [2012]).
 42. Lenat himself had a hand in guiding the fleet-design process. He wrote: “Thus the final credit-

ing of the win should be about 60/40% Lenat/Eurisko, though the significant point here is that 
neither party could have won alone” (Lenat 1983, 80).

 43. Lenat (1982, 1983).
 44. Cirasella and Kopec (2006).
 45. Kasparov (1996, 55).
 46. Newborn (2011).
 47. Keim et al. (1999).
 48. See Armstrong (2012).
 49. Sheppard (2002).
 50. Wikipedia (2012a).
 51. Markoff (2011).
 52. Rubin and Watson (2011).
 53. Elyasaf et al. (2011).
 54. KGS (2012).
 55. Newell et al. (1958, 320).
 56. Attributed in Vardi (2012).
 57. In 1976, I. J. Good wrote: “A computer program of Grandmaster strength would bring us within 

an ace of [machine ultra-intelligence]” (Good 1976). In 1979, Douglas Hofstadter opined in his 
Pulitzer-winning Gödel, Escher, Bach: “Question: Will there be chess programs that can beat 
anyone? Speculation: No. There may be programs that can beat anyone at chess, but they will 
not be exclusively chess programs. They will be programs of general intelligence, and they will 
be just as temperamental as people. ‘Do you want to play chess?’ ‘No, I’m bored with chess. Let’s 
talk about poetry’ ” (Hofstadter [1979] 1999, 678).

 58. The algorithm is minimax search with alpha-beta pruning, used with a chess-specific heuristic 
evaluation function of board states. Combined with a good library of openings and endgames, 
and various other tricks, this can make for a capable chess engine.

 59. Though especially with recent progress in learning the evaluation heuristic from simulated 
games, many of the underlying algorithms would probably also work well for many other 
games.
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 60. Nilsson (2009, 318). Knuth was certainly overstating his point. There are many “thinking tasks” 
that AI has not succeeded in doing—inventing a new subfield of pure mathematics, doing any 
kind of philosophy, writing a great detective novel, engineering a coup d’état, or designing a 
major new consumer product.

 61. Shapiro (1992).
 62. One might speculate that one reason it has been difficult to match human abilities in percep-

tion, motor control, common sense, and language understanding is that our brains have dedi-
cated wetware for these functions—neural structures that have been optimized over evolution-
ary timescales. By contrast, logical thinking and skills like chess playing are not natural to us; 
so perhaps we are forced to rely on a limited pool of general-purpose cognitive resources to 
perform these tasks. Maybe what our brains do when we engage in explicit logical reasoning or 
calculation is in some ways analogous to running a “virtual machine,” a slow and cumbersome 
mental simulation of a general-purpose computer. One might then say (somewhat fancifully) 
that a classical AI program is not so much emulating human thinking as the other way around: 
a human who is thinking logically is emulating an AI program.

 63. This example is controversial: a minority view, represented by approximately 20% of adults in 
the USA and similar numbers in many other developed nations, holds that the Sun revolves 
around the Earth (Crabtree 1999; Dean 2005).

 64. World Robotics (2011).
 65. Estimated from data in Guizzo (2010).
 66. Holley (2009).
 67. Hybrid rule-based statistical approaches are also used, but they are currently a small part of the 

picture.
 68. Cross and Walker (1994); Hedberg (2002).
 69. Based on the statistics from TABB Group, a New York- and London-based capital markets 

 research firm (personal communication).
 70. CFTC and SEC (2010). For a different perspective on the events of 6 May 2010, see CME Group 

(2010).
 71. Nothing in the text should be construed as an argument against algorithmic high-frequency 

trading, which might normally perform a beneficial function by increasing liquidity and   
market efficiency.

 72. A smaller market scare occurred on August, 1, 2012, in part because the “circuit breaker” was 
not also programmed to halt trading if there were extreme changes in the number of shares 
being traded (Popper 2012). This again foreshadows another later theme: the difficulty of antici-
pating all specific ways in which some particular plausible-seeming rule might go wrong.

 73. Nilsson (2009, 319).
 74. Minsky (2006); McCarthy (2007); Beal and Winston (2009).
 75. Peter Norvig, personal communication. Machine-learning classes are also very popular, reflect-

ing a somewhat orthogonal hype-wave of “big data” (inspired by e.g. Google and the Netflix 
Prize).

 76. Armstrong and Sotala (2012).
 77. Müller and Bostrom (forthcoming).
 78. See Baum et al. (2011), another survey cited therein, and Sandberg and Bostrom (2011).
 79. Nilsson (2009).
 80. This is again conditional on no civilization-disrupting catastrophe occurring. The definition of 

HLMI used by Nilsson is “AI able to perform around 80% of jobs as well or better than humans 
perform” (Kruel 2012).

 81. The table shows the results of four different polls as well as the combined results. The first two 
were polls taken at academic conferences: PT-AI, participants of the conference Philosophy and 
Theory of AI in Thessaloniki 2011 (respondents were asked in November 2012), with a response 
rate of 43 out of 88; and AGI, participants of the conferences Artificial General Intelligence and 
Impacts and Risks of Artificial General Intelligence, both in Oxford, December 2012 (response 
rate: 72/111). The EETN poll sampled the members of the Greek Association for Artificial Intel-
ligence, a professional organization of published researchers in the field, in April 2013 (response 
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rate: 26/250). The TOP100 poll elicited the opinions among the 100 top authors in artificial intel-
ligence as measured by a citation index, in May 2013 (response rate: 29/100).

 82. Interviews with some 28 (at the time of writing) AI practitioners and related experts have been 
posted by Kruel (2011).

 83. The diagram shows renormalized median estimates. Means are significantly different. For ex-
ample, the mean estimates for the “Extremely bad” outcome were 7.6% (for TOP100) and 17.2% 
(for the combined pool of expert assessors).

 84. There is a substantial literature documenting the unreliability of expert forecasts in many do-
mains, and there is every reason to think that many of the findings in this body of research 
apply to the field of artificial intelligence too. In particular, forecasters tend to be overconfi-
dent in their predictions, believing themselves to be more accurate than they really are, and 
therefore assigning too little probability to the possibility that their most-favored hypothesis 
is wrong (Tetlock 2005). (Various other biases have also been documented; see, e.g., Gilovich 
et al. [2002].) However, uncertainty is an inescapable fact of the human condition, and many 
of our actions unavoidably rely on expectations about which long-term consequences are more 
or less plausible: in other words, on probabilistic predictions. Refusing to offer explicit proba-
bilistic predictions would not make the epistemic problem go away; it would just hide it from 
view (Bostrom 2007). Instead, we should respond to evidence of overconfidence by broaden-
ing our confidence intervals (or “credible intervals”)—i.e. by smearing out our credence func-
tions—and in general we must struggle as best we can with our biases, by considering different 
perspectives and aiming for intellectual honesty. In the longer run, we can also work to develop 
techniques, training methods, and institutions that can help us achieve better calibration. See 
also Armstrong and Sotala (2012).

CHAPTER 2: PATHS TO SUPERINTELLIGENCE

 1. This resembles the definition in Bostrom (2003c) and Bostrom (2006a). It can also be compared 
with Shane Legg’s definition (“Intelligence measures an agent’s ability to achieve goals in a wide 
range of environments”) and its formalizations (Legg 2008). It is also very similar to Good’s 
definition of ultraintelligence in Chapter 1 (“a machine that can far surpass all the intellectual 
activities of any man however clever”).

 2. For the same reason, we make no assumption regarding whether a superintelligent machine 
could have “true intentionality” (pace Searle, it could; but this seems irrelevant to the concerns 
of this book). And we take no position in the internalism/externalism debate about mental con-
tent that has been raging in the philosophical literature, or on the related issue of the extended 
mind thesis (Clark and Chalmers 1998).

 3. Turing (1950, 456).
 4. Turing (1950, 456).
 5. Chalmers (2010); Moravec (1976, 1988, 1998, 1999).
 6. See Moravec (1976). A similar argument is advanced by David Chalmers (2010).
 7. See also Shulman and Bostrom (2012), where these matters are elaborated in more detail.
 8. Legg (2008) offers this reason in support of the claim that humans will be able to recapitulate 

the progress of evolution over much shorter timescales and with reduced computational re-
sources (while noting that evolution’s unadjusted computational resources are far out of reach). 
Baum (2004) argues that some developments relevant to AI occurred earlier, with the organiza-
tion of the genome itself embodying a valuable representation for evolutionary algorithms.

 9. Whitman et al. (1998); Sabrosky (1952).
 10. Schultz (2000).
 11. Menzel and Giurfa (2001, 62); Truman et al. (1993).
 12. Sandberg and Bostrom (2008).
 13. See Legg (2008) for further discussion of this point and of the promise of functions or environ-

ments that determine fitness based on a smooth landscape of pure intelligence tests.
 14. See Bostrom and Sandberg (2009b) for a taxonomy and more detailed discussion of ways in 

which engineers may outperform historical evolutionary selection.
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 15. The analysis has addressed the nervous systems of living creatures, without reference to the cost 
of simulating bodies or the surrounding virtual environment as part of a fitness function. It is 
plausible that an adequate fitness function could test the competence of a particular organism 
in far fewer operations than it would take to simulate all the neuronal computation of that or-
ganism’s brain throughout its natural lifespan. AI programs today often develop and operate in 
very abstract environments (theorem provers in symbolic math worlds, agents in simple game 
tournament worlds, etc.).

A skeptic might insist that an abstract environment would be inadequate for the evolution 
of general intelligence, believing instead that the virtual environment would need to closely re-
semble the actual biological environment in which our ancestors evolved. Creating a physically 
realistic virtual world would require a far greater investment of computational resources than 
the simulation of a simple toy world or abstract problem domain (whereas evolution had access 
to a physically realistic real world “for free”). In the limiting case, if complete micro-physical 
accuracy were insisted upon, the computational requirements would balloon to ridiculous pro-
portions. However, such extreme pessimism is almost certainly unwarranted; it seems unlikely 
that the best environment for evolving intelligence is one that mimics nature as closely as pos-
sible. It is, on the contrary, plausible that it would be more efficient to use an artificial selection 
environment, one quite unlike that of our ancestors, an environment specifically designed to 
promote adaptations that increase the type of intelligence we are seeking to evolve (abstract 
reasoning and general problem-solving skills, for instance, as opposed to maximally fast in-
stinctual reactions or a highly optimized visual system).

 16. Wikipedia (2012b).
 17. For a general treatment of observation selection theory, see Bostrom (2002a). For the specific 

application to the current issue, see Shulman and Bostrom (2012). For a short popular introduc-
tion, see Bostrom (2008b).

 18. Sutton and Barto (1998, 21f); Schultz et al. (1997).
 19. This term was introduced by Eliezer Yudkowsky; see, e.g., Yudkowsky (2007).
 20. This is the scenario described by Good (1965) and Yudkowsky (2007). However, one could also 

consider an alternative in which the iterative sequence has some steps that do not involve intelli-
gence enhancement but instead design simplification. That is, at some stages, the seed AI might 
rewrite itself so as make subsequent improvements easier to find.

 21. Helmstaedter et al. (2011).
 22. Andres et al. (2012).
 23. Adequate for enabling instrumentally useful forms of cognitive functioning and communica-

tion, that is; but still radically impoverished relative to the interface provided by the muscles 
and sensory organs of a normal human body.

 24. Sandberg (2013).
 25. See the “Computer requirements” section of Sandberg and Bostrom (2008, 79–81).
 26. A lower level of success might be a brain simulation that has biologically suggestive micro- 

dynamics and displays a substantial range of emergent species-typical activity such as a slow-
wave sleep state or activity-dependent plasticity. Whereas such a simulation could be a useful 
testbed for neuroscientific research (though one which might come close to raising serious ethi-
cal issues), it would not count as a whole brain emulation unless the simulation were sufficiently 
accurate to be able to perform a substantial fraction of the intellectual work that the simulated 
brain was capable of. As a rule of thumb, we might say that in order for a simulation of a human 
brain to count as a whole brain emulation, it would need to be able to express coherent verbal 
thoughts or have the capacity to learn to do so.

 27. Sandberg and Bostrom (2008).
 28. Sandberg and Bostrom (2008). Further explanation can be found in the original report.
 29. The first map is described in Albertson and Thomson (1976) and White et al. (1986). The com-

bined (and in some cases corrected) network is available from the “WormAtlas” website (http://
www.wormatlas.org/).

 30. For a review of past attempts of emulating C. elegans and their fates, see Kaufman (2011). Kauf-
man quotes one ambitious doctoral student working in the area, David Dalrymple, as saying, 
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“With optogenetic techniques, we are just at the point where it’s not an outrageous proposal 
to reach for the capability to read and write to anywhere in a living C. elegans nervous system, 
using a high-throughput automated system. . . . I expect to be finished with C. elegans in 2–3 
years. I would be extremely surprised, for whatever that’s worth, if this is still an open problem 
in 2020” (Dalrymple 2011). Brain models aiming for biological realism that were hand-coded  
(rather than generated automatically) have achieved some basic functionality; see, e.g.,  
Eliasmith et al. (2012).

 31. Caenorhabditis elegans does have some convenient special properties. For example, the organ-
ism is transparent, and the wiring pattern of its nervous system does not change between indi-
viduals.

 32. If neuromorphic AI rather than whole brain emulation is the end product, then it might or 
might not be the case that the relevant insights would be derived through attempts to simulate 
human brains. It is conceivable that the important cortical tricks would be discovered during 
the study of (nonhuman) animal brains. Some animal brains might be easier to work with than 
human brains, and smaller brains would require fewer resources to scan and model. Research 
on animal brains would also be subject to less regulation. It is even conceivable that the first 
human- level machine intelligence will be created by completing a whole brain emulation of 
some suitable animal and then finding ways to enhance the resultant digital mind. Thus hu-
manity could get its comeuppance from an uplifted lab mouse or macaque.

 33. Uauy and Dangour (2006); Georgieff (2007); Stewart et al. (2008); Eppig et al. (2010); Cotman 
and Berchtold (2002).

 34. According to the World Health Organization in 2007, nearly 2 billion individuals have insuf-
ficient iodine intake (The Lancet 2008). Severe iodine deficiency hinders neurological develop-
ment and leads to cretinism, which involves an average loss of about 12.5 IQ points (Qian et al.  
2005). The condition can be easily and inexpensively prevented though salt fortification  
(Horton et al. 2008).

 35. Bostrom and Sandberg (2009a).
 36. Bostrom and Sandberg (2009b). A typical putative performance increase from pharmacological 

and nutritional enhancement is in the range of 10–20% on test tasks measuring working mem-
ory, attention, etc. But it is generally dubious whether such reported gains are real, sustainable 
over a longer term, and indicative of correspondingly improved results in real-world problem 
situations (Repantis et al. 2010). For instance, in some cases there might be a compensating de-
terioration on some performance dimensions that are not measured by the test tasks (Sandberg 
and Bostrom 2006).

 37. If there were an easy way to enhance cognition, one would expect evolution already to have 
taken advantage of it. Consequently, the most promising kind of nootropic to investigate may be 
one that promises to boost intelligence in some manner that we can see would have lowered fit-
ness in the ancestral environment—for example, by increasing head size at birth or amping up 
the brain’s glucose metabolism. For a more detailed discussion of this idea (along with several 
important qualifications), see Bostrom (2009b).

 38. Sperm are harder to screen because, in contrast to embryos, they consist of only one cell—and 
one cell needs to be destroyed in order to do the sequencing. Oocytes also consist of only one 
cell; however, the first and second cell divisions are asymmetric and produce one daughter cell 
with very little cytoplasm, the polar body. Since polar bodies contain the same genome as the 
main cell and are redundant (they eventually degenerate) they can be biopsied and used for 
screening (Gianaroli 2000).

 39. Each of these practices was subject to some ethical controversy when it was introduced, but 
there seems to be a trend toward increasing acceptance. Attitudes toward human genetic engin-
eering and embryo selection vary significantly across cultures, suggesting that development 
and application of new techniques will probably take place even if some countries initially adopt 
a cautious stance, although the rate at which this happens will be influenced by moral, religious, 
and political pressures.

 40. Davies et al. (2011); Benyamin et al. (2013); Plomin et al. (2013). See also Mardis (2011); Hsu 
(2012).
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 41. Broad-sense heritability of adult IQ is usually estimated in the range of 0.5–0.8 within middle- 
class strata of developed nations (Bouchard 2004, 148). Narrow-sense heritability, which meas-
ures the portion of variance that is attributable to additive genetic factors, is lower (in the range 
0.3–0.5) but still substantial (Devlin et al. 1997; Davies et al. 2011; Visscher et al. 2008). These 
estimates could change for different populations and environments, as heritabilities vary de-
pending on the population and environment being studied. For example, lower heritabilities 
have been found among children and those from deprived environments (Benyamin et al. 2013; 
Turkheimer et al. 2003). Nisbett et al. (2012) review numerous environmental influences on 
variation in cognitive ability.

 42. The following several paragraphs draw heavily on joint work with Carl Shulman (Shulman and 
Bostrom 2014).

 43. This table is taken from Shulman and Bostrom (2014). It is based on a toy model that assumes 
a Gaussian distribution of predicted IQs among the embryos with a standard deviation of 
7.5 points. The amount of cognitive enhancement that would be delivered with different num-
bers of embryos depends on how different the embryos are from one another in the additive 
genetic variants whose effects we know. Siblings have a coefficient of relatedness of ½, and 
common additive genetic variants account for half or less of variance in adult fluid intelligence 
(Davies et al. 2011). These two facts suggest that where the observed population standard devia-
tion in developed countries is 15 points, the standard deviation of genetic influences within a 
batch of embryos would be 7.5 points or less.

 44. With imperfect information about the additive genetic effects on cognitive ability, effect sizes 
would be reduced. However, even a small amount of knowledge would go a relatively long way, 
because the gains from selection do not scale linearly with the portion of variance that we can 
predict. Instead, the effectiveness of our selection depends on the standard deviation of predict-
ed mean IQ, which scales as the square root of variance. For example, if one could account for 
12.5% of the variance, this could deliver effects half as great as those in Table 1, which assume 
50%. For comparison, a recent study (Rietveld et al. 2013) claims to have already identified 2.5% 
of the variance.

 45. For comparison, standard practice today involves the creation of fewer than ten embryos.
 46. Adult and embryonic stem cells can be coaxed to develop into sperm cells and oocytes, which 

can then be fused to produce an embryo (Nagy et al. 2008; Nagy and Chang 2007). Egg cell pre-
cursors can also form parthenogenetic blastocysts, unfertilized and non-viable embryos, able to 
produce embryonic stem cell lines for the process (Mai et al. 2007).

