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Doubtless you have often been asked about the purpose of 
mathematics and whether the delicate constructions which we 
conceive as entities are not artificial and generated at whim. 
Amongst those who ask this question, I would single out the 
practical minded who only look to us for the means to make money. 
Such people do not deserve a reply.

Henri Poincaré 
La Valeur de la Science 
Chapter V

In his use of mathematical techniques to study general economic 
phenomena relating to countries or individuals Mr. Léon Walras 
has truly instituted a science.

Charles Péguy
Un économiste socialiste, Mr. Léon Walras 
La Revue Socialiste, no. 146, 1897

It may be that the coldness and the objectivity for which we 
often reproach scientists are more suitable than feverishness and 
subjectivity as far as certain human problems are concerned. It 
is passions which use science to support their cause. Science does 
not lead to racism and hatred. Hatred calls on science to justify 
its racism. Some scientists may be reproached for the ardour with 
which they sometimes defend their ideas. But genocide has never 
been perpetrated in order to ensure the success of a scientific theory. 
At the end of this the XXth century, it should be clear to everyone 
that no system can explain the world in all its aspects and detail. 
Quashing the idea of an intangible and eternal truth is possibly not 
the least claim to fame of the scientific approach.

François Jacob 
Le Jeu des possibles 
Fayard (1981) p. 12

I enjoy talking to great minds and this is a taste which I like to instil 
in my students. I find that students need someone to admire; since 
they cannot normally admire their teachers because their teachers 
are examiners or are not admirable, they must admire great minds 
while, for their part, teachers must interpret great minds for their 
students.

Raymond Aron 
Le Spectateur engagé 
Julliard (1981) p. 302



Foreword

By Way of Warning

As in ordinary language, metaphors may be used in mathematics to explain a 
given phenomenon by associating it with another which is (or is considered to 
be) more familiar. It is this sense of familiarity, whether individual or collective, 
innate or acquired by education, which enables one to convince oneself that one 
has understood the phenomenon in question.

Contrary to popular opinion, mathematics is not simply a richer or more 
precise language. Mathematical reasoning is a separate faculty possessed by all 
human brains, just like the ability to compose or listen to music, to paint or 
look at paintings, to believe in and follow cultural or moral codes, etc.

But it is impossible (and dangerous) to compare these various faculties 
within a hierarchical framework; in particular, one cannot speak of the superi­
ority of the language of mathematics.

Naturally, the construction of mathematical metaphors requires the au­
tonomous development of the discipline to provide theories which may be substi­
tuted for or associated with the phenomena to be explained. This is the domain 
of pure mathematics. The construction of the mathematical corpus obeys its 
own logic, like that of literature, music or art. In all these domains, a tem­
porary aesthetic satisfaction is at once the objective of the creative activity 
and a signal which enables one to recognise successful works. (Likewise, in all 
these domains, fashionable phenomena -  reflecting social consensus -  are used 
to develop aesthetic criteria).

That is not all. A mathematical metaphor associates a mathematical the­
ory with another object. There are two ways of viewing this association. The 
first and best-known way is to search for a theory in the mathematical corpus 
which corresponds as precisely as possible with a given phenomenon. This is the 
domain of applied mathematics, as it is usually understood. But the association 
is not always made in this way; the mathematician should not be simply a pur­
veyor of formulae for the user. Other disciplines, notably physics, have guided 
mathematicians in their selection of problems from amongst the many arising 
and have prevented them from continually turning around in the same circle by 
presenting them with new challenges and encouraging them to be daring and 
question the ideas of their predecessors. These other disciplines may also pro­
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vide mathematicians with metaphors, in that they may suggest concepts and 
arguments, hint at solutions and embody new modes of intuition. This is the 
domain of what one might call motivated mathematics from which the examples 
you will read about in this book are drawn.

You should soon realize that the work of a motivated mathematician is 
daring, above all where problems from the soft sciences, such as social sciences 
and, to a lesser degree, biology, are concerned. Many hours of thought may 
very well only lead to the mathematically obvious or to problems which cannot 
be solved in the short term, while the same effort expended on a structured 
problem of pure or applied mathematics would normally lead to visible results.

Motivated mathematicians must possess a sound knowledge of another dis­
cipline and have an adequate arsenal of mathematical techniques at their fin­
gertips together with the capacity to  create new techniques (often similar to  
those they already know). In a constant, difficult and frustrating dialogue they 
must investigate whether the problem in question can be solved using the tech­
niques which they have at hand or, if this is not the case, they must negotiate 
a deformation of the problem (a possible restructuring which often seemingly 
leads to the original model being forgotten) to produce an ad hoc theory which 
they sense will be useful later. They must convince their colleagues in the other 
disciplines that they need a very long period for learning and appreciation in 
order to grasp the language of a given theory, its foundations and main results 
and that the proof and application of the simplest, the most naive and the 
most attractive results may require theorems which may be given in a number 
of papers over several decades; in fact, one’s comprehension of a mathematical 
theory is never complete. In a century when no more cathedrals are being built, 
but impressive skyscrapers rise up so rapidly, the profession of the motivated 
mathematician is becoming rare. This explains why users are very often not 
aware of how mathematics could be used to improve aspects of the questions 
with which they are concerned. When users are aware of this, the intersection 
of their central areas of interest with the preoccupations of mathematicians is 
often small -  users are interested in immediate impacts on their problems and 
not in the mathematical techniques that could be used and their relationship 
with the overall mathematical structure.

It is these constraints which distinguish mathematicians from researchers 
in other disciplines who use mathematics, with a different time constant. It 
is clear that the slowness and the esoteric aspect o f the work o f mathemati­
cians may lead to impatience amongst those who expect them to come up with 
rapid responses to their problems. Thus, it is vain to hope to pilot the math­
ematics downstream as those who believe that scientific development may be 
programmed (or worse still, planned) may suggest.

In Part I, we shall only cover aspects o f pure mathematics (optimisation 
and nonlinear analysis) and aspects of mathematics motivated by economic 
theory and game theory. It is still too early to talk about applying mathematics 
to economics. Several fruitful attempts have been made here and there, but 
mathematicians are a long way from developing the mathematical techniques
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(the domains of pure mathematics) which are best adapted to the potential 
applications.

However, there has been much progress in the last century since pioneers 
such as Quesnais, Boda, Condorcet, Cournot, Auguste and Léon Walras, despite 
great opposition, dared to use the tools of mathematics in the economic domain. 
Brouwer, von Neumann, Kakutani, Nash, Arrow, Debreu, Scarf, Shapley, Ky 
Fan and many others all contributed to the knowledge you are about to share.

You will surely be disappointed by the fact that these difficult theorems 
have little relevance to the major problems facing mankind. But, please don’t 
be impatient, like others, in your desire for an overall, all-embracing explanation. 
Professional mathematicians must be very humble and modest.

It is this modesty which distinguishes mathematicians and scientists in gen­
eral from prophets, ideologists and modern system analysts. The range of sci­
entific explanations is reduced, hypotheses must be contrasted with logic (this 
is the case in mathematics) or with experience (thus, these explanations must 
be falsifiable or refutable). Ideologies are free from these two requirements and 
thus all the more seductive.

But what is the underlying motivation, other than to contribute to an ex­
planation of reality? We are brains which perceive the outside world and which 
intercommunicate in various ways, using natural language, mathematics, bodily 
expressions, pictorial and musical techniques, etc.

It is the consensus on the consistency of individual perceptions of the en­
vironment, which in some way measures the degree of reality in a given social 
group.

Since our brains were built on the same model, and since the ability to 
believe in explanations appears to be innate and universal, there is a very good 
chance that a social group may have a sufficiently broad consensus that its 
members share a common concept of reality. But prophets and sages often 
challenge this consensus, while high priests and guardians of the ideology tend 
to dogmatise it and impose it on the members of the social group. (Moreover, 
quite often prophets and sages themselves become the high priests and guardians 
of the ideology, the other way round being exceptional.) This continual struggle 
forms the framework for the history of science.

Thus, research must contribute to the evolution of this consensus, teach­
ing must disseminate it, without dogmatism, placing knowledge in its relative 
setting and making you take part in man’s struggle, since the day when Homo 
sapiens, sapiens . . .  But we do not know what happened, we do not know when, 
why or how our ancestors sought to agree on their perceptions of the world 
to create myths and theories, when why or how they transformed their faculty 
for exploration into an insatiable curiosity, when, why or how mathematical 
faculties appeared, etc.

It is not only the utilitarian nature (in the short term) which has motivated 
mathematicians and other scientists in their quest. We all know that with­
out this permanent, free curiosity there would be no technical or technological 
progress.
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Perhaps you will not use the techniques you will soon master and the results 
you will learn in your professional life. But the hours of thought which you will 
have devoted to understanding these theories will (subtly and without you being 
aware) shape your own way of viewing the world, which seems to be the hard 
kernel around which knowledge organizes itself as it is acquired. At the end of 
the day, it is at this level that you must judge the relevance of these lessons and 
seek the reward for your efforts.
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Introduction

This is a book on nonlinear analysis and its underlying motivations in economic 
science and game theory. It is entitled Optima and Equilibria since, in the final 
analysis, response to these motivations consists of perfecting mechanisms for 
selecting an element from a given set. Such selection mechanisms may involve 
either

• optimisation o f a criterion function defined on this set (or of several 
functions, in the case of multi-criterion problems in game theory), 
or

• searching in this set for an equilibrium o f a given undelying dynam­
ical system, which is a stationary solution of this dynmical system.

The mathematical techniques used have their origins in what is known as 
nonlinear analysis, and in particular, in convex analysis.

Progress in nonlinear analysis has proceeded hand in hand with that in the 
theory of economic equilibrium and in game theory; there is interaction between 
each of these areas, mathematical techniques axe applied in economic science 
which, in turn, motivates new research and provides mathematicians with new 
challenges.