 47. The opinion is that of Katsuhiko Hayashi, as reported in Cyranoski (2013). The Hinxton Group, 
an international consortium of scientists that discusses stem cell ethics and challenges, predict-
ed in 2008 that human stem cell-derived gametes would be available within ten years (Hinxton 
Group 2008), and developments thus far are broadly consistent with this.

 48. Sparrow (2013); Miller (2012); The Uncertain Future (2012).
 49. Sparrow (2013).
 50. Secular concerns might focus on anticipated impacts on social inequality, the medical safety 

of the procedure, fears of an enhancement “rat race,” rights and responsibilities of parents vis-
à-vis their prospective offspring, the shadow of twentieth-century eugenics, the concept of  
human dignity, and the proper limits of states’ involvement in the reproductive choices of  
their citizens. (For a discussion of the ethics of cognitive enhancement see Bostrom and Ord 
[2006], Bostrom and Roache [2011], and Sandberg and Savulescu [2011].) Some religious  
traditions may offer additional concerns, including ones centering on the moral status of  
embryos or the proper limits of human agency within the scheme of creation.

 51. To stave off the negative effects of inbreeding, iterated embryo selection would require either 
a large starting supply of donors or the expenditure of substantial selective power to reduce 
harmful recessive alleles. Either alternative would tend to push toward offspring being less 
closely genetically related to their parents (and more related to one another).

 52. Adapted from Shulman and Bostrom (2014).
 53. Bostrom (2008b).
 54. Just how difficult an obstacle epigenetics will be is not yet known (Chason et al. 2011; Iliadou 

et al. 2011).
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 55. While cognitive ability is a fairly heritable trait, there may be few or no common alleles or 
polymorphisms that individually have a large positive effect on intelligence (Davis et al. 2010; 
Davies et al. 2011; Rietveld et al. 2013). As sequencing methods improve, the mapping out of 
low-frequency alleles and their cognitive and behavioral correlates will become increasingly 
feasible. There is some theoretical evidence suggesting that some alleles that cause genetic dis-
orders in homozygotes may provide sizeable cognitive advantages in heterozygote carriers, 
leading to a prediction that Gaucher, Tay-Sachs, and Niemann-Pick heterozygotes would be 
about 5 IQ points higher than control groups (Cochran et al. 2006). Time will tell whether this 
holds.

 56. One paper (Nachman and Crowell 2000) estimates 175 mutations per genome per gener-
ation. Another (Lynch 2010), using different methods, estimates that the average newborn has  
between 50 and 100 new mutations, and Kong et al. (2012) implies a figure of around 77 new 
mutations per generation. Most of these mutations do not affect functioning, or do so only to 
an imperceptibly slight degree; but the combined effects of many very slightly deleterious muta-
tions could be a significant loss of fitness. See also Crow (2000).

 57. Crow (2000); Lynch (2010).
 58. There are some potentially important caveats to this idea. It is possible that the modal genome 

would need some adjustments in order to avoid problems. For example, parts of the genome 
might be adapted to interacting with other parts under the assumption that all parts function 
with a certain level of efficiency. Increasing the efficiency of those parts might then lead to over-
shooting along some metabolic pathways.

 59. These composites were created by Mike Mike from individual photographs taken by Virtual 
Flavius (Mike 2013).

 60. They can, of course, have some effects sooner—for instance, by changing people’s expectations 
of what is to come.

 61. Louis Harris & Associates (1969); Mason (2003).
 62. Kalfoglou et al. (2004).
 63. The data is obviously limited, but individuals selected for 1-in-10,000 results on childhood abil-

ity tests have been shown, in longitudinal studies, to be substantially more likely to become ten-
ured professors, earn patents, and succeed in business than those with slightly less exceptional 
scores (Kell et al. 2013). Roe (1953) studied sixty-four eminent scientists and found median cog-
nitive ability three to four standard deviations above the population norm and strikingly higher 
than is typical for scientists in general. (Cognitive ability is also correlated with lifetime earn-
ings and with non-financial outcomes such as life expectancy, divorce rates, and probability 
of dropping out of school [Deary 2012].) An upward shift of the distribution of cognitive abil-
ity would have disproportionately large effects at the tails, especially increasing the number of 
highly gifted and reducing the number of people with retardation and learning disabilities. See 
also Bostrom and Ord (2006) and Sandberg and Savulescu (2011).

 64. E.g. Warwick (2002). Stephen Hawking even suggested that taking this step might be necessary 
in order to keep up with advances in machine intelligence: “We must develop as quickly as pos-
sible technologies that make possible a direct connection between brain and computer, so that 
artificial brains contribute to human intelligence rather than opposing it” (reported in Walsh 
[2001]). Ray Kurzweil concurs: “As far as Hawking’s . . . recommendation is concerned, namely 
direct connection between the brain and computers, I agree that this is both reasonable, desir-
able and inevitable. [sic] It’s been my recommendation for years” (Kurzweil 2001).

 65. See Lebedev and Nicolelis (2006); Birbaumer et al. (2008); Mak and Wolpaw (2009); and 
 Nicolelis and Lebedev (2009). A more personal outlook on the problem of enhancement through 
implants can be found in Chorost (2005, Chap. 11).

 66. Smeding et al. (2006).
 67. Degnan et al. (2002).
 68. Dagnelie (2012); Shannon (2012).
 69. Perlmutter and Mink (2006); Lyons (2011).
 70. Koch et al. (2006).
 71. Schalk (2008). For a general review of the current state of the art, see Berger et al. (2008). For the 

case that this would help lead to enhanced intelligence, see Warwick (2002).
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 72. Some examples: Bartels et al. (2008); Simeral et al. (2011); Krusienski and Shih (2011); and  
Pasqualotto et al. (2012).

 73. E.g. Hinke et al. (1993).
 74. There are partial exceptions to this, especially in early sensory processing. For example, the 

primary visual cortex uses a retinotopic mapping, which means roughly that adjacent neural 
assemblies receive inputs from adjacent areas of the retinas (though ocular dominance columns 
somewhat complicate the mapping).

 75. Berger et al. (2012); Hampson et al. (2012).
 76. Some brain implants require two forms of learning: the device learning to interpret the organ-

ism’s neural representations and the organism learning to use the system by generating appro-
priate neural firing patterns (Carmena et al. 2003).

 77. It has been suggested that we should regard corporate entities (corporations, unions, govern-
ments, churches, and so forth) as artificial intelligent agents, entities with sensors and effec-
tors, able to represent knowledge and perform inference and take action (e.g. Kuipers [2012]; 
cf. Huebner [2008] for a discussion on whether collective representations can exist). They are 
clearly powerful and ecologically successful, although their capabilities and internal states are 
different from those of humans.

 78. Hanson (1995, 2000); Berg and Rietz (2003).
 79. In the workplace, for instance, employers might use lie detectors to crack down on employee 

theft and shirking, by asking the employee at the end of each business day whether she has sto-
len anything and whether she has worked as hard as she could. Political and business leaders 
could likewise be asked whether they were wholeheartedly pursuing the interests of their share-
holders or constituents. Dictators could use them to target seditious generals within the regime 
or suspected troublemakers in the wider population.

 80. One could imagine neuroimaging techniques making it possible to detect neural signatures of 
motivated cognition. Without self-deception detection, lie detection would favor individuals 
who believe their own propaganda. Better tests for self-deception tests could also be used to 
train rationality and to study the effectiveness of interventions aimed at reducing biases.

 81. Bell and Gemmel (2009). An early example is found in the work of MIT’s Deb Roy, who record-
ed every moment of his son’s first three years of life. Analysis of this audiovisual data is yielding 
information on language development; see Roy (2012).

 82. Growth in total world population of biological human beings will contribute only a small fac-
tor. Scenarios involving machine intelligence could see the world population (including digital 
minds) explode by many orders of magnitude in a brief period of time. But that road to superin-
telligence involves artificial intelligence or whole brain emulation, so we need not consider it in 
this subsection.

 83. Vinge (1993).

CHAPTER 3: FORMS OF SUPERINTELLIGENCE

 1. Vernor Vinge has used the term “weak superintelligence” to refer to such sped-up human minds 
(Vinge 1993).

 2. For example, if a very fast system could do everything that any human could do except dance a 
mazurka, we should still call it a speed superintelligence. Our interest lies in those core cogni-
tive capabilities that have economic or strategic significance.

 3. At least a millionfold speedup compared to human brains is physically possible, as can been 
seen by considering the difference in speed and energy of relevant brain processes in compari-
son to more efficient information processing. The speed of light is more than a million times 
greater than that of neural transmission, synaptic spikes dissipate more than a million times 
more heat than is thermodynamically necessary, and current transistor frequencies are more 
than a million times faster than neuron spiking frequencies (Yudkowsky [2008a]; see also 
Drexler [1992]). The ultimate limits of speed superintelligence are bounded by light-speed com-
munications delays, quantum limits on the speed of state transitions, and the volume needed 
to contain the mind (Lloyd 2000). The “ultimate laptop” described by Lloyd (2000) would run 
a 1.4×1021 FLOPS brain emulation at speedup of 3.8×1029× (assuming the emulation could be 
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 sufficiently parallelized). Lloyd’s construction, however, is not intended to be technologically 
plausible; it is only meant to illustrate those constraints on computation that are readily deriv-
able from basic physical laws.

 4. With emulations, there is also an issue of how long a human-like mind can keep working on 
something before going mad or falling into a rut. Even with task variety and regular holidays, 
it is not certain that a human-like mind could live for thousands of subjective years with-
out developing psychological problems. Furthermore, if total memory capacity is limited—a 
consequence of having a limited neuron population—then cumulative learning cannot con-
tinue indefinitely: beyond some point, the mind must start forgetting one thing for each new 
thing it learns. (Artificial intelligence could be designed such as to ameliorate these potential 
problems.)

 5. Accordingly, nanomechanisms moving at a modest 1 m/s have typical timescales of nanosec-
onds. See section 2.3.2 of Drexler (1992). Robin Hanson mentions 7-mm “tinkerbell” robot bod-
ies moving at 260 times normal speed (Hanson 1994).

 6. Hanson (2012).
 7. “Collective intelligence” does not refer to low-level parallelization of computing hardware but 

to parallelization at the level of intelligent autonomous agents such as human beings. Imple-
menting a single emulation on a massively parallel machine might result in speed superintel-
ligence if the parallel computer is sufficiently fast: it would not produce a collective intelligence.

 8. Improvements to the speed or the quality of the individual components could also indirectly af-
fect the performance of collective intelligence, but here we mainly consider such improvements 
under the other two forms of superintelligence in our classification.

 9. It has been argued that a higher population density triggered the Upper Paleolithic Revolution 
and that beyond a certain threshold accumulation of cultural complexity became much easier 
(Powell et al. 2009).

 10. What about the Internet? It seems not yet to have amounted to a super-sized boost. Maybe it will 
do so eventually. It took centuries or millennia for the other examples listed here to reveal their 
full potential.

 11. This is, obviously, not meant to be a realistic thought experiment. A planet large enough to sus-
tain seven quadrillion human organisms with present technology would implode, unless it were 
made of very light matter or were hollow and held up by pressure or other artificial means. 
(A Dyson sphere or a Shellworld might be a better solution.) History would have unfolded dif-
ferently on such a vast surface. Set all this aside.

 12. Our focus here is on the functional properties of a unified intellect, not on the question of 
whether such an intellect would have qualia or whether it would be a mind in the sense of hav-
ing subjective conscious experience. (One might ponder, though, what kinds of conscious ex-
perience might arise from intellects that are more or less integrated than those of human brains. 
On some views of consciousness, such as the global workspace theory, it seems one might ex-
pect more integrated brains to have more capacious consciousness. Cf. Baars (1997), Shanahan 
(2010), and Schwitzgebel (2013).)

 13. Even small groups of humans that have remained isolated for some time might still benefit from 
the intellectual outputs of a larger collective intelligence. For example, the language they use 
might have been developed by a much larger linguistic community, and the tools they use might 
have been invented in a much larger population before the small group became isolated. But 
even if a small group had always been isolated, it might still be part of a larger collective intelli-
gence than meets the eye—namely, the collective intelligence consisting of not only the present 
but all ancestral generations as well, an aggregate that can function as a feed-forward informa-
tion processing system.

 14. By the Church–Turing thesis, all computable functions are computable by a Turing machine. 
Since any of the three forms of superintelligence could simulate a Turing machine (if given 
access to unlimited memory and allowed to operate indefinitely), they are by this formal crite-
rion computationally equivalent. Indeed, an average human being (provided with unlimited 
scrap paper and unlimited time) could also implement a Turing machine, and thus is also 
equivalent by the same criterion. What matters for our purposes, however, is what these dif-
ferent systems can achieve in practice, with finite memory and in reasonable time. And the 
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efficiency variations are so great that one can readily make some distinctions. For example, a 
typical individual with an IQ of 85 could be taught to implement a Turing machine. (Conceiv-
ably, it might even be possible to train some particularly gifted and docile chimpanzee to do 
this.) Yet, for all practical intents and purposes, such an individual is presumably incapable of, 
say, independently developing general relativity theory or of winning a Fields medal.

 15. Oral storytelling traditions can produce great works (such as the Homeric epics) but perhaps 
some of the contributing authors possessed uncommon gifts.

 16. Unless it contains as components intellects that have speed or quality superintelligence.
 17. Our inability to specify what all these problems are may in part be due to a lack of trying: there 

is little point in spending time detailing intellectual jobs that no individual and no currently 
feasible organization can perform. But it is also possible that even conceptualizing some of 
these jobs is itself one of those jobs that we currently lack the brains to perform.

 18. Cf. Boswell (1917); see also Walker (2002).
 19. This mainly occurs in short bursts in a subset of neurons—most have more sedate firing 

rates (Gray and McCormick 1996; Steriade et al. 1998). There are some neurons (“chattering  
neurons,” also known as “fast rhythmically bursting” cells) that may reach firing frequencies as 
high as 750 Hz, but these seem to be extreme outliers.

 20. Feldman and Ballard (1982).
 21. The conduction velocity depends on axon diameter (thicker axons are faster) and whether the 

axon is myelinated. Within the central nervous system, transmission delays can range from less 
than a millisecond to up to 100 ms (Kandel et al. 2000). Transmission in optical fibers is around 
68% c (because of the refractive index of the material). Electrical cables are roughly the same 
speed, 59–77% c.

 22. This assumes a signal velocity of 70% c. Assuming 100% c ups the estimate to 1.8×1018 m3.
 23. The number of neurons in an adult human male brain has been estimated at 86.1 ± 8.1 billion, a 

number arrived at by dissolving brains and fractionating out the cell nuclei, counting the ones 
stained with a neuron-specific marker. In the past, estimates in the neighborhood of 75–125 bil-
lion neurons were common. These were typically based on manual counting of cell densities in 
representative small regions (Azevedo et al. 2009).

 24. Whitehead (2003).
 25. Information processing systems can very likely use molecular-scale processes for computing 

and data storage and reach at least planetary size in extent. The ultimate physical limits to com-
putation set by quantum mechanics, general relativity, and thermodynamics are, however, far 
beyond this “Jupiter brain” level (Sandberg 1999; Lloyd 2000).

 26. Stansberry and Kudritzki (2012). Electricity used in data centers worldwide amounted to 
 1.1–1.5% of total electricity use (Koomey 2011). See also Muehlhauser and Salamon (2012).

 27. This is an oversimplification. The number of chunks working memory can maintain is both 
information- and task-dependent; however, it is clearly limited to a small number of chunks. See 
Miller (1956) and Cowan (2001).

 28. An example might be that the difficulty of learning Boolean concepts (categories defined by 
logical rules) is proportional to the length of the shortest logically equivalent propositional for-
mula. Typically, even formulae just 3–4 literals long are very difficult to learn. See Feldman 
(2000).

 29. See Landauer (1986). This study is based on experimental estimates of learning and forgetting 
rates in humans. Taking into account implicit learning might push the estimate up a little. If 
one assumes a storage capacity ~1 bit per synapse, one gets an upper bound on human memory 
capacity of about 1015 bits. For an overview of different estimates, see Appendix A of Sandberg 
and Bostrom (2008).

 30. Channel noise can trigger action potentials, and synaptic noise produces significant variability 
in the strength of transmitted signals. Nervous systems appear to have evolved to make numer-
ous trade-offs between noise tolerance and costs (mass, size, time delays); see Faisal et al. (2008). 
For example, axons cannot be thinner than 0.1 µm lest random opening of ion channels create 
spontaneous action potentials (Faisal et al. 2005).

 31. Trachtenberg et al. (2002).
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 32. In terms of memory and computational power, though not in terms of energy efficiency. The 
fastest computer in the world at the time of writing was China’s “Tianhe-2,” which displaced 
Cray Inc. Titan in June 2013 with a performance of 33.86 petaFLOPS. It uses 17.6 MW of power, 
almost six orders of magnitude more than the brain’s ~20 W.

 33. Note that this survey of sources of machine advantage is disjunctive: our argument succeeds 
even if some of the items listed are illusory, so long as there is at least one source that can provide 
a sufficiently large advantage.

CHAPTER 4: THE KINETICS OF AN INTELLIGENCE EXPLOSION

 1. The system may not reach one of these baselines at any sharply defined point. There may instead 
be an interval during which the system gradually becomes able to outperform the external re-
search team on an increasing number of system-improving development tasks.

 2. In the past half-century, at least one scenario has been widely recognized in which the existing 
world order would come to an end in the course of minutes or hours: global thermonuclear war.

 3. This would be consistent with the observation that the Flynn effect—the secular increase in 
measured IQ scores within most populations at a rate of some 3 IQ points per decade over the 
past 60 years or so—appears to have ceased or even reversed in recent years in some highly 
developed countries such as the United Kingdom, Denmark, and Norway (Teasdale and Owen 
2008; Sundet et al. 2004). The cause of the Flynn effect in the past—and whether and to what ex-
tent it represents any genuine gain in general intelligence or merely improved skill at solving IQ 
test-style puzzles—has been the subject of wide debate and is still not known. Even if the Flynn 
effect (at least partially) reflects real cognitive gains, and even if the effect is now diminishing 
or even reversing, this does not prove that we have yet hit diminishing returns in whatever un-
derlying cause was responsible for the observed Flynn effect in the past. The decline or reversal 
could instead be due to some independent detrimental factor that would otherwise have pro-
duced an even bigger observed decline.

 4. Bostrom and Roache (2011).
 5. Somatic gene therapy could eliminate the maturational lag, but is technically much more chal-

lenging than germline interventions and has a lower ultimate potential.
 6. Average global economic productivity growth per year over the period 1960–2000 was 4.3% 

(Isaksson 2007). Only part of this productivity growth is due to gains in organizational 
 efficiency. Some particular networks or organizational processes of course are improving at 
much faster rates.