In the course of the book we shall have occasion to interrupt the logical 
course of the exposition with several historical recollections. Here, we simply 
note that it was Léon Walras who, at the end of the last century, suggested 
using mathematics in economics, when he described certain economic agents 
as automata seeking to optimise evaluation functions (utility, profit, etc.) and 
posed the problem of economic equilibrium. However, this area did not blos­
som until the birth of nonlinear analysis in 1910, with Brouwer’s fixed-point 
theorem, the usefulness o f which was recognised by John von Neumann when 
he developed the foundations of game theory in 1928. In the wake of von Neu­
mann came the works of John Nash, Kakutani, Aumann, Shapley and many 
others which provided the tools used by Arrow, Debreu, Gale, Nikaïdo et al. 
to complete Walras’s construction, culminating in the 1950s in the proof of the 
existence of economic equilibria. Under pressure from economists, operational 
researchers and engineers, there was stunning progress in optimisation theory, 
in the area of linear programming after the Second World War and following the 
work of Fenchel, in the 1960s in convex analysis. This involved the courageous
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step of differentiating nondifferentiable functions by Moreau and Rockafellar at 
the dawn of the 60’s, and set-valued maps ten years later, albeit in a different 
way and for different reasons than in distribution theory discovered by Lau­
rent Schwartz in the 1950s. (see for instance (Aubin and Frankowska 1990) and 
(Rockafellar and Wets 1997)). These works provided for use o f the rule hinted at 
by Fermat more than three hundred years ago, namely that the derivative o f a 
function is zero at points at which the function attains its optimum, in increas­
ingly complicated problems of the calculus of variations and optimal control 
theory. The 1960s also saw a re-awakening of interest in nonlinear analysis for 
the different problem of solving nonlinear, partial-differential equations. A pro­
fusion of new results were used to clarify many questions and simplify proofs, 
notably using an inequality discovered in 1972 by Ky Fan.

At the time of writing, at the dawn of the 1980s, it is appropriate to take 
stock and draw all this together into a homogeneous whole, to provide a con­
cise and self-contained appreciation of the fundamental results in the areas of 
nonlinear analysis, the theory of economic equilibrium and game theory.

Our selection will not be to everyone’s taste: it is partial. For example, 
in our description of the theory of economic equilibrium, we do not describe 
consumers in terms of their utility functions but only in terms of their demand 
functions. A  minority will certainly hold this against us. However, conscious of 
the criticisms made of the present-day formalism of the Walrasian model, we 
propose an alternative which, like Walras, retains the explanation of prices in 
terms of their decentralising virtues and also admits dynamic processing.

Our succinct introduction to game theory is not orthodox, in that we have 
included the theory of cooperative games in the framework o f the theory of 
fuzzy games.

In the book we accept the shackles of the static framework that are at the 
origin of the inadequacies and paradoxes which serve as pretexts for rejection 
of the use of mathematics in economic science. J. von Neumann and O. Mor­
genstern were also aware of this when, in 1944, at the end of the first chapter 
of Theory o f Games and Economic Behaviour, they wrote:

‘ Our theory is thoroughly static. A dynamic theory would unquestionably be 
more complete and, therefore, preferable. But there is ample evidence from other 
branches o f science that it is futile to try to build one as long as the static side 
is not thoroughly understood... ’

1 Finally, let us note a point at which the theory o f social phenomena will 
presumably take a very definite turn away from the existing patterns o f math­
ematical physics. This is, o f course, only a surmise on a subject where much 
uncertainty and obscurity prevail... ’

‘ Our static theory specifies equilibria... A dynamic theory, when one is found 
-  will probably describe the changes in terms o f simpler concepts.’

Thus, this book describes the static theory and the tool which may be used 
to develop it, namely nonlinear analysis.
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It is only now that we can hope to see the birth of a dynamic theory calling 
upon all other mathematical techniques (see (Aubin and Cellina 1984), (Aubin 
1991) and (Aubin 1997)). But, as in the past, so too now, and in the future, 
the static theory must be placed in its true perspective, even though this may 
mean questioning its very foundations, like March and Simon (who suggested 
replacing optimal choices by choices that are only satisfactory) and many (less 
fortunate) others. Imperfect yet perfectible, mathematics has been used to put 
the finishing touches to the monument the foundation of which was laid by 
Walras. Even if this becomes an historic monument, it will always need to 
be visited in order to construct others from it and to understand them once 
constructed.

Of course, the book only claims to present an introduction to nonlinear 
analysis which can be read by those with the basic knowledge acquired in a first- 
level university mathematics course. It only requires the reader to have mastered 
the fundamental notions of topology in metric spaces and vector spaces. Only 
Brouwer’s fixed-point theorem is assumed.

This is a book o f motivated mathematics, i.e. a book of mathematics moti­
vated by economics and game theory, rather than a book o f mathematics applied 
to these fields. We have included a Foreword to take up this issue which deals 
with pure, applied and motivated mathematics. In our view, this is important 
in order to avoid setting too great store by the importance of mathematics in 
its interplay with social sciences.

The book is divided into two parts. Part I describes the theory, while Part II 
is devoted to exercises, and problem statements and solutions. The book ends 
with an Appendix containing a Compendium o f Results.

In the first three chapters, we discuss the existence of solutions minimising a 
function, in the general framework (Chapter 1) and in the framework of convex 
functions (Chapter 3). Between times, we prove the projection theorem (on 
which so many results in functional analysis are based) together with a number 
of separation theorems and we study the duality relationship between convex 
functions and their conjugate functions.

The following three chapters are devoted to Fermat’s rule which asserts that 
the gradient o f a function is zero at any point at which the function attains its 
minimum. Since convex functions are not necessarily differentiable in the cus­
tomary sense, the notion of the ‘differential’ had to be extended for Fermat’s 
rule to apply. The simple, but unfamiliar idea consists o f replacing the con­
cept o f gradient by that o f subgradients, forming a set called a subdifferential. 
We describe a sub differential calculus of convex functions in Chapter 4 and in 
Chapter 5, we exploit Fermat’s rule to characterise the solutions of minimisa­
tion problems as solutions of a set-valued equation (called an inclusion) or as 
the subdiff’erential of another function.

In Chapter 6, we define the notion of the generalised gradient of a locally 
Lipschitz function, as proposed by F. Clarke in 1975. This enables us to ap­
ply Fermat’s rule to functions other than differentiable functions and convex 
functions. It will be useful in the study of cooperative games.
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Chapters 7 and 8 are devoted to the theory of two-person games; here, we 
prove two fundamental minimax theorems due to von Neumann (1928) and 
Ky Fan (1962).

In Chapter 9, we use Ky Fan’s inequality to prove the existence theorems 
for solutions of the inclusion

0 € C{x)

(where C  is a set-valued map) together with the fixed-point theorems which 
we shall use to prove the existence of economic equilibria and non-cooperative 
equilibria in the theory of n-person games.

In Chapter 10, we provide two explanations of the role o f prices in a decen­
tralisation mechanism which provides economic agents with access to sufficient 
information for them to take their decisions without knowing the global state 
of the economic system or the decisions of other agents. The first explanation 
is provided by the Walrasian model, as formalised since the fundamental work 
of Arrow and Debreu in 1954. The second explanation is compatible with dy­
namic models which go beyond the scope o f this book and for which we refer 
to (Aubin, 1997).

Chapter 11 is devoted to a study of the von Neumann growth model and 
provides us with the opportunity to prove the Perron-Frobenius theorem on the 
eigenvalues of positive matrices.

In Chapter 12 we adapt the concepts introduced in Chapter 7 for 2-person 
games to study n-person games.

Chapter 13 deals with standard cooperative games (using the behaviour of 
coalitions of players) and fuzzy cooperative games (involving fuzzy coalitions of 
players).

The collection of 165 exercises and 48 problems with solutions in Part II 
has two objectives in view. Firstly, it will provide the reader o f Part I with the 
wherewithal to practise the manipulation of the new concepts and theorems 
which he has just read about.

Whilst, once assimilated, the mathematics may appear simple (and even 
self-evident), a great deal o f time (and energy) is needed to familiarise oneself 
with these new cognitive techniques.

If a passive approach is taken, the assimilation will be difficult; for, strange 
as it may seem, emotional mechanisms (or, in the terminology of psycholo­
gists, motivational mechanisms) play a crucial role in the acquisition of these 
new methods of thinking. This mathematics book should be read (or skimmed 
through) quickly when the reader is looking for a piece of information which is 
indispensable to the solution of problem which is occupying his mind day and 
night!

Thus, it is best to approach this work as dispassionately as possible. You will 
then realise how easy it is to acquire a certain mastery of the subject. You will 
also see that old knowledge takes on a new depth, when it is replaced in a new 
perspective. You will improve (or at least modify) your understanding of aspects 
you thought you had already understood, since there is no end to understanding,
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either in the theory of mathematics or in other areas of knowledge. That is 
why we advise the reader to skim through the book to determine what it is 
about. You will then begin to understand it in a more active way by proving 
for yourself the results listed for each chapter of Part I at the beginning of 
the relevant section of the Exercises (Chapter 14). Both the pleasure of success 
and the lessons of partial failure will help you to overcome the difficulties you 
encounter. The pleasure of discovery is not a vain sentiment; the more ambitious 
is the challenge, the more intense is the pleasure.

These exercises (and above all the solutions) were also designed to provide 
the reader with additional information which could not be given in an introduc­
tory text. The results which the reader will discover will convince him of the 
richness of nonlinear analysis.

The exercises (Chapter 14) are grouped according to chapters and follow the 
order of Part I. Except for certain exceptions (which are explicitly mentioned), 
they only use results that have already been proved. However, some exercises 
do assume that one or two immediately preceding exercises have been solved.

The problems (Chapter 15) use a priori all the material in Part I and are 
largely grouped according to topic.

The first nine problems concern various topological properties of set-valued 
maps. The description of the notion of set-valued maps and their properties 
given in Part I is a bare minimum and is insufficient for profound applications 
of nonlinear analysis. The tenth problem generalises Banach’s theorem (closed 
graph or open image) either to the case of continuous linear operators defined on 
a closed convex cone or to that of set-valued maps (Robinson-Ursescu theorem). 
It goes together with Problem 14 which extends the inverse function theorem 
to set-valued maps and which thus plays an important role in applications. 
Problem 11 returns to the proof of Ekeland’s theorem in the very instructive 
context of discrete dynamical systems. Problems 12, 13, 14 and 28 provide 
applications of Ekeland’s theorem, which turns out to be the most manageable 
and the most effective theorem in the whole family of results equivalent to the 
fixed-point theorem for contractions. This is complemented by a fixed-point 
theorem for non-expansive mappings (Problem 16) which uses an interesting 
notion (the asymptotic centre of sequences, which is a sort of virtual limit) 
which is the subject of Problem 15.

The solution of Problem 17 on the properties of orthogonal projectors 
onto convex closed cones (discovered by Jean-Jacques Moreau, co-founder with 
R.T. Rockafellar of convex analysis) is indispensable. Problem 18 studies a class 
of functions with properties analogous to those of convex functions.