 7. Biological brain evolution was subject to many constraints and trade-offs that are drastically 
relaxed when the mind moves to a digital medium. For example, brain size is limited by head 
size, and a head that is too big has trouble passing through the birth canal. A large brain also 
guzzles metabolic resources and is a dead weight that impedes movement. The connectivity be-
tween certain brain regions might be limited by steric constraints—the volume of white matter 
is significantly larger than the volume of the gray matter it connects. Heat dissipation is limited 
by blood flow, and might be close to the upper limit for acceptable functioning. Furthermore, 
biological neurons are noisy, slow, and in need of constant protection, maintenance, and resup-
ply by glial cells and blood vessels (contributing to the intracranial crowding). See Bostrom and 
Sandberg (2009b).

 8. Yudkowsky (2008a, 326). For a more recent discussion, see Yudkowsky (2013).
 9. The picture shows cognitive ability as a one-dimensional parameter, to keep the drawing  

simple. But this is not essential to the point being made here. One could, for example, instead 
represent a cognitive ability profile as a hypersurface in a multidimensional space.

 10. Lin et al. (2012).
 11. One gets a certain increase in collective intelligence simply by increasing the number of its  

constituent intellects. Doing so should at least enable better overall performance on tasks that 
can be easily parallelized. To reap the full returns from such a population explosion, however, 
one would also need to achieve some (more than minimal) level of coordination between the 
constituents.
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 12. The distinction between speed and quality of intelligence is anyhow blurred in the case of non-
neuromorphic AI systems.

 13. Rajab et al. (2006, 41–52).
 14. It has been suggested that using configurable integrated circuits (FPGAs) rather than general-

purpose processors could increase computational speeds in neural network simulations by up 
to two orders of magnitude (Markram 2006). A study of high-resolution climate modeling in 
the petaFLOP-range found a twenty-four to thirty-four-fold reduction of cost and about two 
orders of magnitude reduction in power requirements using a custom variant of embedded pro-
cessor chips (Wehner et al. 2008).

 15. Nordhaus (2007). There are many overviews of the different meanings of Moore’s law; see, e.g., 
Tuomi (2002) and Mack (2011).

 16. If the development is slow enough, the project can avail itself of progress being made in the in-
terim by the outside world, such as advances in computer science made by university research-
ers and improvements in hardware made by the semiconductor industry.

 17. Algorithmic overhang is perhaps less likely, but one exception would be if exotic hardware such 
as quantum computing becomes available to run algorithms that were previously infeasible. 
One might also argue that neural networks and deep machine learning are cases of algorithm 
overhang: too computationally expensive to work well when first invented, they were shelved for 
a while, then dusted off when fast graphics processing units made them cheap to run. Now they 
win contests.

 18. And even if progress on the way toward the human baseline were slow.
 19. Oworld is that part of the world’s optimization power that is applied to improving the system in 

question. For a project operating in complete isolation, one that receives no significant ongoing 
support from the external world, we have Oworld ≈0, even though the project must have started 
with a resource endowment (computers, scientific concepts, educated personnel, etc.) that is 
derived from the entire world economy and many centuries of development.

 20. The most relevant of the seed AI’s cognitive abilities here is its ability to perform intelligent de-
sign work to improve itself, i.e. its intelligence amplification capability. (If the seed AI is good at 
enhancing another system, which is good at enhancing the seed AI, then we could view these as 
subsystems of a larger system and focus our analysis on the greater whole.)

 21. This assumes that recalcitrance is not known to be so high as to discourage investment alto-
gether or divert it to some alternative project.

 22. A similar example is discussed in Yudkowsky (2008b).
 23. Since inputs have risen (e.g. amounts invested in building new foundries, and number of people 

working in the semiconductor industry), Moore’s law itself has not given such a rapid growth 
if we control for this increase in inputs. Combined with advances in software, however, an 
18-month doubling time in performance per unit of input may be more historically plausible.

 24. Some tentative attempts have been made to develop the idea of an intelligence explosion within 
the framework of economic growth theory; see, e.g., Hanson (1998b); Jones (2009); Salamon 
(2009). These studies have pointed to the potential of extremely rapid growth given the arrival 
of digital minds, but since endogenous growth theory is relatively poorly developed even for 
historical and contemporary applications, any application to a potentially discontinuous future 
context is better viewed at this stage as a source of potentially useful concepts and considera-
tions than as an exercise likely to deliver authoritative forecasts. For an overview of attempts to 
mathematically model a technological singularity, see Sandberg (2010).

 25. It is of course also possible that there will be no takeoff at all. But since, as argued earlier, super-
intelligence looks technically feasible, the absence of a takeoff would likely be due to the inter-
vention of some defeater, such as an existential catastrophe. If strong superintelligence arrived 
not in the shape of artificial intelligence or whole brain emulation but through one of other 
paths we considered above, then a slower takeoff would be more likely.

CHAPTER 5: DECISIvE STRATEGIC ADvANTAGE

 1. A software mind might run on a single machine as opposed to a worldwide network of comput-
ers; but this is not what we mean by “concentration.” Instead, what we are interested in here is 
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the extent to which power, specifically power derived from technological ability, will be concen-
trated in the advanced stages of, or immediately following, the machine intelligence revolution.

 2. Technology diffusion of consumer products, for example, tends to be slower in developing 
countries (Talukdar et al. 2002). See also Keller (2004) and The World Bank (2008).

 3. The economic literature dealing with the theory of the firm is relevant as a comparison point for 
the present discussion. The locus classicus is Coase (1937). See also, e.g., Canbäck et al. (2006); 
Milgrom and Roberts (1990); Hart (2008); Simester and Knez (2002).

 4. On the other hand, it could be especially easy to steal a seed AI, since it consists of software that 
could be transmitted electronically or carried on a portable memory device.

 5. Barber (1991) suggests that the Yangshao culture (5000–3000 bc) might have used silk. Sun 
et al. (2012) estimate, based on genetic studies, domestication of the silkworm to have occurred 
about 4,100 years ago.

 6. Cook (1984, 144). This story might be too good to withstand historical scrutiny, rather like Pro-
copius’ (Wars VIII.xvii.1–7) story of how the silkworms were supposedly brought to Byzantium 
by wandering monks, hidden in their hollow bamboo staves (Hunt 2011).

 7. Wood (2007); Temple (1986).
 8. Pre-Columbian cultures did have the wheel but used it only for toys (probably due to a lack of 

good draft animals).
 9. Koubi (1999); Lerner (1997); Koubi and Lalman (2007); Zeira (2011); Judd et al. (2012).
 10. Estimated from a variety of sources. The time gap is often somewhat arbitrary, depending on 

how exactly “equivalent” capabilities are defined. Radar was used by at least two countries with-
in a couple of years of its introduction, but exact figures in months are hard to come by.

 11. The RDS-6 in 1953 was the first test of a bomb with fusion reactions, but the RDS-37 in 1955 was 
the first “true” fusion bomb, where most power came from the fusion reaction.

 12. Unconfirmed.
 13. Tests in 1989, project cancelled in 1994.
 14. Deployed system, capable of a range greater than 5,000 km.
 15. Polaris missiles bought from the USA.
 16. Current work is underway on the Taimur missile, likely based on Chinese missiles.
 17. The RSA-3 rocket tested 1989–90 was intended for satellite launches and/or as an ICBM.
 18. MIRV = multiple independently targetable re-entry vehicle, a technology that enables a single 

ballistic missile to carry multiple warheads that can be programmed to hit different targets.
 19. The Agni V system is not yet in service.
 20. Ellis (1999).
 21. If we model the situation as one where the lag time between projects is drawn from a normal 

distribution, then the likely distance between the leading project and its closest follower will 
also depend on how many projects there are. If there are a vast number of projects, then the dis-
tance between the first two is likely small even if the variance of the distribution is moderately 
high (though the expected gap between the lead and the second project declines very slowly 
with the number of competitors if completion times are normally distributed). However, it is 
unlikely that there will be a vast number of projects that are each well enough resourced to be 
serious contenders. (There might be a greater number of projects if there are a large number of 
different basic approaches that could be pursued, but in that case many of those approaches are 
likely to prove dead ends.) As suggested, empirically we seem to find that there is usually no 
more than a handful of serious competitors pursuing any one specific technological goal. The 
situation is somewhat different in a consumer market where there are many niches for slightly 
different products and where barriers to entry are low. There are lots of one-person projects 
designing T-shirts, but only a few firms in the world developing the next generation of graphics 
cards. (Two firms, AMD and NVIDIA, enjoy a near duopoly at the moment, though Intel is also 
competing at the lower-performance end of the market.)

 22. Bostrom (2006c). One could imagine a singleton whose existence is invisible (e.g. a superintel-
ligence with such advanced technology or insight that it could subtly control world events with-
out any human noticing its interventions); or a singleton that voluntarily imposes very strict 
limitations on its own exercise of power (e.g. punctiliously confining itself to ensuring that cer-
tain treaty-specified international rules—or libertarian principles—are respected). How likely 
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any particular kind of singleton is to arise is of course an empirical question; but conceptually, at 
least, it is possible to have a good singleton, a bad singleton, a rambunctiously diverse singleton, 
a blandly monolithic singleton, a crampingly oppressive singleton, or a singleton more akin to 
an extra law of nature than to a yelling despot.

 23. Jones (1985, 344).
 24. It might be significant that the Manhattan Project was carried out during wartime. Many of the 

scientists who participated claimed to be primarily motivated by the wartime situation and the 
fear that Nazi Germany might develop atomic weapons ahead of the Allies. It might be difficult 
for many governments to mobilize a similarly intensive and secretive effort in peacetime. The 
Apollo program, another iconic science/engineering megaproject, received a strong impetus 
from the Cold War rivalry.

 25. Though even if they were looking hard, it is not clear that they would appear (publicly) to be do-
ing so.

 26. Cryptographic techniques could enable the collaborating team to be physically dispersed. 
The only weak link in the communication chain might be the input stage, where the physical 
act of typing could potentially be observed. But if indoor surveillance became common (by 
means of microscopic recording devices), those keen on protecting their privacy might de-
velop countermeasures (e.g. special closets that could be sealed off from would-be eavesdrop-
ping devices). Whereas physical space might become transparent in a coming surveillance 
age, cyberspace might possibly become more protected through wider adoption of stronger 
cryptographic protocols.

 27. A totalitarian state might take recourse to even more coercive measures. Scientists in relevant 
fields might be swept up and put into work camps, akin to the “academic villages” in Stalinist 
Russia.

 28. When the level of public concern is relatively low, some researchers might welcome a little bit of 
public fear-mongering because it draws attention to their work and makes the area they work in 
seem important and exciting. When the level of concern becomes greater, the relevant research 
communities might change their tune as they begin to worry about funding cuts, regulation, 
and public backlash. Researchers in neighboring disciplines—such as those parts of computer 
science and robotics that are not very relevant to artificial general intelligence—might resent 
the drift of funding and attention away from their own research areas. These researchers might 
also correctly observe that their work carries no risk whatever of leading to a dangerous intel-
ligence explosion. (Some historical parallels might be drawn with the career of the idea of nano-
technology; see Drexler [2013].)

 29. These have been successful in that they have achieved at least some of what they set out to do. 
How successful they have been in a broader sense (taking into account cost-effectiveness and 
so forth) is harder to determine. In the case of the International Space Station, for example, 
there have been huge cost overruns and delays. For details of the problems encountered by the 
project, see NASA (2013). The Large Hadron Collider project has had some major setbacks, but 
this might be due to the inherent difficulty of the task. The Human Genome Project achieved 
success in the end, but seems to have received a speed boost from being forced to compete with 
Craig Venter’s private corporate effort. Internationally sponsored projects to achieve controlled 
fusion energy have failed to deliver on expectations, despite massive investment; but again, this 
might be attributable to the task turning out to be more difficult than anticipated.

 30. US Congress, Office of Technology Assessment (1995).
 31. Hoffman (2009); Rhodes (2008).
 32. Rhodes (1986).
 33. The US Navy’s code-breaking organization, OP-20-G, apparently ignored an invitation to gain 

full knowledge of Britain’s anti-Enigma methods, and failed to inform higher-level US decision 
makers of Britain’s offer to share its cryptographic secrets (Burke 2001). This gave American 
leaders the impression that Britain was withholding important information, a cause of friction 
throughout the war. Britain did share with the Soviet government some of the intelligence they 
had gleaned from decrypted German communications. In particular, Russia was warned about 
the German preparations for Operation Barbarossa. But Stalin refused to believe the warning, 
partly because the British did not disclose how they had obtained the information.
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 34. For a few years, Russell seems to have advocated the threat of nuclear war to persuade Rus-
sia to accept the Baruch plan; later, he was a strong proponent of mutual nuclear disarmament 
(Russell and Griffin 2001). John von Neumann is reported to have believed that a war between 
the United States and Russia was inevitable, and to have said, “If you say why not bomb them 
[the Russians] tomorrow, I say why not bomb them today? If you say today at five o’clock, I say 
why not one o’clock?” (It is possible that he made this notorious statement to burnish his anti-
communist credentials with US Defense hawks in the McCarthy era. Whether von Neumann, 
had he been in charge of US policy, would actually have launched a first strike is impossible to 
ascertain. See Blair [1957], 96.)

 35. Baratta (2004).
 36. If the AI is controlled by a group of humans, the problem may apply to this human group, 

though it is possible that new ways of reliably committing to an agreement will be available by 
this time, in which case even human groups could avoid this problem of potential internal un-
raveling and overthrow by a sub-coalition.

CHAPTER 6: COGNITIvE SUPERPOWERS

 1. In what sense is humanity a dominant species on Earth? Ecologically speaking, humans are the 
most common large (~50 kg) animal, but the total human dry biomass (~100 billion kg) is not 
so impressive compared with that of ants, the family Formicidae (300 billion–3,000 billion kg). 
Humans and human utility organisms form a very small part (<0.001) of total global biomass. 
However, croplands and pastures are now among the largest ecosystems on the planet, covering 
about 35% of the ice-free land surface (Foley et al. 2007). And we appropriate nearly a quarter 
of net primary productivity according to a typical assessment (Haberl et al. 2007), though esti-
mates range from 3 to over 50% depending mainly on varying definitions of the relevant terms 
(Haberl et al. 2013). Humans also have the largest geographic coverage of any animal species 
and top the largest number of different food chains.

 2. Zalasiewicz et al. (2008).
 3. See first note to this chapter.
 4. Strictly speaking, this may not be quite correct. Intelligence in the human species ranges all the 

way down to approximately zero (e.g. in the case of embryos or patients in permanent vegeta-
tive state). In qualitative terms, the maximum difference in cognitive ability within the human 
species is therefore perhaps greater than the difference between any human and a superintel-
ligence. But the point in the text stands if we read “human” as “normally functioning adult.”

 5. Gottfredson (2002). See also Carroll (1993) and Deary (2001).
 6. See Legg (2008). Roughly, Legg proposes to measure a reinforcement-learning agent as its 

 expected performance in all reward-summable environments, where each such environment 
receives a weight determined by its Kolmogorov complexity. We will explain what is meant 
by reinforcement learning in Chapter 12. See also Dowe and Hernández-Orallo (2012) and 
 Hibbard (2011).

 7. With regard to technology research in areas like biotechnology and nanotechnology, what a 
superintelligence would excel at is the design and modeling of new structures. To the extent that 
design ingenuity and modeling cannot substitute for physical experimentation, the superintel-
ligence’s performance advantage may be qualified by its level of access to the requisite experi-
mental apparatus.

 8. E.g., Drexler (1992, 2013).
 9. A narrow-domain AI could of course have significant commercial applications, but this does 

not mean that it would have the economic productivity superpower. For example, even if a 
narrow-domain AI earned its owners several billions of dollars a year, this would still be four 
orders of magnitude less than the rest of the world economy. In order for the system directly and 
substantially to increase world product, an AI would need to be able to perform many kinds of 
work; that is, it would need competence in many domains.

 10. The criterion does not rule out all scenarios in which the AI fails. For example, the AI might ra-
tionally take a gamble that has a high chance of failing. In this case, however, the criterion could 
take the form that (a) the AI should make an unbiased estimate of the gamble’s low chance of 
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success and (b) there should be no better gamble available to the AI that we present-day humans 
can think of but that the AI overlooks.

 11. Cf. Freitas (2000) and Vassar and Freitas (2006).
 12. Yudkowsky (2008a).
 13. Freitas (1980); Freitas and Merkle (2004, Chap. 3); Armstrong and Sandberg (2013).
 14. See, e.g., Huffman and Pless (2003), Knill et al. (2000), Drexler (1986).
 15. That is to say, the distance would be small on some “natural” metric, such as the logarithm of 

the size of the population that could be sustainably supported at subsistence level by a given 
level of capability if all resources were devoted to that end.

 16. This estimate is based on the WMAP estimate of a cosmological baryon density of 9.9×10–30 g/cm3  
and assumes that 90% of the mass is intergalactic gas, that some 15% of the galactic mass is stars 
(about 80% of baryonic matter), and that the average star weighs in at 0.7 solar masses (Read and 
Trentham 2005; Carroll and Ostlie 2007).

 17. Armstrong and Sandberg (2013).
 18. Even at 100% of c (which is unattainable for objects with nonzero rest mass) the number of 

reachable galaxies is only about 6×109. (Cf. Gott et al. [2005] and Heyl [2005].) We are assuming 
that our current understanding of the relevant physics is correct. It is hard to be very confident 
in any upper bound, since it is at least conceivable that a superintelligent civilization might ex-
tend its reach in some way that we take to be physically impossible (for instance, by building 
time machines, by spawning new inflationary universes, or by some other, as yet unimagined 
means).

 19. The number of habitable planets per star is currently uncertain, so this is merely a crude esti-
mate. Traub (2012) predicts that one-third of stars in spectral classes F, G, or K have at least one 
terrestrial planet in the habitable zone; see also Clavin (2012). FGK stars form about 22.7% of 
the stars in the solar neighborhood, suggesting that 7.6% of stars have potentially suitable plan-
ets. In addition, there might be habitable planets around the more numerous M stars (Gilster 
2012). See also Robles et al. (2008).

It would not be necessary to subject human bodies to the rigors of intergalactic travels. AIs 
could oversee the colonization process. Homo sapiens could be brought along as information, 
which the AIs could later use to instantiate specimens of our species. For example, genetic in-
formation could be synthesized into DNA, and a first generation of humans could be incubated, 
raised, and educated by AI guardians taking an anthropomorphic guise.

 20. O’Neill (1974).
 21. Dyson (1960) claims to have gotten the basic idea from science fiction writer Olaf Stapledon 

(1937), who in turn might have been inspired by similar thoughts by J. D. Bernal (Dyson 1979, 
211).

 22. Landauer’s principle states that there is a minimum amount of energy required to change one 
bit of information, known as the Landauer limit, equal to kT  ln 2, where k is the Boltzmann 
constant (1.38×10−23  J/K) and T is the temperature. If we assume the circuitry is maintained 
at around 300 K, then 1026 watts allows us to erase approximately 1047 bits per second. (On the 
achievable efficiency of nanomechanical computational devices, see Drexler [1992]. See also 
Bradbury [1999]; Sandberg [1999]; Ćirković [2004]. The foundations of Landauer’s principle are 
still somewhat in dispute; see, e.g., Norton [2011].)

 23. Stars vary in their power output, but the Sun is a fairly typical main-sequence star.
 24. A more detailed analysis might consider more closely what types of computation we are inter-

ested in. The number of serial computations that can be performed is quite limited, since a fast 
serial computer must be small in order to minimize communications lags within the different 
parts of the computer. There are also limits on the number of bits that can be stored, and, as we 
saw, on the number of irreversible computational steps (involving the erasure of information) 
that can be performed.

 25. We are assuming here that there are no extraterrestrial civilizations that might get in the way. 
We are also assuming that the simulation hypothesis is false. See Bostrom (2003a). If either of 
these assumptions is incorrect, there may be important non-anthropogenic risks—ones that 
involve intelligent agency of a nonhuman sort. See also Bostrom (2003b, 2009c).



NOTES: CHAPTERS 6 –7  |  279

 26. At least a wise singleton that grasped the idea of evolution could, in principle, have embarked on a 
eugenics program by means of which it could slowly have raised its level of collective intelligence.

 27. Tetlock and Belkin (1996).
 28. To be clear: colonizing and re-engineering a large part of the accessible universe is not currently 

within our direct reach. Intergalactic colonization is far beyond today’s technology. The point is 
that we could in principle use our present capabilities to develop the additional capabilities that 
would be needed, thus placing the accomplishment within our indirect reach. It is of course also 
true that humanity is not currently a singleton and that we do not know that we would never 
face intelligent opposition from some external power if we began to re-engineer the accessible 
universe. To meet the wise-singleton sustainability threshold, however, it suffices that one pos-
sesses a capability set such that if a wise singleton facing no intelligent opposition had possessed 
this capability set then the colonization and reengineering of a large part of the accessible uni-
verse would be within its indirect reach.

 29. Sometimes it might be useful to speak of two AIs as each having a given superpower. In an ex-
tended sense of the word, one could thus conceive of a superpower as something that an agent 
has relative to some field of action—in this example, perhaps a field that includes all of human 
civilization but excludes the other AI.

CHAPTER 7: THE SUPERINTELLIGENT WILL

 1. This is of course not to deny that differences that appear small visually can be functionally pro-
found.

 2. Yudkowsky (2008a, 310).
 3. David Hume, the Scottish Enlightenment philosopher, thought that beliefs alone (say, about 

what is a good thing to do) cannot motivate action: some desire is required. This would support 
the orthogonality thesis by undercutting one possible objection to it, namely that sufficient in-
telligence might entail the acquisition of certain beliefs which would then necessarily produce 
certain motivations. However, although the orthogonality thesis can draw support from the 
Humean theory of motivation, it does not presuppose it. In particular, one need not maintain 
that beliefs alone can never motivate action. It would suffice to assume, for example, that an 
agent—be it ever so intelligent—can be motivated to pursue any course of action if the agent 
happens to have certain desires of some sufficient, overriding strength. Another way in which 
the orthogonality thesis could be true even if the Humean theory of motivation is false is if ar-
bitrarily high intelligence does not entail the acquisition of any such beliefs as are (putatively) 
motivating on their own. A third way in which it might be possible for the orthogonality thesis 
to be true even if the Humean theory were false is if it is possible to build an agent (or more 
neutrally, an “optimization process”) with arbitrarily high intelligence but with constitution so 
alien as to contain no clear functional analogs to what in humans we call “beliefs” and “desires.” 
(For some recent attempts to defend the Humean theory of motivation see Smith [1987], Lewis 
[1988], and Sinhababu [2009].)

 4. For instance, Derek Parfit has argued that certain basic preferences would be irrational, such as 
that of an otherwise normal agent who has “Future-Tuesday-Indifference”:

 A certain hedonist cares greatly about the quality of his future experiences. With one exception, 
he cares equally about all the parts of his future. The exception is that he has Future-Tuesday-
Indifference. Throughout every Tuesday he cares in the normal way about what is happening to 
him. But he never cares about possible pains or pleasures on a future Tuesday. . . . This indifference 
is a bare fact. When he is planning his future, it is simply true that he always prefers the prospect 
of great suffering on a Tuesday to the mildest pain on any other day. (Parfit [1986, 123–4]; see also 
Parfit [2011])

  For our purposes, we need take no stand on whether Parfit is right that this agent is irrational, 
so long as we grant that it is not necessarily unintelligent in the instrumental sense explained 
in the text. Parfit’s agent could have impeccable instrumental rationality, and therefore great 
intelligence, even if he falls short on some kind of sensitivity to “objective reason” that might 
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be required of a fully rational agent. Therefore, this kind of example does not undermine the 
orthogonality thesis.

 5. Even if there are objective moral facts that any fully rational agent would comprehend, and even 
if these moral facts are somehow intrinsically motivating (such that anybody who fully compre-
hends them is necessarily motivated to act in accordance with them), this need not undermine 
the orthogonality thesis. The thesis could still be true if an agent could have impeccable instru-
mental rationality even whilst lacking some other faculty constitutive of rationality proper, or 
some faculty required for the full comprehension of the objective moral facts. (An agent could 
also be extremely intelligent, even superintelligent, without having full instrumental rationality 
in every domain.)

 6. For more on the orthogonality thesis, see Bostrom (2012) and Armstrong (2013).
 7. Sandberg and Bostrom (2008).
 8. Stephen Omohundro has written two pioneering papers on this topic (Omohundro 2007, 

2008). Omohundro argues that all advanced AI systems are likely to exhibit a number of “basic 
drives,” by which he means “tendencies which will be present unless explicitly counteracted.” 
The term “AI drive” has the advantage of being short and evocative, but it has the disadvantage 
of suggesting that the instrumental goals to which it refers influence the AI’s decision-making 
in the same way as psychological drives influence human decision-making, i.e. via a kind of 
phenomenological tug on our ego which our willpower may occasionally succeed in resisting. 
That connotation is unhelpful. One would not normally say that a typical human being has a 
“drive” to fill out their tax return, even though filing taxes may be a fairly convergent instru-
mental goal for humans in contemporary societies (a goal whose realization averts trouble that 
would prevent us from realizing many of our final goals). Our treatment here also differs from 
that of Omohundro in some other more substantial ways, although the underlying idea is the 
same. (See also Chalmers [2010] and Omohundro [2012].)

 9. Chislenko (1997).
 10. See also Shulman (2010b).
 11. An agent might also change its goal representation if it changes its ontology, in order to trans-

pose its old representation into the new ontology; cf. de Blanc (2011).
Another type of factor that might make an evidential decision theorist undertake various ac-

tions, including changing its final goals, is the evidential import of deciding to do so. For exam-
ple, an agent that follows evidential decision theory might believe that there exist other agents 
like it in the universe, and that its own actions will provide some evidence about how those 
other agents will act. The agent might therefore choose to adopt a final goal that is altruistic 
towards those other evidentially linked agents, on grounds that this will give the agent evidence 
that those other agents will have chosen to act in like manner. An equivalent outcome might be 
obtained, however, without changing one’s final goals, by choosing in each instant to act as if 
one had those final goals.

 12. An extensive psychological literature explores adaptive preference formation. See, e.g., Forgas 
et al. (2010).

 13. In formal models, the value of information is quantified as the difference between the expected 
value realized by optimal decisions made with that information and the expected value realized 
by optimal decisions made without it. (See, e.g., Russell and Norvig [2010].) It follows that the 
value of information is never negative. It also follows that any information you know will never 
affect any decision you will ever make has zero value for you. However, this kind of model as-
sumes several idealizations which are often invalid in the real world—such as that knowledge 
has no final value (meaning that knowledge has only instrumental value and is not valuable for 
its own sake) and that agents are not transparent to other agents.

 14. E.g., Hájek (2009).
 15. This strategy is exemplified by the sea squirt larva, which swims about until it finds a suitable 

rock, to which it then permanently affixes itself. Cemented in place, the larva has less need for 
complex information processing, whence it proceeds to digest part of its own brain (its cerebral 
ganglion). One can observe the same phenomenon in some academics when they have been 
granted tenure.

 16. Bostrom (2012).
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 17. Bostrom (2006c).
 18. One could reverse the question and look instead at possible reasons for a superintelligent single-

ton not to develop some technological capabilities. These include the following: (a) the singleton 
foresees that it will have no use for the capability; (b) the development cost is too large relative 
to its anticipated utility (e.g. if the technology will never be suitable for achieving any of the sin-
gleton’s ends, or if the singleton has a very high discount rate that strongly discourages invest-
ment); (c) the singleton has some final value that requires abstention from particular avenues of 
technology development; (d) if the singleton is not certain it will remain stable, it might prefer 
to refrain from developing technologies that could threaten its internal stability or that would 
make the consequences of dissolution worse (for instance, a world government may not wish to 
develop technologies that would facilitate rebellion, even if they have some good uses, nor de-
velop technologies for the easy production of weapons of mass destruction which could wreak 
havoc if the world government were to dissolve); (e) similarly, the singleton might have made 
some kind of binding strategic commitment not to develop some technology, a commitment 
that remains operative even if it would now be convenient to develop it. (Note, however, that 
some current reasons for technology development would not apply to a singleton: for instance, 
reasons arising from arms races.)

 19. Suppose that an agent discounts resources obtained in the future at an exponential rate, and 
that because of the light speed limitation the agent can only increase its resource endowment 
at a polynomial rate. Would this mean that there will be some time after which the agent would 
not find it worthwhile to continue acquisitive expansion? No, because although the present 
value of the resources obtained at future times would asymptote to zero the further into the 
future we look, so would the present cost of obtaining them. The present cost of sending out 
one more von Neumann probe a 100 million years from now (possibly using some resource 
acquired some short time earlier) would be diminished by the same discount factor that would 
diminish the present value of the future resources that the extra probe would acquire (modulo a 
constant factor).

 20. While the volume reached by colonization probes at a given time might be roughly spherical 
and expanding with a rate proportional to the square of time elapsed since the first probe was 
launched (~t2), the amount of resources contained within this volume will follow a less regular 
growth pattern, since the distribution of resources is inhomogeneous and varies over several 
scales. Initially, the growth rate might be ~t2 as the home planet is colonized; then the growth 
rate might become spiky as nearby planets and solar systems are colonized; then, as the roughly 
disc-shaped volume of the Milky Way gets filled out, the growth rate might even out, to be ap-
proximately proportional to t; then the growth rate might again become spiky as nearby galax-
ies are colonized; then the growth rate might again approximate ~t2 as expansion proceeds on 
a scale over which the distribution of galaxies is roughly homogeneous; then another period of 
spiky growth followed by smooth ~t2 growth as galactic superclusters are colonized; until ulti-
mately the growth rate starts a final decline, eventually reaching zero as the expansion speed of 
the universe increases to such an extent as to make further colonization impossible.

 21. The simulation argument may be of particular importance in this context. A superintelligent 
agent may assign a significant probability to hypotheses according to which it lives in a comput-
er simulation and its percept sequence is generated by another superintelligence, and this might 
generate various convergent instrumental reasons depending on the agent’s guesses about what 
types of simulations it is most likely to be in. Cf. Bostrom (2003a).

 22. Discovering the basic laws of physics and other fundamental facts about the world is a conver-
gent instrumental goal. We may place it under the rubric “cognitive enhancement” here, though 
it could also be derived from the “technology perfection” goal (since novel physical phenomena 
might enable novel technologies).

CHAPTER 8: IS THE DEFAULT OUTCOME DOOM?

 1. Some additional existential risk resides in scenarios in which humanity survives in some highly 
suboptimal state or in which a large portion of our potential for desirable development is irre-
versibly squandered. On top of this, there may be existential risks associated with the lead-up to 
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a potential intelligence explosion, arising, for example, from war between countries competing 
to develop superintelligence first.

 2. There is an important moment of vulnerability when the AI first realizes the need for such 
concealment (an event which we may term the conception of deception). This initial realization 
would not itself be deliberately concealed when it occurs. But having had this realization, the 
AI might move swiftly to hide the fact that the realization has occurred, while setting up some 
covert internal dynamic (perhaps disguised as some innocuous process that blends in with all 
the other complicated processes taking place in its mind) that will enable it to continue to plan 
its long-term strategy in privacy.

 3. Even human hackers can write small and seemingly innocuous programs that do completely 
unexpected things. (For examples, see some the winning entries in the International Obfus-
cated C Code Contest.)

 4. The point that some AI control measures could appear to work within a fixed context yet fail 
catastrophically when the context changes is also emphasized by Eliezer Yudkowsky; see, e.g., 
Yudkowsky (2008a).

 5. The term seems to have been coined by science-fiction writer Larry Niven (1973), but is based on 
real-world brain stimulation reward experiments; cf. Olds and Milner (1954) and Oshima and 
Katayama (2010). See also Ring and Orseau (2011).

 6. Bostrom (1997).
 7. There might be some possible implementations of a reinforcement learning mechanism that 

would, when the AI discovers the wireheading solution, lead to a safe incapacitation rather than 
to infrastructure profusion. The point is that this could easily go wrong and fail for unexpected 
reasons.

 8. This was suggested by Marvin Minsky (vide Russell and Norvig [2010, 1039]).
 9. The issue of which kinds of digital mind would be conscious, in the sense of having subjec-

tive phenomenal experience, or “qualia” in philosopher-speak, is important in relation to this 
point (though it is irrelevant to many other parts of this book). One open question is how hard 
it would be to accurately estimate how a human-like being would behave in various circum-
stances without simulating its brain in enough detail that the simulation is conscious. Another 
question is whether there are generally useful algorithms for a superintelligence, for instance 
reinforcement-learning techniques, such that the implementation of these algorithms would 
generate qualia. Even if we judge the probability that any such subroutines would be conscious 
to be fairly small, the number of instantiations might be so large that even a small risk that they 
might experience suffering ought to be accorded significant weight in our moral calculation. 
See also Metzinger (2003, Chap. 8).

 10. Bostrom (2002a, 2003a); Elga (2004).

CHAPTER 9: THE CONTROL PROBLEM

 1. E.g., Laffont and Martimort (2002).
 2. Suppose a majority of voters want their country to build some particular kind of superintel-

ligence. They elect a candidate who promises to do their bidding, but they might find it difficult 
to ensure that the candidate, once in power, will follow through on her campaign promise and 
pursue the project in the way that the voters intended. Supposing she is true to her word, she 
instructs her government to contract with an academic or industry consortium to carry out 
the work; but again there are agency problems: the bureaucrats in the government department 
might have their own views about what should be done and may implement the project in a 
way that respects the letter but not the spirit of the leader’s instructions. Even if the govern-
ment department does its job faithfully, the contracted scientific partners might have their own 
separate agendas. The problem recurs on many levels. The director of one of the participating 
laboratories might lie awake worrying about a technician introducing an unsanctioned element 
into the design—imagining Dr. T. R. Eason sneaking into his office late one night, logging into 
the project code base, rewriting a part of the seed AI’s goal system. Where it was supposed to say 
“serve humanity,” it now says “serve Dr. T. R. Eason.”



NOTES: CHAPTER 9  |  283

 3. Even for superintelligence development, though, there could be a role for behavioral testing—as 
one auxiliary element within a wider battery of safety measures. Should an AI misbehave in its 
developmental phase, something is clearly awry—though, importantly, the converse does not 
hold.

 4. In a classic exploit from 1975, Steven Dompier wrote a program for the Altair 8800 that took ad-
vantage of this effect (and the absence of shielding around the microcomputer’s case). Running 
the program caused the emission of electromagnetic waves that would produce music when one 
held a transistor radio close to the computer (Driscoll 2012). The young Bill Gates, who attended 
a demo, reported that he was impressed and mystified by the hack (Gates 1975). There are in any 
case plans to design future chips with built-in Wi-Fi capabilities (Greene 2012).

 5. It is no light matter to have held a conviction, which, had we had an opportunity to act upon it, 
could have resulted in the ruination of all our cosmic endowment. Perhaps one could argue for 
the following principle: if somebody has in the past been certain on N occasions that a system 
has been improved sufficiently to make it safe, and each time it was revealed that they were 
wrong, then on the next occasion they are not entitled to assign a credence greater than 1/(N + 1) 
to the system being safe.

 6. In one informal experiment, the role of the AI was played by an intelligent human. Another 
individual played the role of gatekeeper and was tasked with not letting the AI out of the box. 
The AI could communicate with the gatekeeper only by text and was given two hours to per-
suade the gatekeeper to let it out. In three cases out of five, with different individuals playing the 
gatekeeper, the AI escaped (Yudkowsky 2002). What a human can do, a superintelligence can 
do too. (The reverse, of course, does not hold. Even if the task for a real superintelligence were 
harder—maybe the gatekeepers would be more strongly motivated to refrain from releasing the 
AI than the individuals playing gatekeeper in the experiment—the superintelligence might still 
succeed where a human would fail.)

 7. One should not overstate the marginal amount of safety that could be gained in this way. Mental 
imagery can substitute for graphical display. Consider the impact books can have on people—
and books are not even interactive.

 8. See also Chalmers (2010). It would be a mistake to infer from this that there is no possible use in 
building a system that will never be observed by any outside entity. One might place a final value 
on what goes on inside such a system. Also, other people might have preferences about what 
goes on inside such a system, and might therefore be influenced by its creation or the promise 
of its creation. Knowledge of the existence of certain kinds of isolated systems (ones contain-
ing observers) can also induce anthropic uncertainty in outside observers, which may influence 
their behavior.