A continuous mapping is ‘proper’ if it transforms closed sets to closed sets 
and if its inverse has compact images. As one might imagine, such functions play 
an important role. Their properties are the subject of Problem 19. Problems 
20, 21, 23 and 26 are designed to extend the results of Chapters 3 to 5 for the 
functions x  —» f ( x )  -f g ( A x ) to the functions x  —> L{x,Ax)\ they will help the 
reader to assimilate the above chapters properly. Problem 24 is devoted to the 
application of Chapter 5 to linear programming. Variational principles form the
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subject of Problems 26, 27, 45 and 46; these last two problems use Ky Fan’s 
inequality.

The graph of a continuous linear operator is a closed vector subspace. The 
set-valued maps analogous to continuous linear operators axe set-valued maps 
with graphs a convex closed cone. These are known as ‘closed convex processes 
and inherit numerous properties of continuous lineax operators, as Problems 10 
(closed graph) and 29 (transposition) show.

Since the derivatives of differentiable mappings are continuous linear oper­
ators, we might expect to look for candidates for the role of the derivative of 
a set-valued map among such closed convex processes. It is sufficient to return 
to the origins, that is to say to Pierre de Fermat who introduced the notion of 
the tangent to a curve. This idea is taken up in Problem 33, which provides an 
introduction to the differential calculus of set-valued maps. Over recent years, 
this latter has become the subject of intense activity, because of its intrinsic 
attraction and its numerous potential applications. This ‘geometric’ view of the 
differential calculus is taken up again in Problem 34 to complete the study of 
subdifferentials of convex functions, whilst Problem 35 leads to a very elegant 
formula for calculating the subdifferential of a marginal function. This differ­
ential calculus of set-valued maps is the topic of (Aubin and Frankowska 1990) 
which contains a thorough investigation of set-valued maps. Problems 36, 37, 
38, 39 and 40 describe refinements of the minimax inequalities of von Neumann 
and Ky Fan which are very useful in infinite-dimensional spaces. Problems 41 
and 48 provide variants and applications of the Gale-Nikaido-Debreu theorem, 
whilst Problem 42 shows how to trade the compactness of the domain of a 
set-valued map for ‘coercive’ properties. The existence of eigenvectors of set­
valued maps forms the subject of Problems 43 (general case) and 44 (positive 
set-valued maps).

Problem 47 provides an introduction to maximum monotonie set-valued 
maps and their numerous properties.

We could have included many other problems, but forced ourselves to make 
a difficult selection. One area of applications of nonlinear analysis, namely the 
calculus of variations and optimal control, is not touched on by this collection 
of problems, although it is a most rich and exciting area which remains the 
subject of active research.

This requires a reasonable mastery of topological vector spaces (weak 
topologies) and of function and distribution spaces (Sobolev spaces) which is 
not demanded of the reader (Aubin 1979a). If the latter has a knowledge of the 
basic tools of convex analysis, non-regular analysis and nonlinear analysis, he 
will be well equipped to tackle these theories effectively.

It remains to wish the reader (in fact, the explorer) deserved success in 
mastering this exciting area of mathematics, nonlinear analysis.



1. Minimisation Problems: General Theorems

1.1 Introduction

The aim of this chapter is to show that a minimisation problem:

find x  € K  such that f ( x ) <  f ( x )  Væ <E K

has a solution when the set K  is compact and the function /  from K  into IR is 
lower semi-continuous.

This leads us to define semi-continuous functions and to describe some of 
their properties.

1.2 Definitions

First, we shall study minimisation problems in a general framework: we assume 
we have

• a subset K  of X
• a function /  from K  to R

and we seek a solution x  of the problem

For ease of notation, we begin by introducing a convenient method which 
avoids explicit mention of the subset K  on which the function /  is defined. We 
set

where f x  is no longer a real-valued function but a function from X  to 
IRU {T o o }  such that

(0
(« )

x  e  K
f { x )  =  m î f ( x ) . (1 )

(2)

K  =  { x  G X\fx (x )  <  T oo}. (3)

Moreover, any solution of (1) is a solution of the problem
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f K {x) =  inf /k {x ) (4)

and conversely.
We are thus led to introduce the class of functions /  from X  to IRU {T o o } 

and to associate them with their domain

Dom f  :=  {x  £ X\f (x)  <  T oo}. (5)

Equation (3) may thus be written as K  =  Dom (//<■)• In order to exclude the 
degenerate case in which Dom /  =  0, that is to say where /  is the constant 
function equal to -Too, we shall use the following definition.

D efin ition  1.1. We shall say that a function f  from X  to IRU {- fo o }  is non­
trivia l if its domain is non-empty, that is to say if f  is finite at at least one 
point.

We shall often use the indicator function of a set, which characterises the 
set in the same way as characteristic functions in other areas of mathematics.

D efin ition  1.2. Let K  be a subset o f X . We shall say that the function ipK ■ 
X  —»• IRU {T o o } defined by

is the in d ica tor function  o f K .

Note that the sum /  T  ipK of a function /  and the indicator function of 
a subset K  may be identified with the restriction o f f  to K  and that the 
minimisation problem (1) is equivalent to the problem

We shall see that this new formulation of the problem will enable us to derive 
interesting properties of its possible solutions in a convenient and fast way.

1.3 Epigraph

We may characterise a function /  from X  to IRU {T o o } by its epigraph, which 
is a subset of X  x R.

D efin ition  1.3. Let f  be a function from X  to IRU {T o o }. We shall call the 
subset

(6)

f ( x )  +  =  in f( f ( x )  +  iiK (x))-
xE/v

(7 )

Ep ( /)  := {(x, A) € AT x IR|/(x) < A} 

the ep igraph  of f .

The epigraph of /  is non-empty if and only if /  is nontrivial.

(8)
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The following property of epigraphs will be useful.

P rop os ition  1.1. Consider a family o f functions /* from X  to IRU {- fo o }  and 
its upper envelope snpia  f { . Then

EP (le? = P Ep (9)
P roof. Exercise. □

1.4 Lower Sections

D efin ition  1.4. Let f  be a function from X  to IRU {- fo o }. The sets

S ( f , \ ) : = { x e X \ f ( x ) < \ }  (10)

are called sections (lower, wide) o f f .

Let a  infxex f ( x ) .  By the verry definition of the infimum of a function, 
the set M  of solutions of problem (1) may be written in the form

M =  n  S ( f K, A).
A>û

Thus, the set of solutions M  ‘inherits’ the properties of the sections of /  
which are ‘stable with respect to intersection’ (for example, closed, compact, 
convex, etc.).

P rop os ition  1.2. Consider a family o f functions /*• from X  to IRU {- fo o }  and 
its upper envelope supi€/ /*. Then

S (sup f h a )  =  p| S (fu A). (11)
Vie I )  i€ l

P roof. Exercise. □

1.5 Lower Semi-continuous Functions

Let AT be a metric space.
We recall that a function /  from X  to IR U {- fo o }  is continuous at a point 

xo (which necessarily belongs to the domain of / )  if, for all e >  0, there exists 
rj >  0 such that Væ G B(xo,r?) we have both A :=  f ( x o) — e <  f ( x )  and 
f { x )  <  f i x o) -f £o- Demanding only one of these properties leads to a notion of 
semi-continuity introduced by René Baire.

D efin ition  1.5. We shall say that a function f  from X  to IR U {-foo } is low er 
sem i-continuous at x 0 if for all A <  f ( x 0), there exists rj >  0 such that
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Vx e  B ( x 0ir))} A < f ( x ) . (12)

We shall say that f  is lower semi-continuous if it is lower s e m i -continuous 
at every point o f X . A function is upper semi-continuous if — f  is lower 
semi-continuous.

We begin by proving the characteristic properties. We recall that, by defi­
nition,

liminf f ( x )  := sup inf f { x ) .  (13)
x ~*x0 V>Q x£ B (x0,T])

Proposition 1.3. A function f  from X  £ o lR U {+ oo} is lower semi-continuous 
at xq if and only if

f ( x 0) <  liminf f ( x ) .  (14)

Proof.
a) Suppose that /  is lower semi-continuous at x0- For all A <  f ( x o), there exists 
rj such that

A <  inf f i x )  <  liminf f i x ) .
~  xeB{xo,v) ~  x >̂x°

Inequality (14) now follows.
b) Conversely, given any A <  sup >̂0 infx€B(x0)r?) /(#)> by definition of the supre- 
mum, there exists 77 >  0 such that A <  infxe£(xo>T?) /(#)• Thus, condition (14) 
implies that /  is lower semi-continuous at xo. □

Proposition 1.4. Let f  be a function from X  to IR U {+ 00} . The following 
assertions are equivalent
a) f  is lower semi-continuous;
b) the epigraph o f f  is closed;
c) all sections 5 ( / ,  A) o f f  are closed.
Proof.
a) We assume that /  is lower semi-continuous and show that its epigraph is 
closed. For this, we take a sequence of elements (x n, An) G Ep ( / )  converging to 
(re, A) and show that (re, A) belongs E p ( /) ,  whence that f { x )  <  A. But Propo­
sition 1.3 then implies that

f i x )  <  liminf / ( x „ )  <  liminf An =  lim An =  A,
'  n—> 00 n—>oo n —>00

since f ( x n) <  Xn for all n.

b) We now suppose that E p ( /)  is closed and show that an arbitrary section 
S ( f , A) is also closed. For this, we consider a sequence of elements x n € S(f ,  A) 
converging to x  and show that x  G S(f ,  A), whence that (x,A) G E p ( /) .  But 
this is a result o f the fact that the sequence of elements (xn, A) of the epigraph 
of / ,  which is closed, converges to (x, A).
c) We suppose that all the sections of /  are closed. We take xq G X  and 
A <  f ( x 0). Then (xq, A) does not belong to S(f ,  A), which is a closed set. Thus,
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there exists g >  0 such that B(xo,g)  DS( f ,  A) =  0, that is to say that A <  f ( x ) 
for all x  € B ( x 0,g).  Thus, /  is lower semi-continuous at æo- □
Remark. If afunction /  is not lower semicontinuous, one can associate with it 
the function /  the epigraph of which is the closure of the epigraph of / :E p ( / )  :=  
E p (/) . It is the largest lower semicontinuous function smaller than or equal to 
/•

We deduce the following corollary

Corollary 1.1. A subset K  of X  is closed if and only if its indicator function 
is lower semi-continuous.

Proof. In fact, Ep (iipx) =  K  x IR+ is closed if and only if K  is closed. □

Proposition 1.5. The functions f , g , f i  from X  to IRU {- fo o }  are assumed to 
be lower semi-continuous. Then
a) f  +  g is lower semi-continuous;
b) if a  >  0, then a f  is lower semi-continuous;
c) in f(/, g) is lower semi-continuous;
d) if A is a continuous mapping from Y  to X  then f  o A is lower semi­

continuous;
e) supi€/ fi is lower semi-continuous.

Proof. The proof of the first four assertions is elementary. The fifth results from 
the fact that Ep (supieI fi) =  f|i€j Ep (/*•) is closed (see Proposition 1.1). □

We shall see how to generalise the third assertion (see Proposition 1.7).
Remark. If /  : X  —> IRU{-f-oo} is lower semi-continuous, the same is true of the 
restriction to D om / ,  / 0 : Dom /  —» IR, when Dom /  has the induced metric. 

There is no exact converse. Only the following theorem holds.

Proposition 1.6. Suppose that K  is a closed subset o f X  and that f  is a lower 
semi-continuous function from the metric subspace K  to IR. Then the function 
fit from X  to IRU {+ o o }  is lower semi-continuous.
Proof. In fact, the sections S( fx ,  A) and S(f ,X)  are identical. Since S(/, A) is 
closed in K , and since K  is closed in X , it follows that 5 (/^ ,A ) =  S(/, A) is 
closed in X .  □

1.6 Lower Semi-compact Functions

Study of the minimisation problem suggests that we should distinguish the 
following class of functions.

Definition 1.6. We shall say that a function f  from X  to IRU { - fo o } is lower 
semi-compact (or inf-compact) if  all its lower sections are relatively compact.

We then have the following theorem.
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Theorem 1.1. Suppose that a nontrivial function f  from X  to IR u {+ oo} is both 
lower semi-continuous and lower semi-compact. Then the set M  o f elements at 
which f  attains its minimum is non-empty and compact.
Proof. Let a =  infxGx f { x )  G IRU {+ o o }  and Ao > a. For all A G]a, A0], there 
exists X\ G S(f ,  A) C S(f ,  A0). Since the set S(f ,  A0) is compact, a subsequence 
of elements x\> converges to an element x  of S(f ,\o) .  Since /  is lower semi- 
continuous, we deduce that

f ( x )  <  liminf f ( x y )  <  liminf A =  a  <  f { x ) .iy-w:o A >a

Thus, f ( x )  — a,  which implies that a  is finite. Moreover, M  =  f la<A<A0 S(fyty  
being an intersection of compact sets, is compact. □

Corollary 1.2. Any lower semi-continuous function from a compact subset 
K  C X  to IR is bounded below and attains its minimum.
Proof. We apply Theorem 1.1 to the function f x  defined by f x ( x )  =  f { x )  if 
x  G K  and f x ( x )  =  oo if x £ K , noting that f x  is lower semi-continuous (since 
K  is closed and /  is lower semi-continuous) and that f x  is lower semi-compact, 
K  being relatively compact. □
Remark. This very simple theorem is a rare general theorem for the existence 

of solutions of an optimisation problem.
The difficulty essentially arises in the verification of the assumptions. For 

instance, when the vector space E  is infinite dimensional, we can supply it with 
topologies which are not equivalent, contrary to the case of finite dimensional 
vector spaces (supplied with topologies for which the addition and the multipli­
cation by scalars are continuous) are all equivalent. In this case, since compact 
subsets remain compact when the topology is weaker, supplying E  with weaker 
topologies increases the possibilities of having /  lower semicompact. But contin­
uous or lower semicontinuous functions remain continuous or lower semicontin- 
uous respectively whenever the topology of E  is stronger, so that strengthening 
the topology of E  is advantageous. Hence, for applying Theorem 1.1, we have 
to construct topologies on E  satisfying opposite requirements.

We shall see another existence result which does not use compactness, but 
instead requires stronger assumptions on the regularity of the function to be 
minimised.

Proposition 1.7. Suppose that K  is a compact topological space and that g is 
a lower semi-continuous function from X  x K  to IR u{-l-oo}. Then the function 
f  : X  - »  IRU { + 00}  defined by

\/x G X , f { x )  :=  mf g(x,y)  (15)

is also lower semi-continuous.

Proof We take A G IR and consider a sequence of elements xn G S(f ,  A) 
converging to an element x 0. We shall prove that xq G S( f ,  A). Because
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V f { x n,y)  is lower semi-continuous, and since K  is compact, there exists 
yn Ç. K  such that / ( xn) =  g(xni yn) (Corollary 1.2). Thus, the sequence yn 
contains a subsequence of elements yn> which converges to an element yo of 
K.  Then, the sequence of pairs (x n>,yn>) o f S(g,  A) converges to (xo, yo), which 
belongs to S(g,  A) since g is a lower semi-continuous function. Consequently, 
zo € S(f ,  A), since f ( x 0) <  g(x0,yo) <  A. □

Finally, we note the following interesting result.

Proposition 1.8. Consider n lower semi-continuous functions / ,  from X  to 
IRU {+ o o }  and suppose that one o f these is lower semi-compact. We associate 
them with the mapping F  from K  :=  Dom /* to IRn defined by

Vx G K , F(x )  := (16)

the set F { K )  +  R "  is closed in IR". (17)

Proof. We consider a sequence of elements xn G K  and elements un G IR” such 
that the sequence of elements yn :=  F ( x n) 4  un converges to an element y of 
IRn, and show that y belongs to F ( K )  4- IR” .

Let fi0 be the function which is both lower semi-continuous and lower semi­
compact. Since fi0{xn) 4  unio converges to yio, there exists n0 such that |y*0 — 
fi0(x n) ~  unio\ <  1 whenever n >  n0. Since f io{xn) <  yio -  unio +  1 < yio +  1, 
we deduce that for n >  no, the xn belong to S (fi0iyi0 -f 1), which is compact. 
Thus, there exists a subsequence of elements xn> which converges to an element 
x. We take an index i =  1 , . . .  ,n. Since /,  is lower semi-continuous, we deduce 
that

fi {x) <  lirninf /*(£„) =  l i m i n f ^  -  nn/t.) <  liminf yn,. =  Vi.

Thus, setting :=  yt — fi(x),  which is positive or zero, we have shown that 
y =  F(x )  4  u where x  € K  and u € IR". □

1.7 Approximate Minimisation of Lower 
Semi-continuous Functions on a Complete Space

In the statement of Theorem 1.1, and its Corollary 1.2 on the existence of a 
solution to a minimisation problem, compactness plays a crucial role. However, 
it is remarkable that simply with the condition that the set over which /  is 
minimised is complete, we nonetheless obtain an existence result for an approx­
imate minimisation problem.

Theorem 1.2 (Ekeland). Suppose that E  is a complete metric space and 
that f  : E  —» IR+ U { 4 oo } is nontrivial, positive and lower semi-continuous. 
Consider Xq € D o m (/)  and e >  0. There exists x  € E such that



16 1. Minimisation Problems: General JL X X ^ ^ A  CA xX O

(i) f ( x ) +  ed(xo, x) <  / ( x 0)
(ii) Vx ^  x, f ( x ) < f ( x )  +  ed(x,x) .  (18)

The first property is a localization property stating that x belongs to a ball 
centered around x0 and of radius at least equal to The second property
states that x minimizes the function x  »-» / ( x )  H- ed(x,  x) (which depends upon 
the unknown solution x !)

Before proving this theorem, we state a corollary which clarifies the notion 
of approximate solution.

C orollary  1.3. The assumptions are as in Theorem 1.2. Suppose e, A >  0 and 
that Xo is a point with f ( x o) <  inf / ( x )  -feA. Then there exists x  G E  such that

W f ( x ) <  f i x o)
(it) d(x0,x)  <  A

(in) Vx € E, f ( x )  < f ( x )  +  ed(x ,x). (19)

P r o o f  o f  T h eorem  1.2. We may naturally take e =  1.
We shall associate the function /  with the correspondence F  of E  into itself 

which associates a point x with the set F(x)  defined by

F ( x ) ■=  { y\f(y) +  d(x,y)  <  f ( x ) } .  ( 20)

The sets F (x ) are closed and the correspondence F  has the following prop­
erty:

(i) y G F  (y) (reflexivity)
(ü) if y G F ( x ), then F(y)  C F(x)  (transitivity). (21)

Condition (21) (ii) is evident if x ^ D om / ,  since in this case F(x)  =  E.
Thus, we suppose that / ( x )  is finite. Take y G F (x ) and z G F  (y). Adding 

the inequalities:

f ( z )  +  d(yt z) <  f ( y )  and f ( y )  +  d(x, y) <  / ( x )  

and using the triangle inequality, we obtain the inequality

f ( z ) + d ( x , z )  <  / (x ) ,  

which implies that z G F(x) .
We associate the function /  with the function v defined on Dom /  by

v{y) ■= jn f f ( z ) .  (22)
zeF(y)

It is clear that
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Vy € F (x ), d(x, y ) <  /(a:) -  v(x),  (23)
which implies the following upper bound on the diameter of F ( x )

Diam (F(x) )  <  2( f ( x )  — v(x)).  (24)

Next, we define the following sequence beginning with Xq: we take x n+\ in F ( x n) 
such that f ( x n+i) <  v(xn) 4  2~n (this is possible by definition of the infimum). 
Since F (x n+1) C F ( x n), by virtue of (21)(ii), we have

n{xn) ^  t/(®n+l)' (25)

On the other hand, since we always have v(y ) <  / (y ) ,  we obtain the inequalities

*>(xn+i) <  f ( x n+i ) <  v(xn) 4- 2 "n <  v(x„+ i) 4  2 "n (26)

and thus the inequalities

0 <  / ( x „ +1) -  ^(xn+1) <  2 "4  (27)

Consequently, formula (24) implies that the diameter of the closed sets F ( x n) 
converges to 0. As these closed sets are nested and since the space is complete, 
it follows that

f l  F M  =  (*}• (28)
n> 0

Since x  belongs to F(æ0), the inequality (18) (i) is satisfied. On the other hand, 
x  belongs to all the F ( x n)] it follows that F(x)  C F ( x n) and consequently that

F(x)  =  {$>. (29)

Thus, we deduce that if x  ^  x  then x £ F (x ), whence f ( x )  4  d(x , x ) > f ( x ) .
Thus, we have proved (18)(ii). □

1.8 Application to Fixed-point Theorems

If G is a correspondence of E  into itself, a solution x  of the inclusion

x  € G{x)  (30)

is called a fixed point of G.