 9. One might wonder why social integration is considered a form of capability control. Should it 
not instead be classified as a motivation selection method on the ground that it involves seek-
ing to influence a system’s behavior by means of incentives? We will look closely at motivation 
selection presently; but, in answer to this question, we are construing motivation selection as a 
cluster of control methods that work by selecting or shaping a system’s final goals—goals sought 
for their own sakes rather than for instrumental reasons. Social integration does not target a 
system’s final goals, so it is not motivation selection. Rather, social integration aims to limit the 
system’s effective capabilities: it seeks to render the system incapable of achieving a certain set of 
outcomes—outcomes in which the system attains the benefits of defection without suffering the 
associated penalties (retribution, and loss of the gains from collaboration). The hope is that by 
limiting which outcomes the system is able to attain, the system will find that the most effective 
remaining means of realizing its final goals is to behave cooperatively.

 10. This approach may be somewhat more promising in the case of an emulation believed to have 
anthropomorphic motivations.

 11. I owe this idea to Carl Shulman.
 12. Creating a cipher certain to withstand a superintelligent code-breaker is a nontrivial challenge. 

For example, traces of random numbers might be left in some observer’s brain or in the micro-
structure of the random generator, from whence the superintelligence can retrieve them; or, if 
pseudorandom numbers are used, the superintelligence might guess or discover the seed from  
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which they were generated. Further, the superintelligence could build large quantum comput-
ers, or even discover unknown physical phenomena that could be used to construct new kinds 
of computers.

 13. The AI could wire itself to believe that it had received a reward tokens, but this should not make 
it wirehead if it is designed to want the reward tokens (as opposed to wanting to be in a state in 
which it has certain beliefs about the reward tokens).

 14. For the original article, see Bostrom (2003a). See also Elga (2004).
 15. Shulman (2010a).
 16. Basement-level reality presumably contains more computational resources than simulated reality, 

since any computational processes occurring in a simulation are also occurring on the computer 
running the simulation. Basement-level reality might also contain a wealth of other physical re-
sources which could be hard for simulated agents to access—agents that exist only at the indulgence 
of powerful simulators who may have other uses in mind for those resources. (Of course, the infer-
ence here is not strictly deductively valid: in principle, it could be the case that universes in which 
simulations are run contain so much more resources that simulated civilizations on average have 
access to more resources than non-simulated civilizations, even though each non-simulated civili-
zation that runs simulations has more resources than all the civilizations it simulates do combined.)

 17. There are various further esoteric considerations that might bear on this matter, the implica-
tions of which have not yet been fully analyzed. These considerations may ultimately be cru-
cially important in developing an all-things-considered approach to dealing with the prospect 
of an intelligence explosion. However, it seems unlikely that we will succeed in figuring out the 
practical import of such esoteric arguments unless we have first made some progress on the 
more mundane kinds of consideration that are the topic of most of this book.

 18. Cf., e.g., Quine and Ullian (1978).
 19. Which an AI might investigate by considering the performance characteristics of various basic 

computational functionalities, such as the size and capacity of various data buses, the time it 
takes to access different parts of memory, the incidence of random bit flips, and so forth.

 20. Perhaps the prior could be (a computable approximation of) the Solomonoff prior, which as-
signs probability to possible worlds on the basis of their algorithmic complexity. See Li and 
 Vitányi (2008).

 21. The moment after the conception of deception, the AI might contrive to erase the trace of its 
mutinous thought. It is therefore important that this tripwire operate continuously. It would 
also be good practice to use a “flight recorder” that stores a complete trace of all the AI’s activity 
(including exact timing of keyboard input from the programmers), so that its trajectory can be 
retraced or analyzed following an automatic shutdown. The information could be stored on a 
write-once-read-many medium.

 22. Asimov (1942). To the three laws were later added a “Zeroth Law”: “(0) A robot may not harm 
humanity, or, by inaction, allow humanity to come to harm” (Asimov 1985).

 23. Cf. Gunn (1982).
 24. Russell (1986, 161f).
 25. Similarly, although some philosophers have spent entire careers trying to carefully formulate 

deontological systems, new cases and consequences occasionally come to light that necessitate 
revisions. For example, deontological moral philosophy has in recent years been reinvigorat-
ed through the discovery of a fertile new class of philosophical thought experiments, “trolley 
problems,” which reveal many subtle interactions among our intuitions about the moral sig-
nificance of the acts/omissions distinction, the distinction between intended and unintended 
consequences, and other such matters; see, e.g., Kamm (2007).

 26. Armstrong (2010).
 27. As a rule of thumb, if one plans to use multiple safety mechanisms to contain an AI, it may be 

wise to work on each one as if it were intended to be the sole safety mechanism and as if it were 
therefore required to be individually sufficient. If one puts a leaky bucket inside another leaky 
bucket, the water still comes out.

 28. A variation of the same idea is to build the AI so that it is continuously motivated to act on its 
best guesses about what the implicitly defined standard is. In this setup, the AI’s final goal is 
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always to act on the implicitly defined standard, and it pursues an investigation into what this 
standard is only for instrumental reasons.

CHAPTER 10: ORACLES, GENIES, SOvEREIGNS, TOOLS

 1. These names are, of course, anthropomorphic and should not be taken seriously as analogies. 
They are just meant as labels for some prima facie different concepts of possible system types 
that one might consider trying to build.

 2. In response to a question about the outcome of the next election, one would not wish to be 
served with a comprehensive list of the projected position and momentum vectors of nearby 
particles.

 3. Indexed to a particular instruction set on a particular machine.
 4. Kuhn (1962); de Blanc (2011).
 5. It would be harder to apply such a “consensus method” to genies or sovereigns, because there 

may often be numerous sequences of basic actions (such as sending particular patterns of elec-
trical signals to the system’s actuators) that would be almost exactly equally effective at achiev-
ing a given objective; whence slightly different agents may legitimately choose slightly different 
actions, resulting in a failure to reach consensus. By contrast, with appropriately formulated 
questions, there would usually be a small number of suitable answer options (such as “yes” and 
“no”). (On the concept of a Schelling point, also referred to as a “focal point,” see Schelling 
[1980].)

 6. Is not the world economy in some respects analogous to a weak genie, albeit one that charges for 
its services? A vastly bigger economy, such as might develop in the future, might then approxi-
mate a genie with collective superintelligence.

One important respect in which the current economy is unlike a genie is that although I 
can (for a fee) command the economy to deliver a pizza to my door, I cannot command it to 
deliver peace. The reason is not that the economy is insufficiently powerful, but that it is insuf-
ficiently coordinated. In this respect, the economy resembles an assembly of genies serving dif-
ferent masters (with competing agendas) more than it resembles a single genie or any other type 
of unified agent. Increasing the total power of the economy by making each constituent genie 
more powerful, or by adding more genies, would not necessarily render the economy more ca-
pable of delivering peace. In order to function like a superintelligent genie, the economy would 
not only need to grow in its ability to inexpensively produce goods and services (including ones 
that require radically new technology), it would also need to become better able to solve global 
coordination problems.

 7. If the genie were somehow incapable of not obeying a subsequent command—and somehow 
incapable of reprogramming itself to get rid of this susceptibility—then it could act to prevent 
any new command from being issued.

 8. Even an oracle that is limited to giving yes/no answers could be used to facilitate the search for a 
genie or sovereign AI, or indeed could be used directly as a component in such an AI. The oracle 
could also be used to produce the actual code for such an AI if a sufficiently large number of 
questions can be asked. A series of such questions might take roughly the following form: “In 
the binary version of the code of the first AI that you thought of that would constitute a genie, is 
the nth symbol a zero?”

 9. One could imagine a slightly more complicated oracle or genie that accepts questions or com-
mands only if they are issued by a designated authority, though this would still leave open the 
possibility of that authority becoming corrupted or being blackmailed by a third party.

 10. John Rawls, a leading political philosopher of the twentieth century, famously employed the 
expository device of a veil of ignorance as a way of characterizing the kinds of preference that 
should be taken into account in the formulation of a social contract. Rawls suggested that we 
should imagine we were choosing a social contract from behind a veil of ignorance that pre-
vents us from knowing which person we will be and which social role we will occupy, the idea 
being that in such a situation we would have to think about which society would be generally 
fairest and most desirable without regard to our egoistic interests and self-serving biases that  
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might otherwise make us prefer a social order in which we ourselves enjoy unjust privileges. See 
Rawls (1971).

 11. Karnofsky (2012).
 12. A possible exception would be software hooked up to sufficiently powerful actuators, such as 

software in early warning systems if connected directly to nuclear warheads or to human offic-
ers authorized to launch a nuclear strike. Malfunctions in such software can result in high-risk 
situations. This has happened at least twice within living memory. On November 9, 1979, a com-
puter problem led NORAD (North American Aerospace Defense Command) to make a false 
report of an incoming full-scale Soviet attack on the United States. The USA made emergency 
retaliation preparations before data from early-warning radar systems showed that no attack 
had been launched (McLean and Stewart 1979). On September 26, 1983, the malfunctioning So-
viet Oko nuclear early-warning system reported an incoming US missile strike. The report was 
correctly identified as a false alarm by the duty officer at the command center, Stanislav Petrov: 
a decision that has been credited with preventing thermonuclear war (Lebedev 2004). It appears 
that a war would probably have fallen short of causing human extinction, even if it had been 
fought with the combined arsenals held by all the nuclear powers at the height of the Cold War, 
though it would have ruined civilization and caused unimaginable death and suffering (Gaddis 
1982; Parrington 1997). But bigger stockpiles might be accumulated in future arms races, or 
even deadlier weapons might be invented, or our models of the impacts of a nuclear Armaged-
don (particularly of the severity of the consequent nuclear winter) might be wrong.

 13. This approach could fit the category of a direct-specification rule-based control method.
 14. The situation is essentially the same if the solution criterion specifies a goodness measure rather 

than a sharp cutoff for what counts as a solution.
 15. An advocate for the oracle approach could insist that there is at least a possibility that the user 

would spot the flaw in the proffered solution—recognize that it fails to match the user’s intent 
even while satisfying the formally specified success criteria. The likelihood of catching the er-
ror at this stage would depend on various factors, including how humanly understandable the 
oracle’s outputs are and how charitable it is in selecting which features of the potential outcome 
to bring to the user’s attention.

Alternatively, instead of relying on the oracle itself to provide these functionalities, one might 
try to build a separate tool to do this, a tool that could inspect the pronouncements of the oracle 
and show us in a helpful way what would happen if we acted upon them. But to do to this in full 
generality would require another superintelligent oracle whose divinations we would then have 
to trust; so the reliability problem would not have been solved, only displaced. One might seek to 
gain an increment of safety through the use of multiple oracles to perform peer review, but this 
does not protect in cases where all the oracles fail in the same way—as may happen if, for instance, 
they have all been given the same formal specification of what counts as a satisfactory solution.

 16. Bird and Layzell (2002) and Thompson (1997); also Yaeger (1994, 13–14).
 17. Williams (1966).
 18. Leigh (2010).
 19. This example is borrowed from Yudkowsky (2011).
 20. Wade (1976). Computer experiments have also been conducted with simulated evolution de-

signed to resemble aspects of biological evolution—again with sometimes strange results (see, 
e.g., Yaeger [1994]).

 21. With sufficiently great—finite but physically implausible—amounts of computing power, it 
would probably be possible to achieve general superintelligence with currently available algo-
rithms. (Cf., e.g., the AIXItl system; Hutter [2001].) But even the continuation of Moore’s law 
for another hundred years would not suffice to attain the required levels of computing power to 
achieve this.

CHAPTER 11: MULTIPOLAR SCENARIOS

 1. Not because this is necessarily the most likely or the most desirable type of scenario, but be-
cause it is the one easiest to analyze with the toolkit of standard economic theory, and thus a 
convenient starting point for our discussion.
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 2. American Horse Council (2005). See also Salem and Rowan (2001).
 3. Acemoglu (2003); Mankiw (2009); Zuleta (2008).
 4. Fredriksen (2012, 8); Salverda et al. (2009, 133).
 5. It is also essential for at least some of the capital to be invested in assets that rise with the general 

tide. A diversified asset portfolio, such as shares in an index tracker fund, would increase the 
chances of not entirely missing out.

 6. Many of the European welfare systems are unfunded, meaning that pensions are paid from 
ongoing current workers’ contributions and taxes rather than from a pool of savings. Such 
schemes would not automatically meet the requirement—in case of sudden massive unemploy-
ment, the revenues from which the benefits are paid could dry up. However, governments may 
choose to make up the shortfall from other sources.

 7. American Horse Council (2005).
 8. Providing 7 billion people an annual pension of $90,000 would cost $630 trillion a year, which 

is ten times the current world GDP. Over the last hundred years, world GDP has increased about 
nineteenfold from around $2 trillion in 1900 to 37 trillion in 2000 (in 1990 int. dollars) ac-
cording to Maddison (2007). So if the growth rates we have seen over the past hundred years 
continued for the next two hundred years, while population remained constant, then providing 
everybody with an annual $90,000 pension would cost about 3% of world GDP. An intelligence 
explosion might make this amount of growth happen in a much shorter time span. See also 
Hanson (1998a, 1998b, 2008).

 9. And perhaps as much as a millionfold over the past 70,000 years if there was a severe population 
bottleneck around that time, as has been speculated. See Kremer (1993) and Huff et al. (2010) for 
more data.

 10. Cochran and Harpending (2009). See also Clark (2007) and, for a critique, Allen (2008).
 11. Kremer (1993).
 12. Basten et al. (2013). Scenarios in which there is a continued rise are also possible. In general, the 

uncertainty of such projections increases greatly beyond one or two generations into the future.
 13. Taken globally, the total fertility rate at replacement was 2.33 children per woman in 2003. This 

number comes from the fact that it takes two children per woman to replace the parents, plus a 
“third of a child” to make up for (1) the higher probability of boys being born, and (2) early mor-
tality prior to the end of their fertile life. For developed nations, the number is smaller, around 
2.1, because of lower mortality rates. (See Espenshade et al. [2003, Introduction, Table 1, 580].) 
The population in most developed countries would decline if it were not for immigration. A few 
notable examples of countries with sub-replacement fertility rates are: Singapore at 0.79 (lowest 
in the world), Japan at 1.39, People’s Republic of China at 1.55, European Union at 1.58, Russia at 
1.61, Brazil at 1.81, Iran at 1.86, Vietnam at 1.87, and the United Kingdom at 1.90. Even the U.S. 
population would probably decrease slightly with a fertility rate of 2.05. (See CIA [2013].)

 14. The fullness of time might occur many billions of years from now.
 15. Carl Shulman points out that if biological humans count on living out their natural lifespans 

alongside the digital economy, they need to assume not only that the political order in the digi-
tal sphere would be protective of human interests but that it would remain so over very long 
periods of time (Shulman 2012). For example, if events in the digital sphere unfolds a thousand 
times faster than on the outside, then a biological human would have to rely on the digital body 
politic holding steady for 50,000 years of internal change and churn. Yet if the digital political 
world were anything like ours, there would be a great many revolutions, wars, and catastrophic 
upheavals during those millennia that would probably inconvenience biological humans on the 
outside. Even a 0.01% risk per year of a global thermonuclear war or similar cataclysm would 
entail a near certain loss for the biological humans living out their lives in slowmo sidereal time. 
To overcome this problem, a more stable order in the digital realm would be required: perhaps a 
singleton that gradually improves its own stability.

 16. One might think that even if machines were far more efficient than humans, there would still be 
some wage level at which it would be profitable to employ a human worker; say at 1 cent an hour. 
If this were the only source of income for humans, our species would go extinct since human be-
ings cannot survive on 1 cent an hour. But humans also get income from capital. Now, if we are 
assuming that population grows until total income is at subsistence level, one might think this 
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would be a state in which humans would be working hard. For example, suppose subsistence 
level income is $1/day. Then, it might seem, population would grow until per person capital pro-
vided only a 90 cents per day income, which people would have to supplement with ten hours of 
hard labor to make up the remaining 10 cents. However, this need not be so, because the subsist-
ence level income depends on the amount of work that is done: harder-working humans burn 
more calories. Suppose that each hour of work increases food costs by 2 cents. We then have a 
model in which humans are idle in equilibrium.

 17. It might be thought that a caucus as enfeebled as this would be unable to vote and to otherwise 
defend its entitlements. But the pod-dwellers could give power of attorney to AI fiduciaries to 
manage their affairs and represent their political interests. (This part of the discussion in this 
section is premised on the assumption that property rights are respected.)

 18. It is unclear what is the best term. “Kill” may suggest more active brutality than is warrant-
ed. “End” may be too euphemistic. One complication is that there are two potentially sep-
arate events: ceasing to actively run a process, and erasing the information template. A human  
death normally involves both events, but for an emulation they can come apart. That a pro-
gram temporarily ceases to run may be no more consequential than that a human sleeps: but to 
permanently cease running may be the equivalent of entering a permanent coma. Still further 
complications arise from the fact that emulations can be copied and that they can run at dif-
ferent speeds: possibilities with no direct analogs in human experience. (Cf. Bostrom [2006b]; 
Bostrom and Yudkowsky [forthcoming].)

 19. There will be a trade-off between total parallel computing power and computational speed, as 
the highest computational speeds will be attainable only at the expense of a reduction in power 
efficiency. This will be especially true after one enters the era of reversible computing.

 20. An emulation could be tested by leading it into temptation. By repeatedly testing how an emu-
lation started from a certain prepared state reacts to various sequences of stimuli, one could 
obtain high confidence in the reliability of that emulation. But the further the mental state is 
subsequently allowed to develop away from its validated starting point, the less certain one 
could be that it would remain reliable. (In particular, since a clever emulation might surmise 
it is sometimes in a simulation, one would need to be cautious about extrapolating its behavior 
into situations where its simulation hypothesis would weigh less heavily in its decision-making.)

 21. Some emulations might identify with their clan—i.e. all of their copies and variations derived 
from the same template—rather with any one particular instantiation. Such an emulation might 
not regard its own termination as a death event, if it knew that other clan members would sur-
vive. Emulations may know that they will get reverted to a particular stored state at the end of 
the day and lose that day’s memories, but be as little put off by this as the partygoer who knows 
she will awake the next morning without any recollection of the previous night: regarding this 
as retrograde amnesia, not death.

 22. An ethical evaluation might take into account many other factors as well. Even if all the work-
ers were constantly well pleased with their condition, the outcome might still be deeply morally 
objectionable on other grounds—though which other grounds is a matter of dispute between 
rival moral theories. But any plausible assessment would consider subjective well-being to be 
one important factor. See also Bostrom and Yudkowsky (forthcoming).