T h eorem  1.3 (C aristi). Let G be a nontrivial correspondence o f a complete 
metric space E  into itself. We suppose that there exists a proper, positive, lower 
semi-continuous function f  from E  to IR+ U { 400}  such that

Vx G E, 3y e G ( x )  such that f { y )  4  d(x,y) <  f ( x ) .  (31)

Then the correspondence G has a fixed  point.
If f  is linked to G by the stronger relationship



Vx G E, \/y G G(x),  f { y ) +  d{y , x ) <  /(x ) ,  (32)

then there exists x  G E such that G(x)  =  {x }.
P roof. Suppose that x satisfies (18) (ii), with e <  1 and that ÿ  G G{x)  satisfies 
f ( ÿ )  +  d(x, y) <  / ( x ) .  If ÿ  is not equal to x, inequality (18) (ii) with x :=  ÿ 
implies that d(x, ÿ) <  ed(x,ÿ) ,  which is impossible since e <  1. Thus, ÿ  is 
equal to x. There is at least one such if condition (31) is satisfied, whilst all the 
ÿ G G{x)  are equal to x if condition (32) is satisfied. O

Since we are discussing fixed-point theorems, we shall prove another result 
in which /  is no longer assumed to be lower semi-continuous; however the corre­
spondence G must have a closed graph. The graph of a correspondence G from 
E  to F  is defined by

Graph (G) :=  { { x ,y )  G E  x F\y G G (x )}. (33)
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T h eorem  1.4. Let E be a complete metric space. We consider a correspondence 
G from E to E  with a closed graph. I f there exists a nontrivial positive function 
f  from E to IR+ U {+ o o }  satisfying condition (31), then the correspondence G 
has a fixed point.
P roof. We take a point x0 G Dom /  and use a recurrence to calculate a sequence 
of elements xn G E  such that, by virtue of condition (31), we have

^ n + l  ^  ^(-£n)> d ( x n ± i , X n ) ^  / (^ -n )  / ( ^ n + l ) *  (3 4 )

This implies that the sequence of positive numbers f ( x n) is decreasing; thus, it 
converges to a number a. Adding the inequalities (34) from n — p to n =  q — 1, 
the triangle inequality implies that

q - l

d{xp, x q) ^  ^  ̂d(xn-4.|,xn) ^  /(xp ) f { x q). (35)
n—p

Since the term on the right tends t o o  — a  =  0 a s p  and q tend to infinity, we 
deduce that the sequence of the xn is a Cauchy sequence which thus converges 
to an element x G E  since the space is complete.

Since the pairs (xn,x n+i) belong to the graph of G , which is closed, and 
converge to the pair (x, x) which thus belongs to the graph of G,  the limit x is 
a fixed point of G . □

As a corollary we obtain the Banach-Picard fixed point theorem for con­
tractions.

T h eorem  1.5 (B a n a ch -P ica rd ). Suppose that E is a complete metric space 
and that g : E  —» E is a con traction :

3k G]0,1[ such that \/x,y G E , d(g(x) ,g(y))  <  kd(x, y). (36)
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Then g has a unique fixed point x.

P roo f. We associate g with the function /  from E  to IR+ defined by

OO
/ ( * ) : =  £ % " ( * ) ,  g"+1(*)). (37)

n~0

Condition (36) implies that

% n(z ),£ n+1(z)) <  kd{gn~1{x) ,gn(x)) <  knd{x,g{x)) .

Thus, the function /  satisfies the condition:

0 <  f ( x )  <  d(x,g(x) )  <  +oo. (38)X rC

On the other hand, note that
OO

f { x )  =  d{x,g{x) )  +  Ÿ ,  d{gn{x) ,gn+1{x)) =  d{x,g{x) )  +  f {g{x) ) .
71— 1

Thus, the assumptions of Theorem 1.4 are satisfied, and so there exists a fixed 
point for the contraction g. Moreover, we also have uniqueness; if x  and ÿ are 
fixed points of g , the inequality

d{x7ÿ) =  d{g(x) ,g{ÿ))  <  hd{x,y)

implies that d(x, ÿ) =  0 since k <  1, whence that x  — y. □



2. Convex Functions and Proximation, 
Projection and Separation Theorems

2.1 Introduction

Convexity plays a crucial role in the study of minimisation problems. After 
defining convex functions and describing their elementary properties, we show 
that continuous convex functions are locally Lipschitz (Lipschitz in a suitable 
neighbourhood of each point). We then prove the theorem for the existence and 
uniqueness of a solution of the minimisation problem

\\\x  ~  z o f  +  f ( x )  =  mf Q||x -  soil2 +  / ( x ) )

when /  is a nontrivial convex lower semi-continuous function from X  to 
IR. U {-f-oo}.

As a particular case, we derive the theorem for the best approximation of 
Xo by elements of a convex closed set. It is known that this theorem has very 
important consequences. Amongst these, we mention the separation theorems 
which we shall use to prove the fundamental theorems of duality theory in 
convex analysis.

2.2 Definitions

Let X  be a vector space.

D efin ition  2.1. We shall say that a function f  from X  to IRU{4-oo} is convex  
if fo r  any convex combination x  =  \ x i ° f  elements x, G X  we have the 
inequality

f  (H t,XiXi )  ^  è Ai / ( X*)- C1)
\z=l /  i=l

We shall say that f  is concave if —f  is convex, and that f  is affine if f  
is both convex and concave.

We begin by characterising convex functions.
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Proposition 2.1. Let f  be a function from X  to IR U {-fo o } . The following 
conditions are equivalent
a) f  is convex
b) Vx, y e  X , Va G]0,1[

f ( a x  -f (1 -  a)y) <  a f ( x )  +  (1 -  a) f ( y )

c) the epigraph of f  is convex.
Proof. Clearly a) implies b).

We show that b) implies c). We let (æ,A) and (y,g)  be two points of the 
epigraph of /  and a  G]0,1[ and show that

ol{x , A) -f (1 -  Oi){y,p) =  (ax  +  (1 -  a ) y , a A -f (1 -  a)fi)

belongs to this epigraph. In fact, the inequalities f ( x ) <  A and f ( y ) < p  imply 
that a f ( x )  -f (1 — a ) f ( y )  <  aA -f (1 — a)/i, since a  and (1 — a) are positive. 
Consequently, f ( a x  +  (1 — a ) y ) <  aA -f (1 — a)p,  from b).

Lastly, we show that c) implies a). Since the 2-tuples (Xi , f ( x i )) belong 
to E p (/) , which is convex, then Xi(xiy f f a ) )  =  (E -U  A ^ ,  £ ”=1 Xif(xi))  
belongs to E p (/) , which means that f  ( £ ”=1 AiXi) <  £ ”=1 Aif(Xi).  □

We deduce the following corollary.

Corollary 2.1. A subset K  o f X  is convex if and only if its indicator function 
is convex.

Proof. In fact, E p(^x) =  K  x IR+ is convex if and only if K  is convex. □

Proposition 2.2. We suppose that the functions f , g , f i  from X  to IRU {-fo o } 
are convex. Then
a) f  +  g is convex;
b) if a  >  0 then a f  is convex;
c) if A is a linear mapping from a vector space Y  to X , then f  o A is convex;
d) if <}) : IR —» 1R is convex and increasing then 4>o f  is convex;
e) supie/ fi is convex

Proof. The first four assertions are evident, whilst the last one results from the 
equality Ep(supi€/ /*) =  n ie/E p (/i). □

We mention the following obvious property.

Proposition 2.3. If f  is a convex function from X  to JR U {- fo o } , then its 
sections S( f ,  A) are convex

Remark. The converse is not true. A function all of whose sections are convex 
is said to be quasi-convex.

Definition 2.2. A nontrivial function f  : X  - »  IR u {-fo o }  is strictly convex 
if for  any two distinct points x and y G Dom /



2.2 Definitions 23

f  ( x  +  y 'j < / M  +  f ( y )

This condition enables us to give a sufficient condition for the uniqueness 
of a solution of an optimisation problem.

Proposition 2.4. Let f  be a nontrivial convex function from X  to IRU {- fo o }. 
Then the set M  o f solutions x  € X  o f the problem f ( x )  =  infxe^ f ( x )  is convex. 
If f  is strictly convex then M  contains at most one point.

Proof. Let a  infx€x  f { x ) .  The first assertion follows from the equality M  =  
Ha>aS{f ,&),  which implies that M  is an intersection of convex sets. If /  is 
strictly convex and if X\ and X2 are two solutions of the problem a =  infxej* / (x ) ,  
we would have

( x l + x 2\  ̂ f { x i ) + f { x 2)a  =  f { - ^ - ) < — 2—

which is impossible. □

Proposition 2.5. Let g be a convex function from X  x Y  to IRU {+oo}. Then 
the function f  from X  to IRU {+oo} defined by

f { x )  := inig{x ,y)  (3)

is convex.

Proof. Fix e >  0, A G]0,1[ and Xi(i =  1,2) in X .  Equality (3) is true when at 
least one of the x* does not belong to the domain of / .  Consider the case in 
which X\ and x 2 belong to Dom / .  Then there exist y\ and y2 such that

9{Xi,yi) <  f {xi )  + e  (i =  1,2). (4)

Since g is convex, we deduce that

g ( a x i +  (1 -  a ) x 2,ayi  +  (1 -  a)y2) <  a f ( x i )  +  (1 -  a ) f ( x 2) + e .

But f ( a x i  +  (l — a ) x 2) is less than or equal to^ (ax i +  ( l - a ) x 2,a ? / i+ ( l - a ) j /2)- 
Whence

f { a x i  +  (1 -  ot)x2) <  a f ( x i) +  (1 -  a ) f { x 2) +  £

and simply letting e tend to 0 completes the proof. □

P rop os ition  2.6. Consider n convex functions fa from X  to IRU {-fo o }. Then 
the mapping F  from K  :=  nf=1Dom /* to IRU {- fo o } defined by

V x e K , F(x)  := ( / i (x ) , - . . , /n (® ) )  (5)

satisfies the following properties:
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the sets F ( K )  +  IRJ and F ( K )  -f fll" are convex. (6)

Proof. We prove only the second assertion. The cone JR+, the interior o f the 
cone IR” , is formed from vectors u with strictly positive components Uj.

Fix two elements yi =  F(x{)  +Ui (i =  1,2) of F ( K )  +  IR” , where Xi G K  
and Ui €  IR.” . If a  €]0,1[, we may write

y =  otyi +  (1 -  a)y2 =  F (x) +  u

where x  =  ax\ +  (1 — a)y 2 and

u — +  (1 — a)u2 +  a F ( x  i) +  (1 — a ) F ( x 2) — F ( a x  i +  (1 — o )^ ) -

The convexity o f the functions /* then implies that the components Ui of this 
vector u are strictly positive. Thus y belongs to F ( K )  -f 1R+ . □

2.3 Examples of Convex Functions

The norms and seminorms on a vector space are convex functions.
More generally, any subadditive positively homogeneous function is a posi­

tively homogeneous convex function and conversely.
Let ((x, y)) be a scalar semiproduct on the vector space X  and set

/ ( * ) : =  i ( ( x ,x ) )  =  i|M|2 (7)

where ||x|| :=  y ( x , x )  is the seminorm associated with this scalar semiprod­
uct. Then /  is convex and strictly convex if ||x|| is a norm. If we now take 
a, (5 G [0,1], (3 =  1 — a, then

||x - a y -  pz\\2 =  a 2 ||x -  y\\2 +  0\\x -  z \\2 -  2 ap\\y -  z\\2. (8)

In fact, the member on the left may be written as 

||«(x -  y) +  (3{x -  z )||2 =  a 2||x -  y \\2 +  (32\\x -  z \\2 +  2a@((x - y , x -  z)). 

Multiplying the equality

II?/ -  l̂l2 = \\y~x + x ~  z f  =\\x-y\\2 +  \\y- z\\2 - 2 ( ( x - y , x -  z))

by a p  and adding it to the previous equality, we obtain the desired result. 
Taking x =  0, we obtain

f ( a y  +  (3z) =  a f ( y )  +  0 f ( z )  -  a0\\y -  z\\2 < a f ( y )  +  0 f ( z )  

and, if a =  \ and if ||.|| is a norm, then



2.4 Continuous Convex Functions 25

/  (| (y  +  * ) )  <  +  f ( z ) )  -  \wy -  4 2 < i ( / ( y )  +  / ( * ) )

when y z. □

We recall that a continuous scalar semiproduct ((x, y)) on X  corresponds 
to a continuous linear operator L from X  to X*  which satisfies

(i) L =  L* (L is self-conjugate)
(ii) \/x € X , (L x }x ) > 0  (L is positive semi-definite) (9)

It is defined by the formula

\ / x , y e X  (Lx,y)  =  ((x,y) ) .  (10)

2.4 Continuous Convex Functions

We shall show that a convex function continuous at a point is actually Lipschitz 
in a neighbourhood of that point.

D efin ition  2.3. A function f  from an open subset Q to IR is locally Lipschitz if 
for each point x € f2 there exists a neighbourhood o f x  on which f  is Lipschitz.

T h eorem  2.1. Let f  : X  —>• IRU {- fo o }  be a nontrivial convex function. The 
following conditions are equivalent
a) f  is bounded above on an open subset (necessarily contained in Dom f ) .
b) f  is locally Lipschitz on the interior o f Dom f .

P roo f, a). Clearly condition b) implies condition a).
b). Suppose then that /  is bounded on a ball x0 4- r]B C Dom /  by a constant

a <  -foo. We associate with each x  G X  the element y :=
Xq — (1 — 6)x

T where

6 :=  — t:------- -—jr <  1. Then ||y — £0|| =  V consequently, f ( y )  <  a.  The
77+||X-Xo||

convexity o f /  implies that

/(S o) =  f ( 0y  +  (1 -  0)x) < 6 a  +  { l -  6) f (x) .

Whence

/(so) < ”  /(æo)) + /(s)

and consequently, replacing 6 by its value

\/x e X , f { x o) -  f ( x )  <  - — i ^ \ \ x  -  Soil. (11)

Now take x e  x 0 +r ) B  and y := ------^  ^ X° where 6 :=  — ------— <  1. Then
6 g

11g -  xo|| <  V and consequently, f ( y )  <  a. The convexity of /  implies that
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f{x)  = f(0y +  (1 -  6)x0) <0a + ( l -  0)f (xo)

and consequently, replacing 6 by its value, that 

Vx 6 Xo +  rjB}

Inequalities (11) and (12) imply that

Vx € x0 +  r]B,

f {x)  -  f { xo) <  - — ~~^\\x -  ®oll-

f (x)  -  f { x o) <  - — -  a:o||
V

( 12)

(13)

and consequently, that /  is continuous at x0.
c) We now prove that /  is Lipschitz on the ball Xo +  (3B where P <  77. Fix an

lljP _  x  ||
integer n larger than ----------Take X\ and X2 in the ball x0 +/3B and divide

V - P j
the segment from X\ to X2 into n pai'ts, using the points y, :=  X\ H— (xj — x2),

Ti
(j  =  0 , . . .  ,n ). Note that y0 =  Xi, yn =  x2 and that the points yj belong to the 
ball x0 4- PB. It is clear that the balls y3- -P (77 — P)B  are then contained in the 
ball x0 4- r]B, so that /  is bounded by a on the balls of radius yj 4  (77 — P)B. 
Inequality (13), with Xq replaced by yj and 77 replaced by 77 — P, implies that

l / f e + i ) - / f e ) l  < a -  f(Vj)
T] P

h j+ i -  Vj\\

since ||yi+1 -  y5\\ =  — l —  ̂  <77 -  p.
n

On the other hand, inequality (13) implies that

f ( x 0) -  f(Vj) < a ~ f (æo)t e  -  loll <  a -  f ( x 0).
V

Then

i /t o + i )  -  / ( » ) i  <

Since Haq -  x0|| =  fe + i  -  Vj||, we now have

i / ( s . )  -  f ( x 2) 1 <  i / f e +1) -  / ( %-)i <  —  ■r /(r o ) ) ik , -  x2ii.
j=i 77- / ?

Thus, /  is Lipschitz on the ball Xo 4- PB.

d). Lastly, we shall show that /  is Lipschitz on a suitable neighbourhood of 
each point Xj in the interior of the domain of / .  By virtue of the above, it is 
sufficient to show that /  is bounded above on a neighbourhood of X j. Let 7 >  0
be such that X\ 4- 7B  is contained in Dom / .  Set A = ------ ------------ - which is

7 +  If i  -  Soil
strictly less than 1. It is easy to see that the element
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1 /  \ X\ Aæ0 . .  .v
x 2 ■= X0 +  —Ay(Si -  X 0 ) =  -  _  A~ (14)

belongs to X\ +  7B, and that /  is bounded above on the ball Xi +  Xr]B by 
Aa +  (A — l ) / ( x 2)- In fact, if y belongs to the ball 07 -f XyB, then the element 
2 :=  ^(î/ — (1 — A)£2) belongs to the ball Xq -f t)B. Then f ( z )  <  a and, by 
convexity,

f { y )  =  / ( Â r +  (1 -  A)æ2)) <  Af ( z )  +  (1 -  X) f ( x2) <  Xa +  (1 -  A )/(x 2).

This completes the proof of the theorem. □

C orollary  2 .2 . If the interior o f the domain o f a convex function f  from  IRn 
to IRU { + 00} is non-empty, then f  is locally Lipschitz on Int Dom / .
P roo f. Consider a ball Xq +  tjB  contained in the domain of / .  We may then find 
n points X{ € x 0 -f rjB such that the vectors Xi — Xq are linearly independent. 
Thus, the set S of convex combinations Aix u where A, >  0 for all i, is open
and contained in the domain of / .  Consequently, /  is bounded above on the 
open set S by maxi=lt..Mn f (xi )  since

/  ( X 'A iX i) <  Y "A iXi <  max f (xi ) .

Theorem 2.1 now applies. □

Remark. Baire’s theorem (see (Aubin 1977) page 189) implies the following 
corollary.

C orollary  2.3. If the interior o f the domain o f a convex lower semi-continuous 
function f  from a Hilbert space X  to IRU { 4-00} is non-empty, then f  is locally 
Lipschitz on Int Dom f .
P roof. Baire’s theorem now implies that any lower semi-continuous function 
defined on an open set (here, Int Dom / )  is bounded above on a non-empty 
open set. Theorem 2.1 then applies. □

2.5 The Proximation Theorem

We shall consider minimisation problems of the form

f x{x) :=  inf ye a f (V)  2Â — XH (15)

where /  is a function from a Hilbert space X  to IRU { + 00}, || • || is the Hilbert 
norm of X  and A is a positive parameter.

T h eorem  2.2. Suppose that f  : X  - »  IRU { + 00} is a nontrivial, convex, lower
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semi-continuous function from a Hilbert space X  to IRU {+ o o } .  There exists a 
unique solution (denoted by J\(x)) o f the problem (15):

/x 0*0 =  f(J\x) +  ^11 J\X -  z||2. (16)

This solution is characterised by the following variational inequalities

V y e x ,  \ ( J x X - x , J xx - y )  +  f ( J xx ) - J ( y ) < 0 .  (17)

Before proving this theorem, we shall apply it to the case where /  =  'ipK is 
the characteristic function of a set. This leads to the projection theorem, since 
in this case

fx(x)  =  ± d ( x , K ) 2

where d(x ,K)  :=  infyG/̂  ||x — y|| is the distance from x  to K.

T h eorem  2.3 (B est A p p rox im ation ). Let K  be a c losed  con vex  subset o f 
a Hilbert space X . The minimisation problem

(i) Jx € K
(ii) ||x — Jx\\ =  d(x ,K)  (18)

has a unique solution Jx which is characterised by the variational inequalities

(i) Jx € K
(ii) y € A , (Jx — x, Jx — y) <  0. (19)

D efin ition  2.4. The mapping J of X  onto K  is called the p ro je c to r  o f  best 
approxim ation  of X  onto K .

P roof, a) If /  is positive or zero, then f\ is also positive or zero. This is the case, 
for example, o f the Best Approximation Theorem (where /  =  ^ k )- If /  is not 
positive, then we use a consequence o f the projection theorem (Theorem 3.1) 
which implies that /  is bounded below by an affine function: there exist p € X* 
and a G IR such that:

V y e X ,  f ( y )  >  (p,y) + a .