 23. World Values Survey (2008).
 24. Helliwell and Sachs (2012).
 25. Cf. Bostrom (2004). See also Chislenko (1996) and Moravec (1988).
 26. It is hard to say whether the information-processing structures that would emerge in this kind 

of scenario would be conscious (in the sense of having qualia, phenomenal experience). The 
reason this is hard is partly our empirical ignorance about which cognitive entities would arise 
and partly our philosophical ignorance about which types of structure have consciousness. One 
could try to reframe the question, and instead of asking whether the future entities would be 
conscious, one could ask whether the future entities would have moral status; or one could ask 
whether they would be such that we have preferences about their “well-being.” But these ques-
tions may be no easier to answer than the question about consciousness—in fact, they might 
require an answer to the consciousness question inasmuch as moral status or our preferences 
depend on whether the entity in question can subjectively experience its condition.
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 27. For an argument that both geological and human history manifest such a trend toward greater 
complexity, see Wright (2001). For an opposing argument (criticized in Chapter 9 of Wright’s 
book), see Gould (1990). See also Pinker (2011) for an argument that we are witnessing a robust 
long-term trend toward decreasing violence and brutality.

 28. For more on observation selection theory, see Bostrom (2002a).
 29. Bostrom (2008a). A much more careful examination of the details of our evolutionary histo-

ry would be needed to circumvent the selection effect. See, e.g., Carter (1983, 1993); Hanson 
(1998d); Ćirković et al. (2010).

 30. Kansa (2003).
 31. E.g., Zahavi and Zahavi (1997).
 32. See Miller (2000).
 33. Kansa (2003). For a provocative take, see also Frank (1999).
 34. It is not obvious how best to measure the degree of global political integration. One perspective 

would be that whereas a hunter–gatherer tribe might have integrated a hundred individuals into 
a decision-making entity, the largest political entities today contain more than a billion individ-
uals. This would amount to a difference of seven orders of magnitude, with only one additional 
magnitude to go before the entire world population is contained within a single political entity. 
However, at the time when the tribe was the largest scale of integration, the world population 
was much smaller. The tribe might have contained as much as a thousandth of the individuals 
then living. This would make the increase in the scale of political integration as little as two 
orders of magnitude. Looking at the fraction of world population that is politically integrated, 
rather than at absolute numbers, seems appropriate in the present context (particularly as the 
transition to machine intelligence may cause a population explosion, of emulations or other 
digital minds). But there have also been developments in global institutions and networks of 
collaboration outside of formal state structures, which should also be taken into account.

 35. One of the reasons for supposing that the first machine intelligence revolution will be swift—the 
possible existence of a hardware overhang—does not apply here. However, there could be other 
sources of rapid gain, such as a dramatic breakthrough in software associated with transition-
ing from emulation to purely synthetic machine intelligence.

 36. Shulman (2010b).
 37. How the pro et contra would balance out might depend on what kind of work the superorganism 

is trying to do, and how generally capable the most generally capable available emulation tem-
plate is. Part of the reason many different types of human beings are needed in large organiza-
tions today is that humans who are very talented in many domains are rare.

 38. It is of course very easy to make multiple copies of a software agent. But note that copying is not 
in general sufficient to ensure that the copies have the same final goals. In order for two agents 
to have the same final goals (in the relevant sense of “same”), the goals must coincide in their 
indexical elements. If Bob is selfish, a copy of Bob will likewise be selfish. Yet their goals do not 
coincide: Bob cares about Bob whereas Bob-copy cares about Bob-copy.

 39. Shulman (2010b, 6).
 40. This might be more feasible for biological humans and whole brain emulations than for arbi-

trary artificial intelligences, which might be constructed so as to have hidden compartments or 
functional dynamics that may be very hard to discover. On the other hand, AIs specifically built 
to be transparent should allow for more thoroughgoing inspection and verification than is pos-
sible with brain-like architectures. Social pressures may encourage AIs to expose their source 
code, and to modify themselves to render themselves transparent—especially if being transpar-
ent is a precondition to being trusted and thus to being given the opportunity to partake in 
beneficial transactions. Cf. Hall (2007).

 41. Some other issues that seem relatively minor, especially in cases where the stakes are enormous 
(as they are for the key global coordination failures), include the search cost of finding policies 
that could be of mutual interest, and the possibility that some agents might have a basic prefer-
ence for “autonomy” in a form that would be reduced by entering into comprehensive global 
treaties that have monitoring and enforcement mechanisms attached.

 42. An AI might perhaps achieve this by modifying itself appropriately and then giving observers 
read-only access to its source code. A machine intelligence with a more opaque architecture 
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(such as an emulation) might perhaps achieve it by publicly applying to itself some motivation 
selection method. Alternatively, an external coercive agency, such as a superorganism police 
force, might perhaps be used not only to enforce the implementation of a treaty reached between 
different parties, but also internally by a single party to commit itself to a particular course of 
action.

 43. Evolutionary selection might have favored threat-ignorers and even characters visibly so highly 
strung that they would rather fight to the death than suffer the slightest discomfiture. Such a 
disposition might bring its bearer valuable signaling benefits. (Any such instrumental rewards 
of having the disposition need of course play no part in the agent’s conscious motivation: he 
may value justice or honor as ends in themselves.)

 44. A definitive verdict on these matters, however, must await further analysis. There are various 
other potential complications which we cannot explore here.

CHAPTER 12: ACQUIRING vALUES

 1. Various complications and modulations of this basic idea could be introduced. We discussed 
one variation in Chapter 8—that of a satisficing, as opposed to maximizing, agent—and in the 
next chapter we briefly touch on the issue of alternative decision theories. However, such issues 
are not essential to the thrust of this subsection, so we will keep things simple by focusing here 
on the case of an expected utility-maximizing agent.

 2. Assuming the AI is to have a non-trivial utility function. It would be very easy to build an agent 
that always chooses an action that maximizes expected utility if its utility function is, e.g., the 
constant function U(w) = 0 . Every action would equally well maximize expected utility relative 
to that utility function.

 3. Also because we have forgotten the blooming buzzing confusion of our early infancy, a time 
when we could not yet see very well because our brain had not yet learned to interpret its visual 
input.

 4. See also Yudkowsky (2011) and the review in section 5 of Muehlhauser and Helm (2012).
 5. It is perhaps just about conceivable that advances in software engineering could eventually 

overcome these difficulties. Using modern tools, a single programmer can produce software 
that would have been beyond the pale of a sizeable team of developers forced to write directly in 
machine code. Today’s AI programmers gain expressiveness from the wide availability of high-
quality machine learning and scientific calculation libraries, enabling someone to hack up, for 
instance, a unique-face-counting webcam application by chaining libraries together that they 
never could have written on their own. The accumulation of reusable software, produced by 
specialists but useable by non-specialists, will give future programmers an expressiveness ad-
vantage. For example, a future robotics programmer might have ready access to standard facial 
imprinting libraries, typical-office-building-object collections, specialized trajectory libraries, 
and many other functionalities that are currently unavailable.

 6. Dawkins (1995, 132). The claim here is not necessarily that the amount of suffering in the natu-
ral world outweighs the amount of positive well-being.

 7. Required population sizes might be much larger or much smaller than those that existed in our 
own ancestry. See Shulman and Bostrom (2012).

 8. If it were easy to get an equivalent result without harming large numbers of innocents, it would 
seem morally better to do so. If, nevertheless, digital persons are created and made to suffer 
unjust harm, it may be possible to compensate them for their suffering by saving them to file 
and later (when humanity’s future is secured) rerunning them under more favorable conditions. 
Such restitution could be compared in some ways to religious conceptions of an afterlife in the 
context of theological attempts to address the evidential problem of evil.

 9. One of the field’s leading figures, Richard Sutton, defines reinforcement learning not in terms of 
a learning method but in terms of a learning problem: any method that is well suited to solving 
that problem is considered a reinforcement learning method (Sutton and Barto 1998, 4). The 
present discussion, in contrast, pertains to methods where the agent can be conceived of as hav-
ing the final goal of maximizing (some notion of) cumulative reward. Since an agent with some 
very different kind of final goal might be skilled at mimicking a reward-seeking agent in a wide 
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range of situations, and could thus be well suited to solving reinforcement learning problems, 
there could be methods that would count as “reinforcement learning methods” on Sutton’s defi-
nition that would not result in a wireheading syndrome. The remarks in the text, however, apply 
to most of the methods actually used in the reinforcement learning community.

 10. Even if, somehow, a human-like mechanism could be set up within a human-like machine intel-
lect, the final goals acquired by this intellect need not resemble those of a well-adjusted human, 
unless the rearing environment for this digital baby also closely matched that of an ordinary 
child: something that would be difficult to arrange. And even with a human-like rearing envi-
ronment, a satisfactory result would not be guaranteed, since even a subtle difference in innate 
dispositions can result in very different reactions to a life event. It may, however, be possible to 
create a more reliable value-accretion mechanism for human-like minds in the future (perhaps 
using novel drugs or brain implants, or their digital equivalents).

 11. One might wonder why it appears we humans are not trying to disable the mechanism that leads 
us to acquire new final values. Several factors might be at play. First, the human motivation sys-
tem is poorly described as a coldly calculating utility-maximizing algorithm. Second, we might 
not have any convenient means of altering the ways we acquire values. Third, we may have in-
strumental reasons (arising, e.g., from social signaling needs) for sometimes acquiring new fi-
nal values—instrumental values might not be as useful if our minds are partially transparent to 
other people, or if the cognitive complexity of pretending to have a different set of final values 
than we actually do is too taxing. Fourth, there are cases where we do actively resist tendencies 
that produce changes in our final values, for instance when we seek to resist the corrupting in-
fluence of bad company. Fifth, there is the interesting possibility that we place some final value 
on being the kind of agent that can acquire new final values in normal human ways.

 12. Or one might try to design the motivation system so that the AI is indifferent to such replace-
ment; see Armstrong (2010).

 13. We will here draw on some elucidations made by Daniel Dewey (2011). Other background ideas 
contributing to this framework have been developed by Marcus Hutter (2005) and Shane Legg 
(2008), Eliezer Yudkowsky (2001), Nick Hay (2005), Moshe Looks, and Peter de Blanc.

 14. To avoid unnecessary complications, we confine our attention to deterministic agents that do 
not discount future rewards.

 15. Mathematically, an agent’s behavior can be formalized as an agent function, which maps each 
possible interaction history to an action. Except for the very simplest agents, it is infeasible 
to represent the agent function explicitly as a lookup table. Instead, the agent is given some 
way of computing which action to perform. Since there are many ways of computing the same 
agent function, this leads to a finer individuation of an agent as an agent program. An agent 
program is a specific program or algorithm that computes an action for any given interaction 
history. While it is often mathematically convenient and useful to think of an agent program 
that interacts with some formally specified environment, it is important to remember that this 
is an idealization. Real agents are physically instantiated. This means not only that the agent 
interacts with the environment via its sensors and effectors, but also that the agent’s “brain” or 
controller is itself part of physical reality. Its operations can therefore in principle be affected by 
external physical interferences (and not only by receiving percepts from its sensors). At some 
point, therefore, it becomes necessary to view an agent as an agent implementation. An agent 
implementation is a physical structure that, in the absence of interference from its environment, 
implements an agent function. (This definition follows Dewey [2011].)

 16. Dewey proposes the following optimality notion for a value learning agent:
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  Here, P1 and P2 are two probability functions. The second summation ranges over some suitable 
class of utility functions over possible interaction histories. In the version presented in the text, 
we have made explicit some dependencies as well as availed ourselves of the simplifying possible 
worlds notation.

 17. It should be noted that the set of utility functions  should be such that utilities can be com-
pared and averaged. In general, this is problematic, and it is not always obvious how to represent 
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different moral theories of the good in terms of cardinal utility functions. See, e.g., MacAskill 
2010).

 18. Or more generally, since  might not be such as to directly imply for any given pair of a possible 
world and a utility function (w, U) whether the proposition (U) is true in w, what needs to be 
done is to give the AI an adequate representation of the conditional probability distribution 
P((U) | w) .

 19. Consider first , the class of actions that are possible for an agent. One issue here is what exactly 
should count as an action: only basic motor commands (e.g. “send an electric pulse along out-
put channel #00101100”), or higher-level actions (e.g. “keep camera centered on face”)? Since 
we are trying to develop an optimality notion rather than a practical implementation plan, we 
may take the domain to be basic motor commands (and since the set of possible motor com-
mands might change over time, we may need to index  to time). However, in order to move 
toward implementation it will presumably be necessary to introduce some kind of hierarchical 
planning process, and one may then need to consider how to apply the formula to some class of 
higher-level actions. Another issue is how to analyze internal actions (such as writing strings to 
working memory). Since internal actions can have important consequences, one would ideally 
want  to include such basic internal actions as well as motor commands. But there are limits 
to how far one can go in this direction: the computation of the expected utility of any action in 
 requires multiple computational operations, and if each such operation were also regarded as 
an action in  that needed to be evaluated according to AI-VL, we would face an infinite regress 
that would make it impossible to ever get started. To avoid the infinite regress, one must restrict 
any explicit attempt to estimate the expected utility to a limited number of significant action 
possibilities. The system will then need some heuristic process that identifies some significant 
action possibilities for further consideration. (Eventually the system might also get around to 
making explicit decisions regarding some possible actions to make modifications to this heuris-
tic process, actions that might have been flagged for explicit attention by this self-same process; 
so that in the long run the system might become increasingly effective at approximating the 
ideal identified by AI-VL.)

Consider next , which is a class of possible worlds. One difficulty here is to specify  so 
that it is sufficiently inclusive. Failure to include some relevant w in  could render the AI 
incapable of representing a situation that actually occurs, resulting in the AI making bad deci-
sions. Suppose, for example, that we use some ontological theory to determine the makeup of 
. For instance, we include in  all possible worlds that consist of a certain kind of spacetime 
manifold populated by elementary particles found in the standard model in particle physics. 
This could distort the AI’s epistemology if the standard model is incomplete or incorrect. One 
could try to use a bigger -class to cover more possibilities; but even if one could ensure that 
every possible physical universe is included one might still worry that some other possibility 
would be left out. For example, what about the possibility of dualistic possible worlds in which 
facts about consciousness do not supervene on facts about physics? What about indexical facts? 
Normative facts? Facts of higher mathematics? What about other kinds of fact that we fallible 
humans might have overlooked but that could turn out to be important to making things go as 
well as possible? Some people have strong convictions that some particular ontological theory is 
correct. (Among people writing on the future of AI, a belief in a materialistic ontology, in which 
the mental supervenes on the physical, is often taken for granted.) Yet a moment’s reflection on 
the history of ideas should help us realize that there is a significant possibility that our favorite 
ontology is wrong. Had nineteenth-century scientists attempted a physics-inspired definition of 
, they would probably have neglected to include the possibility of a non-Euclidian spacetime 
or an Everettian (“many-worlds”) quantum theory or a cosmological multiverse or the simula-
tion hypothesis—possibilities that now appear to have a substantial probability of obtaining 
in the actual world. It is plausible that there are other possibilities to which we in the present 
generation are similarly oblivious. (On the other hand, if  is too big, there arise technical diffi-
culties related to having to assign measures over transfinite sets.) The ideal might be if we could 
somehow arrange things such that the AI could use some kind of open-ended ontology, one that 
the AI itself could subsequently extend using the same principles that we would use when decid-
ing whether to recognize a new type of metaphysical possibility.



NOTES: CHAPTER 12  |  293

Consider P(w | Ey). Specifying this conditional probability is not strictly part of the value- 
loading problem. In order to be intelligent, the AI must already have some way of deriving rea-
sonably accurate probabilities over many relevant factual possibilities. A system that falls too 
far short on this score will not pose the kind of danger that concerns us here. However, there 
may be a risk that the AI will end up with an epistemology that is good enough to make the AI 
instrumentally effective yet not good enough to enable it to think correctly about some pos-
sibilities that are of great normative importance. (The problem of specifying P(w | Ey) is in this 
way related to the problem of specifying .) Specifying P(w | Ey) also requires confronting other 
issues, such as how to represent uncertainty over logical impossibilities.

The aforementioned issues—how to define a class of possible actions, a class of possible 
worlds, and a likelihood distribution connecting evidence to classes of possible worlds—are 
quite generic: similar issues arise for a wide range of formally specified agents. It remains to 
examine a set of issues more peculiar to the value learning approach; namely, how to define , 
(U), and P((U) | w).
 is a class of utility functions. There is a connection between  and  inasmuch as each 

utility function U (w) in  should ideally assign utilities to each possible world w in . But  
also needs to be wide in the sense of containing sufficiently many and diverse utility functions 
for us to have justified confidence that at least one of them does a good job of representing the 
intended values.

The reason for writing P((U) | w) rather than simply P(U | w) is to emphasize the fact that 
probabilities are assigned to propositions. A utility function, per se, is not a proposition, but 
we can transform a utility function into a proposition by making some claim about it. For 
example, we may claim of a particular utility function U(.) that it describes the preferences of 
a particular person, or that it represents the prescriptions implied by some ethical theory, or 
that it is the utility function that the principal would have wished to have implemented if she 
had thought things through. The “value criterion” (.) can thus be construed as a function 
that takes as its argument a utility function U and gives as its value a proposition to the effect 
that U satisfies the criterion . Once we have defined a proposition (U), we can hopefully 
obtain the conditional probability P((U) | w) from whatever source we used to obtain the 
other probability distributions in the AI. (If we are certain that all normatively relevant facts 
are taken into account in individuating the possible worlds , then P((U) | w) should equal 
zero or one in each possible world.) The question remains how to define . This is discussed 
further in the text.

 20. These are not the only challenges for the value learning approach. Another issue, for instance, 
is how to get the AI to have sufficiently sensible initial beliefs—at least by the time it becomes 
strong enough to subvert the programmers’ attempts to correct it.

 21. Yudkowsky (2001).
 22. The term is taken from American football, where a “Hail Mary” is a very long forward pass 

made in desperation, typically when the time is nearly up, on the off chance that a friendly play-
er might catch the ball near the end zone and score a touchdown.

 23. The Hail Mary approach relies on the idea that a superintelligence could articulate its prefer-
ences with greater exactitude than we humans can articulate ours. For example, a superintel-
ligence could specify its preference as code. So if our AI is representing other superintelligences 
as computational processes that are perceiving their environment, then our AI should be able to 
reason about how those alien superintelligences would respond to some hypothetical stimulus, 
such as a “window” popping up in their visual field presenting them with the source code of our 
own AI and asking them to specify their instructions to us in some convenient pre-specified 
format. Our AI could then read off these imaginary instructions (from its own model of this 
counterfactual scenario wherein these alien superintelligences are represented), and we would 
have built our AI so that it would be motivated to follow those instructions.