Since the Cauchy-Schwarz inequality implies that

( p , x - y )  <  |̂|Ap|| ||x-y|| <  |̂|p||2 +  “ ||y -  x||2,

this inequality implies that

/ (y )  +  ^||y-x||2 ^  (p > y -z }  +  G +  (p>*> +  ^ l l y - z | i 2 

> a +  (p,x) -  ^||p||2
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and thus that

fx(x)  > a  +  ( p , x ) ~  \̂\p\\2 >  -o o .

b) We show that any solution x  of the problem

h ( x )  =  m )  +  ^ \ \ x - x f  (20)

satisfies
V y e X ,  j ( x - x , x - y )  +  f { x )  -  f { y )  <  0. (21)

We take z =  x  +  6{y — x) =  6y +  (1 — 6)x where 6 g]0, 1[. Then we obtain the 
inequality

/ a(*) +  ^ I I * - * H 2 <  / ( x  +  % - x ) )  +  2-||x +  % - x ) - x | | 2 

<  ( i - e ) ! ( x )  +  e f ( y )  +  ^\\x-x\\2 

-  x ,y  -  x) +  — \\y -  x\\

which implies that

fx(x ) -  f ( y )  +  j { x - x , x - y ) <  ^||y -  x\\2.

It is now sufficient to let 0 tend to 0.

c) Suppose, conversely, that x  satisfies the variational inequalities (21). We recall 
that

\\\x  -  x \\2 - \ h  -  x t  < ( x ~ x , x - y )  

and that consequently

f{x) +  ^\\x ~ x\\2 -  f { y ) - ^ \ \ y~ x\\2 < fix) ~  f(y) + j ( x ~ x,x ~y)

< o

for all y E X .

d) There exists a solution x  of the problem f\[x). To prove this, we consider a 
minimising sequence of elements x n E X  satisfying

/(* n ) +  T ||z„-x||2 < A ( x ) + i .  (22)
IX n

We shall show that this is a Cauchy sequence. In fact, the so-called median 
formula implies that
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xn x r =  2||rcn -  x\\2 +  2||.Tm -  x\\2 -  4 Xu 2-771
— X (23)

Consequently, by virtue of (22) and (23), we have

|\xn ~ Xm\\2 <  4A +  — +  2 fx(x)  ~  f { x m) -  f ( x n)\

+ 8A ( /  p ± £ " )  _  /* (* ) )

<  4A ( i  +  — )
\n m j

since /  is convex.
Thus, x n converges to an element x  of X , since X  is complete.
The lower semi-continuity of /  implies that

/ ( z )  +  ^ | | z - z ||2 <  liminf ( / ( x n) +  ^||xn -  x||2)

<  h(x).

Whence f x(x) =  f ( x )  +  ^||z -  x\\2.

e) We now prove the uniqueness. If x  and x  are two solutions to the prob­
lem of minimising f x(x),  we deduce from the variational inequality (21) that 
f ( x )  — / ( f )  +  j ( x  — x, x  — x) <  0. Interchanging the roles o f x  and x  we obtain 
the inequality f ( x )  — f ( x )  +  j ( x  — x , x  — x) < 0 . Adding these inequalities, we 
deduce that j\\x — x\\" <  0. Whence x =  x. □

We note that the mappings J\ and 1 — Jx are both continuous, indeed 
Lipschitz with constant 1.

P rop os ition  2.7. The mappings Jx and 1 — J\ are Lipschitz with constant 1 
(independent of X) and ‘m onotone’ m the sense that:

(i) (J \ x -  Jxy , x - y )  >  \\J\x — J\y\\2
(ii) <(1 -  JA) . r - ( l -  J x ) y , x - y )  >  ||( 1- JA) i - ( l - (24)

P roo f. The variational inequality which characterises J\x implies that 

f{J\x) -  f(J \ y ) +  -  x , Jxx  -  Jxy) <  0.

Switching the roles of x  and y, we have

f ( J xy) -  f (Jxx)  +  -^(-Ay -  y, Jxy -  J\x) <  o.

Adding these two inequalities, we find that

(J>X -  Jxy -  (x -  y), J\x -  Jxy) < 0. (25)
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The inequalities (24)(i) and (ii) follow from this inequality.
This being so, we write

II®-2/112 =  \\x -  Jxx  -  ( y - J xy) +  {Jxx  -  Jxy)\\2
=  ||(1 -  J\)x -  (1 -  Jx)y\\2 +  || Jxx -  Jxy\\2 

+2((1 -  Jx)x -  (1 -  Jx)y, Jxx -  Jxy).

Following (25), we deduce that

II® -  y||2 > ||(1 ~  J\)x -  (1 -  Jx)y\\2 +  \\Jxx  -  JxyII2- 

This completes the proof of Proposition 2.7. □

Remark. We shall study this question further to show, amongst other things, 
that

lim Jxx  =  x  if x  G Dom /A—>-0
lim /A(x) =  f { x )  
lim f x(x) =  in f / ( x )

A—>-oo x £ X

gr _ J \ X
and that f x is a convex differentiable function with V f x(x) = -----—---- . This is
the reason why f x is called the Moreau approximation of / .

2.6 Separation Theorems

We shall use the Best Approximation Theorem to deduce one of the most useful 
analytical results, known as the Separation Theorem .

T h eorem  2.4 (Separation  T h eorem ). Consider a non-empty, convex, closed 
subset K  of a Hilbert space X . I f x 0 does not belong to K , there exist a contin­
uous linear form p € X* and e >  0 such that

sup (p, y) <  (p, x0) -  £■ (26)
y€K

P roo f. We consider the projection Jx0 o f best approximation of x Q onto K . 
The variational inequality which characterises Jxq implies that

(Jx0 -  x0, Jxo -  y) <  0 Vy G K.

We deduce that

|| Jx0 -  x 0\\2 <  (x0 -  Jx0, x0 - y )  Vy G K.

Since Xo ÇjL K , || Jx0 — x0||2 is strictly positive, and the linear form p =  Jx0 — x0 
satisfies the conclusion of the theorem (26). □

t
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The hyperplane

H  =  {x  e  X\(p,x) — b}

separates x 0 from K , since (p, x0) >  b and (p, y) <  b for all y € K .

Fig. 2.1.

If X  is a finite-dimensional space, we obtain a Large Separation Theorem, 
without assuming that the set K  is closed. This is very useful, since it is often 
difficult to prove that a set is closed.

T h eorem  2.5 (Large Separation ). Let K  be a non-empty convex subset of a 
fin ite-d im ensional space X . If Xo does not belong to K , there exists a linear 
form p G X* such that

P roo f. Although K  is not closed, all the convex hulls of finite families o f points 
of K  are however closed convex subsets o f K  which we may separate from Xq 
by virtue of the above theorem. We shall use this idea.

Next, with any x  G K  we associate the subset Fx o f the unit sphere defined

We note that the set o f the solutions (of norm one) of (27) is the intersection 
F\X£k Fx of the sets Fx. Thus, we need to show that this intersection is non­
empty. For this we use the fact the unit sphere S :=  {p  € X* | ||p||* — 1}  is 
compact, since X  is finite-dimensional. As the subsets Fx are clearly closed, it 
is sufficient to show that they satisfy the finite-intersection property: for any 
family ® i , . . . ,® n, the intersection n^=1FXl ^  0. To prove this, we consider the 
convex hull of the x iy M  :=  {X)”=i AzrCijAz- >  0, £"=i \  — !}• Since K  is convex, 
M  is contained in K , and consequently x0 $  M . On the other hand, M  is 
convex and closed (compact even). Thus, the Separation Theorem implies that

p ^ O  and sup(p,y) <  (p,x0). 
y€K

(27)

by
Fx := { p e  X*  I ||p||* =  1 and (p,x) <  (p ,x0) } . (28)
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there exists a linear form (which may always be taken to have norm 1) such 
that supy€M(p, y) < (p ,x0). Since the x, belong to M , then (p,Xi) < (p,Xo), 
whence p belongs to FXi for each i =  1, . . . ,  n.

Thus, the finite-intersection property is satisfied, whence the set Dx^k Fx, 
being non-empty, contains a linear form p which therefore satisfies (27). □

Fig. 2.2.

There are numerous corollaries to the separation theorems but we find it 
preferable to use one or other o f the previous results. We shall, however, show 
how these results may be used to ‘separate’ two disjunct subsets M  and N.  To 
say that two subsets M  and N  o f a vector space are disjunct is equivalent to 
the statement that 0 does not belong to M  — N.

M H N  =  (29)

We also note that

sup (p,z) =  sup (p,x) -  inf (p, y). (30)
z<=M-N x&M

Having established these two remarks, we obtain the following corollary.

C orollary  2.4. Consider two non-empty, d isjunct subsets of a Hilbert space 
X .
a) If we assume that

the set M  — N  is convex and closed,

then there exist a continuous linear form p  € X* and e  >  0 such that

sup {p,x) <  inf (p,y) -  e.
x€M ytw

(31)

(32)

b) If we assume that

then there exists a linear form p G X* such that

X  is finite dimensional and M  — N is convex, (33)
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P ^  0 and sup (p, re) <  inf(p ,p). 
xeM y^N

(34)

P roo f. It is sufficient to apply the Separation Theorem and the Large Separa­
tion Theorem to the case in which K  =  M  — TV with Xo — 0, using properties 
(29) and (30). □

We may now give examples o f properties implying the assumptions of this 
corollary.

For example, we recall that

if M  and TV are convex, then M  — TV is convex (35)

and that

if M  is compact and TV is closed, then M  — TV is closed. (36)

But, be warned, we shall use examples in which M  — TV is convex and M  is 
not closed and in which M  — TV is closed although neither M  nor TV is compact 
(see Propositions 2.6 and 1.8).

The first separation theorems and the foundations of what was to become 
functional analysis are due to the mathematician Minkowski (1910). The exten­
sion o f these theorems to Banach spaces and the equivalence to the problem of 
extending continuous linear forms is due independently to Hahn (the founder 
of the famous Vienna Circle) and Banach. The Hahn-Banach theorem is one 
of the three fundamental theorems o f linear functional analysis all o f which 
carry the name o f Banach (the two other theorems, the Banach Closed Graph 
Theorem and the Banach-Steinhauss Theorem, deal with continuous linear op­
erator and are based on the Baire Theorem.). In 1922, Banach published his 
first discoveries about “les opérations dans les ensembles abstraits et leurs ap­
plications aux équations intégrales”. In 1932, he published his masterpiece, the 
monograph Théorie des Opérateurs Linéaires, which had and continues to have 
a determining influence on the course of the history o f mathematics.

Note that, whilst integral equations were the principal motivation which 
drove Banach, Hilbert and other mathematicians at the beginning of this cen­
tury to build the foundations of functional analysis, the latter has been applied 
in very different areas of mathematics and, by ricochet, in numerous disciplines.

It is this universality o f mathematical results, having their origin in one 
discipline and finding applications in others, which makes mathematics so fas­
cinating.