 24. An alternative would be to create a detector that looks (within our AI’s world model) for (rep-
resentations of) physical structures created by a superintelligent civilization. We could then 
bypass the step of identifying the hypothesized superintelligences’ preference functions, and 
give our own AI the final value of trying to copy whatever physical structures it believes super-
intelligent civilizations tend to produce.
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There are technical challenges with this version, too, however. For instance, since our own 
AI, even after it has attained superintelligence, may not be able to know with great precision 
what physical structures other superintelligences build, our AI may need to resort to trying to 
approximate those structures. To do this, it would seem our AI would need a similarity metric 
by which to judge how closely one physical artifact approximates another. But similarity metrics 
based on crude physical measures may be inadequate—it being no good, for example, to judge 
that a brain is more similar to a Camembert cheese than to a computer running an emulation.

A more feasible approach might be to look for “beacons”: messages about utility functions 
encoded in some suitable simple format. We would build our AI to want to follow whatever such 
messages about utility functions it hypothesizes might exist out there in the universe; and we 
would hope that friendly extraterrestrial AIs would create a variety of beacons of the types that 
they (with their superintelligence) reckon that simple civilizations like ours are most likely to 
build our AI to look for.

 25. If every civilization tried to solve the value-loading problem through a Hail Mary, the pass 
would fail. Somebody has to do it the hard way.

 26. Christiano (2012).
 27. The AI we build need not be able to find the model either. Like us, it could reason about what 

such a complex implicit definition would entail (perhaps by looking at its environment and fol-
lowing much the same kind of reasoning that we would follow).

 28. Cf. Chapters 9 and 11.
 29. For instance, MDMA may temporarily increase empathy; oxytocin may temporarily increase 

trust (Vollenweider et al. 1998; Bartz et al. 2011). However, the effects seem quite variable and 
context dependent.

 30. The enhanced agents might be killed off or placed in suspended animation (paused), reset to an 
earlier state, or disempowered and prevented from receiving any further enhancements, until 
the overall system has reached a more mature and secure state where these earlier rogue ele-
ments no longer pose a system-wide threat.

 31. The issue might also be less obvious in a future society of biological humans, one that has access 
to advanced surveillance or biomedical techniques for psychological manipulation, or that is 
wealthy enough to afford an extremely high ratio of security professionals to invigilate the regu-
lar citizenry (and each other).

 32. Cf. Armstrong (2007) and Shulman (2010b).
 33. One open question is to what degree a level n supervisor would need to monitor not only their 

level (n − 1) supervisees, but also their level (n − 2) supervisees, in order to know that the level 
(n − 1) agents are doing their jobs properly. And to know that the level (n − 1) agents have success-
fully managed the level (n − 2) agents, is it further necessary for the level n agent to also monitor 
the level (n − 3) agents?

 34. This approach straddles the line between motivation selection and capability control. Techni-
cally, the part of the arrangement that consists of human beings controlling a set of software 
supervisors counts as capability control, whereas the part of the arrangement that consists of 
layers of software agents within the system controlling other layers is motivation selection (in-
sofar as it is an arrangement that shapes the system’s motivational tendencies).

 35. In fact, many other costs deserve consideration but cannot be given it here. For example, what-
ever agents are charged with ruling over such a hierarchy might become corrupted or debased 
by their power.

 36. For this guarantee to be effective, it must be implemented in good faith. This would rule out cer-
tain kinds of manipulation of the emulation’s emotional and decision-making faculties which 
might otherwise be used (for instance) to install a fear of being halted or to prevent the emula-
tion from rationally considering its options.

 37. See, e.g., Brinton (1965); Goldstone (1980, 2001). (Social science progress on these questions 
could make a nice gift to the world’s despots, who might use more accurate predictive models 
of social unrest to optimize their population control strategies and to gently nip insurgencies in 
the bud with less-lethal force.)

 38. Cf. Bostrom (2011a, 2009b).
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 39. In the case of an entirely artificial system, it might be possible to obtain some of the advantages 
of an institutional structure without actually creating distinct subagents. A system might in-
corporate multiple perspectives into its decision process without endowing each of those per-
spectives with its own panoply of cognitive faculties required for independent agency. It could 
be tricky, however, to fully implement the “observe the behavioral consequences of a proposed  
change, and revert back to an earlier version if the consequences appear undesirable from the 
ex ante standpoint” feature described in the text in a system that is not composed of subagents.

CHAPTER 13: CHOOSING THE CRITERIA FOR CHOOSING

 1. A recent canvass of professional philosophers found the percentage of respondents who “ac-
cept or leans toward” various positions. On normative ethics, the results were deontology 
25.9%; consequentialism 23.6%; virtue ethics 18.2%. On metaethics, results were moral realism 
56.4%; moral anti-realism 27.7%. On moral judgment: cognitivism 65.7%; non-cognitivism 17.0% 
(Bourget and Chalmers 2009).

 2. Pinker (2011).
 3. For a discussion of this issue, see Shulman et al. (2009).
 4. Moore (2011).
 5. Bostrom (2006b).
 6. Bostrom (2009b).
 7. Bostrom (2011a).
 8. More precisely, we should defer to its opinion except on those topics where we have good reason 

to suppose that our beliefs are more accurate. For example, we might know more about what we 
are thinking at a particular moment than the superintelligence does if it is not able to scan our 
brains. However, we could omit this qualification if we assume that the superintelligence has ac-
cess to our opinions; we could then also defer to the superintelligence the task of judging when 
our opinions should be trusted. (There might remain some special cases, involving indexical 
information, that need to be handled separately—by, for example, having the superintelligence 
explain to us what it would be rational to believe from our perspective.) For an entry into the 
burgeoning philosophical literature on testimony and epistemic authority, see, e.g., Elga (2007).

 9. Yudkowsky (2004). See also Mijic (2010).
 10. For example, David Lewis proposed a dispositional theory of value, which holds, roughly, that 

some thing X is a value for A if and only if A would want to want X if A were perfectly rational 
and ideally acquainted with X (Smith et al. 1989). Kindred ideas had been put forward earlier; 
see, e.g., Sen and Williams (1982), Railton (1986), and Sidgwick and Jones (2010). Along some-
what similar lines, one common account of philosophical justification, the method of reflective 
equilibrium, proposes a process of iterative mutual adjustment between our intuitions about 
particular cases, the general rules which we think govern these cases, and the principles accord-
ing to which we think these elements should be revised, to achieve a more coherent system; see, 
e.g., Rawls (1971) and Goodman (1954).

 11. Presumably the intention here is that when the AI acts to prevent such disasters, it should do it 
with as light a touch as possible, i.e. in such a manner that it averts the disaster but without exert-
ing too much influence over how things turn out for humanity in other respects.

 12. Yudkowsky (2004).
 13. Rebecca Roache, personal communication.
 14. The three principles are “Defend humans, the future of humanity, and humane nature” (hu-

mane here being that which we wish we were, as distinct from human, which is what we are); 
“Humankind should not spend the rest of eternity desperately wishing that the programmers 
had done something differently”; and “Help people.”

 15. Some religious groups place a strong emphasis on faith in contradistinction to reason, the lat-
ter of which they may regard—even in its hypothetically most idealized form and even after it 
would have ardently and open-mindedly studied every scripture, revelation, and exegesis—to 
be insufficient for the attainment of essential spiritual insights. Those holding such views might 
not regard CEV as an optimal guide to decision-making (though they might still prefer it to 
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various other imperfect guides that might in actuality be followed if the CEV approach were 
eschewed).

 16. An AI acting like a latent force of nature to regulate human interactions has been referred to 
as a “Sysop,” a kind of “operating system” for the matter occupied by human civilization. See 
Yudkowsky (2001).

 17. “Might,” because conditional on humanity’s coherent extrapolated volition wishing not to ex-
tend moral consideration to these entities, it is perhaps doubtful whether those entities actually 
have moral status (despite it seeming very plausible now that they do). “Potentially,” because 
even if a blocking vote prevents the CEV dynamic from directly protecting these outsiders, 
there is still a possibility that, within whatever ground rules are left over once the initial dynam-
ic has run, individuals whose wishes were respected and who want some outsiders’ welfare to 
be protected may successfully bargain to attain this outcome (at the expense of giving up some 
of their own resources). Whether this would be possible might depend on, among other things, 
whether the outcome of the CEV dynamic is a set of ground rules that makes it feasible to reach 
negotiated resolutions to issues of this kind (which might require provisions to overcome strate-
gic bargaining problems).

 18. Individuals who contribute positively to realizing a safe and beneficial superintelligence might 
merit some special reward for their labour, albeit something short of a near-exclusive mandate 
to determine the disposition of humanity’s cosmic endowment. However, the notion of eve-
rybody getting an equal share in our extrapolation base is such a nice Schelling point that it 
should not be lightly tossed away. There is, in any case, an indirect way in which virtue could be 
rewarded: namely, the CEV itself might turn out to specify that good people who exerted them-
selves on behalf of humanity should be suitably recognized. This could happen without such 
people being given any special weight in the extrapolation base if—as is easily imaginable—our 
CEV would endorse (in the sense of giving at least some nonzero weight to) a principle of just 
desert.

 19. Bostrom et al. (2013).
 20. To the extent that there is some (sufficiently definite) shared meaning that is being expressed 

when we make moral assertions, a superintelligence should be able to figure out what that 
meaning is. And to the extent that moral assertions are “truth-apt” (i.e. have an underlying 
propositional character that enables them to be true or false), the superintelligence should be 
able to figure out which assertions of the form “Agent X ought now to Φ” are true. At least, it 
should outperform us on this task.

An AI that initially lacks such a capacity for moral cognition should be able to acquire it if 
it has the intelligence amplification superpower. One way the AI could do this is by reverse- 
engineering the human brain’s moral thinking and then implement a similar process but run it 
faster, feed it more accurate factual information, and so forth.

 21. Since we are uncertain about metaethics, there is a question of what the AI is to do if the pre-
conditions for MR fail to obtain. One option is to stipulate that the AI shut itself off if it assigns 
a sufficiently high probability to moral cognitivism being false or to there being no suitable non-
relative moral truths. Alternatively, we could have the AI revert to some alternative approach, 
such as CEV.

We could refine the MR proposal to make it clearer what is to be done in various ambiguous 
or degenerate cases. For instance, if error theory is true (and hence all positive moral assertions 
of the form “I ought now to Φ” are false), then the fallback strategy (e.g. shutting down) would 
be invoked. We could also specify what should happen if there are multiple feasible actions, each 
of which would be morally right. For example, we might say that in such cases the AI should 
perform (one of) the permissible actions that humanity’s collective extrapolation would have 
favored. We might also stipulate what should happen if the true moral theory does not em-
ploy terms like “morally right” in its basic vocabulary. For instance, a consequentialist theory 
might hold that some actions are better than others but that there is no particular threshold 
corresponding to the notion of an action being “morally right.” We could then say that if such a 
theory is correct, MR should perform one of the morally best feasible actions, if there is one; or, 
if there is an infinite number of feasible actions such that for any feasible action there is a better 
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one, then maybe MR could pick any that is at least astronomically better than the best action 
that any human would have selected in a similar situation, if such an action is feasible—or if not, 
then an action that is at least as good as the best action a human would have performed.

A couple of general points should be borne in mind when thinking about how the MR pro-
posal could be refined. First, we might start conservatively, using the fallback option to cover 
almost all contingencies and only use the “morally right” option in those that we feel we fully 
understand. Second, we might add the general modulator to the MR proposal that it is to be “in-
terpreted charitably, and revised as we would have revised it if we had thought more carefully 
about it before we wrote it down, etc.”

 22. Of these terms, “knowledge” might seem the one most readily susceptible to a formal analysis 
(in information-theoretic terms). However, to represent what it is for a human to know some-
thing, the AI may need a sophisticated set of representations relating to complex psychological 
properties. A human being does not “know” all the information that is stored somewhere in her 
brain.

 23. One indicator that the terms in CEV are (marginally) less opaque is that it would count as philo-
sophical progress if we could analyze moral rightness in terms like those used in CEV. In fact, 
one of the main strands in metaethics—ideal observer theory—purports to do just that. See, 
e.g., Smith et al. (1989).

 24. This requires confronting the problem of fundamental normative uncertainty. It can be shown 
that it is not always appropriate to act according to the moral theory that has the highest prob-
ability of being true. It can also be shown that it is not always appropriate to perform the ac-
tion that has the highest probability of being right. Some way of trading probabilities against 
“degrees of wrongness” or severity of issues at stake seems to be needed. For some ideas in this 
direction, see Bostrom (2009a).

 25. It could possibly even be argued that it is an adequacy condition for any explication of the no-
tion of moral rightness that it account for how Joe Sixpack is able to have some idea of right and 
wrong.

 26. It is not obvious that the morally right thing for us to do is to build an AI that implements MR, 
even if we assume that the AI itself would always act morally. Perhaps it would be objectionably 
hubristic or arrogant of us to build such an AI (especially since many people may disapprove of 
that project). This issue can be partially finessed by tweaking the MR proposal. Suppose that we 
stipulate that the AI should act (to do what it would be morally right for it to do) only if it was 
morally right for its creators to have built the AI in the first place; otherwise it should shut itself 
down. It is hard to see how we would be committing any grave moral wrong in creating that 
kind of AI, since if it were wrong for us to create it, the only consequence would be that an AI 
was created that immediately shuts itself down, assuming that the AI has committed no mind 
crime up to that point. (We might nevertheless have acted wrongly—for instance, by having 
failed to seize the opportunity to build some other AI instead.)

A second issue is supererogation. Suppose there are many actions the AI could take, each of 
which would be morally right—in the sense of being morally permissible—yet some of which 
are morally better than the others. One option is to have the AI aim to select the morally best 
action in any such a situation (or one of the best actions, in case there are several that are equally 
good). Another option is to have the AI select from among the morally permissible actions one 
that maximally satisfies some other (non-moral) desideratum. For example, the AI could select, 
from among the actions that are morally permissible, the action that our CEV would prefer it to 
take. Such an AI, while never doing anything that is morally impermissible, might protect our 
interests more than an AI that does what is morally best.

 27. When the AI evaluates the moral permissibility of our act of creating the AI, it should interpret 
permissibility in its objective sense. In one ordinary sense of “morally permissible,” a doctor acts 
morally permissibly when she prescribes a drug she believes will cure her patient—even if the pa-
tient, unbeknownst to the doctor, is allergic to the drug and dies as a result. Focusing on objective 
moral permissibility takes advantage of the presumably superior epistemic position of the AI.

 28. More directly, it depends on the AI’s beliefs about which ethical theory is true (or, more pre-
cisely, on its probability distribution over ethical theories).
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 29. It can be difficult to imagine how superlatively wonderful these physically possible lives might 
be. See Bostrom (2008c) for a poetic attempt to convey some sense of this. See Bostrom (2008b) 
for an argument that some of these possibilities could be good for us, good for existing human 
beings.

 30. It might seem deceptive or manipulative to promote one proposal if one thinks that some other 
proposal would be better. But one could promote it in ways that avoid insincerity. For example, 
one could freely acknowledge the superiority of the ideal while still promoting the non-ideal as 
the best attainable compromise.

 31. Or some other positively evaluative term, such as “good,” “great,” or “wonderful.”
 32. This echoes a principle in software design known as “Do What I Mean,” or DWIM. See 

 Teitelman (1966).
 33. Goal content, decision theory, and epistemology are three aspects that should be elucidated; but 

we do not intend to beg the question of whether there must be a neat decomposition into these 
three separate components.

 34. An ethical project ought presumably to allocate at most a modest portion of the eventual ben-
efits that the superintelligence produces as special rewards to those who contributed in morally 
permissible ways to the project’s success. Allocating a great portion to the incentive wrapping 
scheme would be unseemly. It would be analogous to a charity that spends 90% of its income on 
performance bonuses for its fundraisers and on advertising campaigns to increase donations.

 35. How could the dead be rewarded? One can think of several possibilities. At the low end, there 
could be memorial services and monuments, which would be a reward insofar as people desired 
posthumous fame. The deceased might also have other preferences about the future that could 
be honored, for instance concerning cultures, arts, buildings, or natural environments. Fur-
thermore, most people care about their descendants, and special privileges could be granted to 
the children and grandchildren of contributors. More speculatively, the superintelligence might 
be able to create relatively faithful simulations of some past people—simulations that would be 
conscious and that would resemble the original sufficiently to count as a form of survival (ac-
cording to at least some people’s criteria). This would presumably be easier for people who have 
been placed in cryonic suspension; but perhaps for a superintelligence it would not be impos-
sible to recreate something quite similar to the original person from other preserved records 
such as correspondence, publications, audiovisual materials and digital records, or the personal 
memories of other survivors. A superintelligence might also think of some possibilities that do 
not readily occur to us.

 36. On Pascalian mugging, see Bostrom (2009b). For an analysis of issues related to infinite util-
ities, see Bostrom (2011a). On fundamental normative uncertainty, see, e.g., Bostrom (2009a).

 37. E.g., Price (1991); Joyce (1999); Drescher (2006); Yudkowsky (2010); Dai (2009).
 38. E.g., Bostrom (2009a).
 39. It is also conceivable that using indirect normativity to specify the AI’s goal content would miti-

gate the problems that might arise from an incorrectly specified decision theory. Consider, for ex-
ample, the CEV approach. If it were implemented well, it might be able to compensate for at least 
some errors in the specification of the AI’s decision theory. The implementation could allow the 
values that our coherent extrapolated volition would want the AI to pursue to depend on the AI’s 
decision theory. If our idealized selves knew they were making value specifications for an AI that 
was using a particular kind of decision theory, they could adjust their value specifications such 
as to make the AI behave benignly despite its warped decision theory—much like one can cancel 
out the distorting effects of one lens by placing another lens in front of it that distorts oppositely.

 40. Some epistemological systems may, in a holistic manner, have no distinct foundation. In that 
case, the constitutional inheritance is not a distinct set of principles, but rather, as it were, an 
epistemic starting point that embodies certain propensities to respond to incoming streams of 
evidence.

 41. See, e.g., the problem of distortion discussed in Bostrom (2011a).
 42. For instance, one disputed issue in anthropic reasoning is whether the so-called self-indication 

assumption should be accepted. The self-indication assumption states, roughly, that from the 
fact that you exist you should infer that hypotheses according to which larger numbers N of 
observers exist should receive a probability boost proportional to N. For an argument against 
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this principle, see the “Presumptuous Philosopher” gedanken experiment in Bostrom (2002a). 
For a defense of the principle, see Olum (2002); and for a critique of that defense, see Bostrom 
and Ćirković (2003). Beliefs about the self-indication assumption might affect various empiri-
cal hypotheses of potentially crucial strategic relevance, for example, considerations such as 
the Carter–Leslie doomsday argument, the simulation argument, and “great filter” arguments. 
See Bostrom (2002a, 2003a, 2008a); Carter (1983); Ćirković et al. (2010); Hanson (1998d); Les-
lie (1996); Tegmark and Bostrom (2005). A similar point could be made with regard to other 
fraught issues in observation selection theory, such as whether the choice of reference class can 
be relativized to observer-moments, and if so how.

 43. See, e.g., Howson and Urbach (1993). There are also some interesting results that narrow the 
range of situations in which two Bayesian agents can rationally disagree when their opinions are 
common knowledge; see Aumann (1976) and Hanson (2006).

 44. Cf. the concept of a “last judge” in Yudkowsky (2004).
 45. There are many important issues outstanding in epistemology, some mentioned earlier in the 

text. The point here is that we may not need to get all the solutions exactly right in order to 
achieve an outcome that is practically indiscernible from the best outcome. A mixture model 
(which throws together a wide range of diverse priors) might work.

CHAPTER 14: THE STRATEGIC PICTURE

 1. This principle is introduced in Bostrom (2009b, 190), where it is also noted that it is not tau-
tological. For a visual analogy, picture a box with large but finite volume, representing the space 
of basic capabilities that could be obtained through some possible technology. Imagine sand 
 being poured into this box, representing research effort. How you pour the sand determines 
where it piles up in the box. But if you keep on pouring, the entire space eventually gets filled.

 2. Bostrom (2002b).
 3. This is not the perspective from which science policy has traditionally been viewed. Harvey 

Averch describes science and technology policy in the United States between 1945 and 1984 as 
having been centered on debates about the optimum level of public investment in the S&T en-
terprise and on the extent to which the government should attempt to “pick winners” in order to 
achieve the greatest increase in the nation’s economic prosperity and military strength. In these 
calculations, technological progress is always assumed to be good. But Averch also describes 
the rise of critical perspectives, which question the “progress is always good” premiss (Averch 
1985). See also Graham (1997).

 4. Bostrom (2002b).
 5. This is of course by no means tautological. One could imagine a case being made for a different 

order of development. It could be argued that it would be better for humanity to confront some 
less difficult challenge first, say the development of nanotechnology, on grounds that this would 
force us to develop better institutions, become more internationally coordinated, and mature in 
our thinking about global strategy. Perhaps we would be more likely to rise to a challenge that 
presents a less metaphysically confusing threat than machine superintelligence. Nanotechnol-
ogy (or synthetic biology, or whatever the lesser challenge we confront first) might then serve 
as a footstool that would help us ascend to the capability level required to deal with the higher-
level challenge of superintelligence.

Such an argument would have to be assessed on a case-by-case basis. For example, in the 
case of nanotechnology, one would have to consider various possible consequences such as the 
boost in hardware performance from nanofabricated computational substrates; the effects of 
cheap physical capital for manufacturing on economic growth; the proliferation of sophisti-
cated surveillance technology; the possibility that a singleton might emerge though the direct 
or indirect effects of a nanotechnology breakthrough; and the greater feasibility of neuromor-
phic and whole brain emulation approaches to machine intelligence. It is beyond the scope of 
our investigation to consider all these issues (or the parallel issues that might arise for other 
existential risk-causing technologies). Here we just point out the prima facie case for favoring a 
superintelligence- first sequence of development—while stressing that there are complications 
that might alter this preliminary assessment in some cases.
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 6. Pinker (2011); Wright (2001).
 7. It might be tempting to suppose the hypothesis that everything has accelerated to be meaning-

less on grounds that it does not (at first glance) seem to have any observational consequences; 
but see, e.g., Shoemaker (1969).

 8. The level of preparedness is not measured by the amount of effort expended on preparedness 
activities, but by how propitiously configured conditions actually are and how well-poised key 
decision makers are to take appropriate action.

 9. The degree of international trust during the lead-up to the intelligence explosion may also be a 
factor. We consider this in the section “Collaboration” later in the chapter.

 10. Anecdotally, it appears those currently seriously interested in the control problem are dispro-
portionately sampled from one extreme end of the intelligence distribution, though there could 
be alternative explanations for this impression. If the field becomes fashionable, it will undoubt-
edly be flooded with mediocrities and cranks.

 11. I owe this term to Carl Shulman.
 12. How similar to a brain does a machine intelligence have to be to count as a whole brain emula-

tion rather than a neuromorphic AI? The relevant determinant might be whether the system re-
produces either the values or the full panoply of cognitive and evaluative tendencies of either a 
particular individual or a generic human being, because this would plausibly make a difference 
to the control problem. Capturing these properties may require a rather high degree of emula-
tion fidelity.

 13. The magnitude of the boost would of course depend on how big the push was, and also where 
resources for the push came from. There might be no net boost for neuroscience if all the extra 
resources invested in whole brain emulation research were deducted from regular neuroscience 
research—unless a keener focus on emulation research just happened to be a more effective way 
of advancing neuroscience than the default portfolio of neuroscience research.

 14. See Drexler (1986, 242). Drexler (private communication) confirms that this reconstruction 
corresponds to the reasoning he was seeking to present. Obviously, a number of implicit prem-
isses would have to be added if one wished to cast the argument in the form of a deductively 
valid chain of reasoning.

 15. Perhaps we ought not to welcome small catastrophes in case they increase our vigilance to the 
point of making us prevent the medium-scale catastrophes that would have been needed to make 
us take the strong precautions necessary to prevent existential catastrophes? (And of course, 
just as with biological immune systems, we also need to be concerned with over- reactions, anal-
ogous to allergies and autoimmune disorders.)

 16. Cf. Lenman (2000); Burch-Brown (2014).
 17. Cf. Bostrom (2007).
 18. Note that this argument focuses on the ordering rather than the timing of the relevant events. 

Making superintelligence happen earlier would help preempt other existential transition risks 
only if the intervention changes the sequence of the key developments: for example, by making 
superintelligence happen before various milestones are reached in nanotechnology or synthetic 
biology.

 19. If solving the control problem is extremely difficult compared to solving the performance 
problem in machine intelligence, and if project ability correlates only weakly with project size, 
then it is possible that it would be better that a small project gets there first, namely if the vari-
ance in capability is greater among smaller projects. In such a situation, even if smaller projects 
are on average less competent than larger projects, it could be less unlikely that a given small 
project would happen to have the freakishly high level of competence needed to solve the con-
trol problem.

 20. This is not to deny that one can imagine tools that could promote global deliberation and which 
would benefit from, or even require, further progress in hardware—for example, high-quality 
translation, better search, ubiquitous access to smart phones, attractive virtual reality environ-
ments for social intercourse, and so forth.

 21. Investment in emulation technology could speed progress toward whole brain emulation not 
only directly (through any technical deliverables produced) but also indirectly by creating a 
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constituency that will push for more funding and boost the visibility and credibility of the 
whole brain emulation (WBE) vision.

 22. How much expected value would be lost if the future were shaped by the desires of one ran-
dom human rather than by (some suitable superposition of) the desires of all of humanity? This 
might depend sensitively on what evaluation standard we use, and also on whether the desires 
in question are idealized or raw.

 23. For example, whereas human minds communicate slowly via language, AIs can be designed 
so that instances of the same program are able easily and quickly to transfer both skills and 
information amongst one another. Machine minds designed ab initio could do away with cum-
bersome legacy systems that helped our ancestors deal with aspects of the natural environment 
that are unimportant in cyberspace. Digital minds might also be designed to take advantage of 
fast serial processing unavailable to biological brains, and to make it easy to install new modules 
with highly optimized functionality (e.g. symbolic processing, pattern recognition, simulators, 
data mining, and planning). Artificial intelligence might also have significant non-technical 
advantages, such as being more easily patentable or less entangled in the moral complexities of 
using human uploads.

 24. If p1 and p2 are the probabilities of failure at each step, the total probability of failure is  
p1 + (1 – p1)p2 since one can fail terminally only once.

 25. It is possible, of course, that the frontrunner will not have such a large lead and will not be able 
to form a singleton. It is also possible that a singleton would arise before AI even without the 
intervention of WBE, in which case this reason for favoring a WBE-first scenario falls away.

 26. Is there a way for a promoter of WBE to increase the specificity of her support so that it acceler-
ates WBE while minimizing the spillover to AI development? Promoting scanning technology 
is probably a better bet than promoting neurocomputational modeling. (Promoting computer 
hardware is unlikely to make much difference one way or the other, given the large commercial 
interests that are anyway incentivizing progress in that field.)

Promoting scanning technology may increase the likelihood of a multipolar outcome by 
making scanning less likely to be a bottleneck, thus increasing the chance that the early emula-
tion population will be stamped from many different human templates rather than consisting of 
gazillions of copies of a tiny number of templates. Progress in scanning technology also makes 
it more likely that the bottleneck will instead be computing hardware, which would tend to slow 
the takeoff.

 27. Neuromorphic AI may also lack other safety-promoting attributes of whole brain emulation, 
such as having a profile of cognitive strengths and weaknesses similar to that of a biological hu-
man being (which would let us use our experience of humans to form some expectations of the 
system’s capabilities at different stages of its development).

 28. If somebody’s motive for promoting WBE is to make WBE happen before AI, they should bear 
in mind that accelerating WBE will alter the order of arrival only if the default timing of the 
two paths toward machine intelligence is close and with a slight edge to AI. Otherwise, either 
investment in WBE will simply make WBE happen earlier than it otherwise would (reducing 
hardware overhang and preparation time) but without affecting the sequence of development; 
or else such investment in WBE will have little effect (other than perhaps making AI happen 
even sooner by stimulating progress on neuromorphic AI).

 29. Comment on Hanson (2009).
 30. There would of course be some magnitude and imminence of existential risk for which it would 

be preferable even from the person-affecting perspective to postpone the risk—whether to en-
able existing people to eke out a bit more life before the curtain drops or to provide more time 
for mitigation efforts that might reduce the danger.

 31. Suppose we could take some action that would bring the intelligence explosion closer by one 
year. Let us say that the people currently inhabiting the Earth are dying off at a rate of 1% per 
year, and that the default risk of human extinction from the intelligence explosion is 20% (to 
pick an arbitrary number for the purposes of illustration only). Then hastening the arrival of 
the intelligence explosion by 1 year might be worth (from a person-affecting standpoint) an 
increase in the risk from 20% to 21%, i.e. a 5% increase in risk level. However, the vast majority 
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of people alive one year before the start of the intelligence explosion would at that point have an 
interest in postponing it if they could thereby reduce the risk of the explosion by one percentage 
point (since most individuals would reckon their own risk of dying in the next year to be much 
smaller than 1%—given that most mortality occurs in relatively narrow demographics such as 
the frail and the elderly). One could thus have a model in which each year the population votes 
to postpone the intelligence explosion by another year, so that the intelligence explosion never 
happens, although everybody who ever lives agrees that it would be better if the intelligence ex-
plosion happened at some point. In reality, of course, coordination failures, limited predictabil-
ity, or preferences for things other than personal survival are likely to prevent such an unending 
pause.

If one uses the standard economic discount factor instead of the person-affecting stand-
ard, the magnitude of the potential upside is diminished, since the value of existing people 
getting to enjoy astronomically long lives is then steeply discounted. This effect is especially 
strong if the discount factor is applied to each individual’s subjective time rather than to 
sidereal time. If future benefits are discounted at a rate of x% per year, and the background 
level of existential risk from other sources is y% per year, then the optimum point for the 
intelligence explosion would be when delaying the explosion for another year would produce 
less than x + y percentage points of reduction of the existential risk associated with an intel-
ligence explosion.

 32. I am indebted to Carl Shulman and Stuart Armstrong for help with this model. See also 
 Shulman (2010a, 3): “Chalmers (2010) reports a consensus among cadets and staff at the U.S. 
West Point military academy that the U.S. government would not restrain AI research even in 
the face of potential catastrophe, for fear that rival powers would gain decisive advantage.”

 33. That is, information in the model is always bad ex ante. Of course, depending on what the infor-
mation actually is, it will in some cases turn out to be good that the information became known, 
notably if the gap between leader and runner-up is much greater than one would reasonably 
have guessed in advance.

 34. It might even present an existential risk, especially if preceded by the introduction of novel mili-
tary technologies of destruction or unprecedented arms buildups.

 35. A project could have its workers distributed over a large number of locations and collaborat-
ing via encrypted communications channels. But this tactic involves a security trade-off: while 
geographical dispersion may offer some protection against military attacks, it would impede 
operational security, since it is harder to prevent personnel from defecting, leaking informa-
tion, or being abducted by a rival power if they are spread out over many locations.

 36. Note that a large temporal discount factor could make a project behave in some ways as though 
it were in a race, even if it knows it has no real competitor. The large discount factor means it 
would care little about the far future. Depending on the situation, this would discourage blue-
sky R&D, which would tend to delay the machine intelligence revolution (though perhaps mak-
ing it more abrupt when it does occur, because of hardware overhang). But the large discount 
factor—or a low level of caring for future generations—would also make existential risks seem 
to matter less. This would encourage gambles that involve the possibility of an immediate gain 
at the expense of an increased risk of existential catastrophe, thus disincentivizing safety invest-
ment and incentivizing an early launch—mimicking the effects of the race dynamic. By contrast 
to the race dynamic, however, a large discount factor (or disregard for future generations) would 
have no particular tendency to incite conflict.

Reducing the race dynamic is a main benefit of collaboration. That collaboration would fa-
cilitate sharing of ideas for how to solve the control problem is also a benefit, although this is to 
some extent counterbalanced by the fact that collaboration would also facilitate sharing of ideas 
for how to solve the competence problem. The net effect of this facilitation of idea-sharing may 
be to slightly increase the collective intelligence of the relevant research community.

 37. On the other hand, public oversight by a single government would risk producing an outcome 
in which one nation monopolizes the gains. This outcome seems inferior to one in which unac-
countable altruists ensure that everybody stands to gain. Furthermore, oversight by a national 
government would not necessarily mean that even all the citizens of that country receive a share 
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of the benefit: depending on the country in question, there is a greater or smaller risk that all the 
benefits would be captured by a political elite or a few self-serving agency personnel.

 38. One qualification is that the use of incentive wrapping (as discussed in Chapter 12) might in 
some circumstances encourage people to join a project as active collaborators rather than pas-
sive free-riders.

 39. Diminishing returns would seem to set in at a much smaller scale. Most people would rather 
have one star than a one-in-a-billion chance of a galaxy with a billion stars. Indeed, most people 
would rather have a billionth of the resources on Earth than a one-in-a-billion chance of own-
ing the entire planet.

 40. Cf. Shulman (2010a).
 41. Aggregative ethical theories run into trouble when the idea that the cosmos might be infinite 

is taken seriously; see Bostrom (2011b). There may also be trouble when the idea of ridiculously 
large but finite values is taken seriously; see Bostrom (2009b).

 42. If one makes a computer larger, one eventually faces relativistic constraints arising from com-
munication latencies between the different parts of the computer—signals do not propagate 
faster than light. If one shrinks the computer, one encounters quantum limits to miniaturiza-
tion. If one increases the density of the computer, one slams into the black hole limit. Admit-
tedly, we cannot be completely certain that new physics will not one day be discovered offering 
some way around these limitations.

 43. The number of copies of a person would scale linearly with resources with no upper bound. Yet 
it is not clear how much the average human being would value having multiple copies of herself. 
Even those people who would prefer to be multiply instantiated may not have a utility function 
that is linear with increasing number of copies. Copy numbers, like life years, might have di-
minishing returns in the typical person’s utility function.

 44. A singleton is highly internally collaborative at the highest level of decision-making. A single-
ton could have a lot of non-collaboration and conflict at lower levels, if the higher-level agency 
that constitutes the singleton chooses to have things that way.

 45. If each rival AI team is convinced that the other teams are so misguided as to have no chance of 
producing an intelligence explosion, then one reason for collaboration—avoiding the race dy-
namic—is obviated: each team should independently choose to go slower in the confident belief 
that it lacks any serious competition.

 46. A PhD student.
 47. This formulation is intended to be read so as to include a prescription that the well-being of 

nonhuman animals and other sentient beings (including digital minds) that exist or may come 
to exist be given due consideration. It is not meant to be read as a license for one AI developer 
to substitute his or her own moral intuitions for those of the wider moral community. The prin-
ciple is consistent with the “coherent extrapolated volition” approach discussed in Chapter 12, 
with an extrapolation base encompassing all humans.

A further clarification: The formulation is not intended to necessarily exclude the possibly 
of post-transition property rights in artificial superintelligences or their constituent algorithms 
and data structures. The formulation is meant to be agnostic about what legal or political systems 
would best serve to organize transactions within a hypothetical future posthuman society. What 
the formulation is meant to assert is that the choice of such a system, insofar as its selection is 
causally determined by how superintelligence is initially developed, should to be made on the 
basis of the stated criterion; that is, the post-transition constitutional system should be chosen for 
the benefit of all of humanity and in the service of widely shared ethical ideals—as opposed to, for 
instance, for the benefit merely of whoever happened to be the first to develop superintelligence.

 48. Refinements of the windfall clause are obviously possible. For example, perhaps the thresh-
old should be expressed in per capita terms, or maybe the winner should be allowed to keep a 
somewhat larger than equal share of the overshoot in order to more strongly incentivize further 
production (some version of Rawls’s maximin principle might be attractive here). Other refine-
ments would refocus the clause away from dollar amounts and restate it in terms of “influence 
on humanity’s future” or “degree to which different parties’ interests are weighed in a future 
singleton’s utility function” or some such.
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CHAPTER 15: CRUNCH TIME

 1. Some research is worthwhile not because of what it discovers but for other reasons, such as by 
entertaining, educating, accrediting, or uplifting those who engage in it.

 2. I am not suggesting that nobody should work on pure mathematics or philosophy. I am also not 
suggesting that these endeavors are especially wasteful compared to all the other dissipations 
of academia or society at large. It is probably very good that some people can devote themselves 
to the life of the mind and follow their intellectual curiosity wherever it leads, independent of 
any thought of utility or impact. The suggestion is that at the margin, some of the best minds 
might, upon realizing that their cognitive performances may become obsolete in the foreseeable 
future, want to shift their attention to those theoretical problems for which it makes a difference 
whether we get the solution a little sooner.

 3. Though one should be cautious in cases where this uncertainty may be protective—recall, for 
instance, the risk-race model in Box 13, where we found that additional strategic information 
could be harmful. More generally, we need to worry about information hazards (see  Bostrom 
[2011b]). It is tempting to say that we need more analysis of information hazards. This is prob-
ably true, although we might still worry that such analysis itself may produce dangerous in-
formation.

 4. Cf. Bostrom (2007).
 5. I am grateful to Carl Shulman for emphasizing this point.
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