3. Conjugate Functions and Convex 
Minimisation Problems

3.1 Introduction

The power and the beauty o f convex analysis stem from the existence of a one-to- 
one correspondence between the convex lower semi-continuous functions on X  
and those on its dual X*. This correspondence plays a role analogous to that of 
transposition, which is also a one-to-one correspondence between the continuous 
linear operators from X  to Y  and those from Y* to X*. In associating a convex 
lower semi-continuous function with its conjugate, we in some way double the 
number of properties since we will have the option of using the properties of 
the function or its conjugate.

This transformation also shows that the cone of convex lower semi-continuous 
functions, which is stable on passage to the upper envelope, is in fact obtained 
by saturation of the space of affine functions continuous under this operation. 
In simple terms, this means that any convex lower semi-continuous function 
is the upper envelope of the continuous affine functions which minorise it. To 
make this more precise, let us consider the minimisation o f a nontrivial function 
/  from X  to IRU {+ o o } . In fact, since the function /  is never known exactly, 
it is wise to study not only the minimisation of the function / ,  but also that of 
a family o f perturbed functions.

For simplicity and efficiency, we restrict ourselves to simple perturbations. 
In our given context, this means that we shall perturb /  by continuous linear 
functions and study the family o f minimisation problems

- f * { p )  ■= inf [ f {x)  -  (p, x)] (*)

and the variation of this infimum as a function of p. In particular,

:=  tof /(*)•

The formula (*) may be rewritten in the form

f*{p) — sup[(p, x) — f [x) )  
xex

which immediately shows that the function /*  : p G X*  -*  f*(p)  G IRU {-fo o }, 
which is the upper envelope of the continuous affine functions p - »  (p, x) — f ( x )  
on X*,  is a convex lower semi-continuous function.
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The result mentioned above is explained by this assertion: a function f  is 
convex, lower semi-continuous and nontrivial if and only if f  is equal to its 
biconjugate (/*)*.

The second important result is known as Fenchel’s Theorem. We consider

(i) two Hilbert spaces (or reflexive Banach spaces) X  and Y  ;
(ii) a continuous linear operator A  from X  to Y \

(iii) two nontrivial, convex, lower semi-continuous functions 
/  : X  —» IRU {- fo o }  and g : Y  —» IR U { + 00} satisfying
(a) 0 G Int ( A D o m f  — D om g)
(b) 0 G Int (A* Dom /* -f Dom#*)

We shall prove that there exist solutions x  G X  and q G Y* of the minimi­
sation problems

v ■= inf [ /(x )  +g(Ax)\ =  f ( x ) + g { A x )x£X

and

v,  :=  mf I f ' ( - A - q )  +  <?*(<?)] =  f ‘ ( - A ' q )  +  g'(q)

and that, in addition, the two minimisation problems are linked by the equation

v +  v* =  0.

In the next section, we shall establish the connections between the solutions of 
the v problem and those of the problem (known as the dual o f the v problem).

We shall formulate a calculus of conjugate functions which will enrich the 
field o f applications of these two theorems. Since a closed convex subset K  
o f X  is characterised by its indicator function which is convex and lower 
semi-continuous, it is consequently equivalently characterised by the conjugate 
function of i\)k  defined on X* by

aK(p) :=  =  sup(p, x).
x £ K

This function, called the support function o f the subset K , is very useful 
in that it enables us to replace the manipulation of closed convex subsets by 
the more familiar manipulation of convex lower semi-continuous functions. The 
discovery and use of this fact is due to Minkowski.

This will lead us naturally to the notion of polarity between closed convex 
cones of X  and of X*. If K  is a closed convex cone we denote its (negative) 
polar cone by

I<~ ~  {p  G X*\\/x G K t {p,x) <  0}.

This is also a closed convex cone. We shall prove that K  — ( K ~)~.
As discovered by Steinitz from 1912, this relationship extends the orthogo­

nality relationships between vector subspaces to closed convex cones.
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3.2 Characterisation of Convex Lower Semi-continuous 
Functions

Following the Danish mathematician Fenchel, who introduced this concept in 
1949, after a long history beginning with Young’s inequality in 1912, we intro­
duce the following definition

D efin ition  3.1. Let f  be a nontrivial function from X  to IR U {-foo }. Then the 
function f* from X* to JR U {+ o o }  defined by

f*(p)  :=  sup[(p,x) -  /(x ) ]  G IRU {+ o o }  (1)
xex

is called the (Fenchel) con ju gate  o f f  and the function /** : X  —» 3R defined 
by

Vx G X , f**(x) :=  sup[(p,x) -  f*(p)] (2)
PCX

is the b icon ju gate  of f .

Note that the so-called Fenchel inequality

Vx 6 l ,  Vp G X *, <p,x) <  / ( x )  +  r ( p )  (3)

always holds and that

V x G l ,  r ( x ) < f ( x ) .  (4)

Remark. If we interpret the vector space X  as a space of commodities, its dual 
X* as the space of prices (continuous linear functions associating a commodity 
with its value) and /  as a cost function, then (p,x) — / ( x )  is a profit and the 
conjugate function is the maximum-profit function, which associates every price 
p with the maximum profit which it may obtain.

If a function /  coincides with its biconjugate, then /  is necessarily convex 
and lower semi-continuous. The converse is also true.

T h eorem  3.1. A nontrivial function f  : X  —»■ IRU {+ o o }  is convex and lower 
semi-continuous if and only if f  =  /**. In this case, f*  is also nontrivial

Remark. Since in this case

f  (x) — sup [(p, x) f * (p)], (5)
PCX'

we deduce that any nontrivial convex lower semi-continuous function is the 
upper envelope of the affine functions which minorise it.

P roo f. The idea of the proof is very simple. Since the epigraph of /  is a closed 
convex set, any point (x, a) which does not belong to it is separated from E p (/) 
by a hyperplane which is the graph of a continuous affine function minorising f .
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We shall now substantiate this idea.
a) Suppose that a <  f ( x ) .  Since the pair (x , a ) does not belong to E p (/) , which 
is convex and closed, there exist a continuous linear form (p , b) G X*  x 1R and 
e >  0 such that

Vy G Dom/ ,  VA >  / (y ) ,  (y,y) -  bX <  (p, x) - b a - e  (6)

by virtue of the Separation Theorem (Theorem 2.4).

b) We note that b >  0. If not, we take y in the domain of /  and A =  / (y )  T p. 
We would have

-b p  <  (p, x -  y) T b{f (y) -  o) -  e <  Too.

Then we obtain a contradiction if we let p  tend to Too.
c) We show that if b >  0, then a <  f**(x).  In fact, we may divide the inequality 
(6) by 6; whence, setting p =p/b  and taking A =  / (y ) ,  we obtain

Vy G D om /, (p,y) -  /  (y) <  (p,x) -  a -  e/b.

Then, taking the supremum with respect to y, we have

f*(P) <  f a x )  -  a.

This implies that

(i) p belongs to the domain of /*
(ü) a <  (P,z) -  f*iP) <  (7)

d) We consider the case in which x  belongs to the domain o f f .  In this case, b is 
always strictly positive. To see this, it is sufficient to take y =  x  and A =  f ( x )  
in formula (6) to show that

b > e / ( f { x ) - a )
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since f ( x )  — a is a strictly positive real number. Then, from part b), we deduce 
the existence of p G Dom/*  and that a <  f**(x ) <  f ( x )  for all a <  f ( x ) .  Thus, 
f**(x)  is equal to f ( x ) .

e) We consider the case in which f ( x )  =  -Foo and a is an arbitrarily large 
number. Either b is strictly positive, in which case part b) implies that 
a < f**(x) } or b =  0. In the latter case, (6) implies that

\/y e  Dom / ,  (p, y -  x) +  e <  0. (8)

Let us take p in the domain of /*  (we have shown that such an element exists, 
since D om /  is non-empty). Fenchel’s inequality implies that

(P>y)- f*{p)-  f(y) <o. (9)

We take p  >  0, multiply the inequality (8) by p  and add it to the inequality 
(9) to obtain

(p +  pp, y) -  f { y )  <  f*(p)  +  p(p, x) -  pE.

Taking the supremum with respect to y, we obtain:

f*{P +  PP) <  f*{P) +  p(p, x ) - p £

which may be written in the form

(p,x) + p £ - f * ( p )  <  {p +  pp ,x) -  f*{p +  pp) <  f**(x).

Taking p  =  a+f which is strictly positive, we have again proved that
a <  Thus, since f**(x ) is greater than an arbitrary finite number, we
deduce that f**{x) =  -Foo.

3.3 Fenchel’s Theorem

We shall now prove Fenchel’s duality theorem which, in conjunction with the 
previous theorem, provides the framework for convex analysis.

Suppose we have two Hilbert spaces (or reflexive Banach spaces) X  and Y,  
together with

(i) a continuous linear operator A  € L(X,  Y)\
(ii) two nontrivial, convex, lower semi-continuous functions

f  : X  —> IR U {-Foo} and g : Y  - »  1R U {+ o o } . (10)

We shall study the minimisation problem

v :=  +  9{Ax)\. (11)

Note that the function f  +  g o A  which we propose to minimise is only nontrivial 
if A  Dom/  H Dom g ^  0, that is to say, if
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0 G A Dom /  — Dom g. (12)

In this case, we have v <  -f oo.
Now we introduce the dual minimisation problem

v* :=  J g U /* (_ i4 *0) +  (13)

where A* G L(Y*,X*)  is the transpose of A , f* : X*  —> JR U {-Foo} is the 
conjugate of /  and g* : Y* —» IRU {- fo o } is the conjugate of g. This only makes 
sense if we assume that

0 G A* Dom g* 4- Dom/* (14)

and in this case, u* <  -foo.
Note that we still have the inequality

v +  v* > 0 (15)

since, by virtue of Fenchel’s inequality,

f ( x ) + g { A x ) + f * ( - A q ) + g * ( q )  >  { - A*q , x )  +  {q,Ax) =  0.

Consequently, conditions (12) and (14) imply that v and i>* are finite.
By way of a slight reinforcement of condition (12), guaranteeing that the 

function /  -f g o A  is nontrivial, we shall show that v f  v* is equal to zero and 
that the dual problem has a solution.

T h eorem  3.2 (Fenchel). Suppose thatX  and Y  are Hilbert spaces (or reflexive 
Banach spaces), that A  G L(X,  Y)  is a continuous linear operator from X  to 
Y  and that f  : X  - »  IR U { - fo o }  and g : Y  —> IR U {-Foo} are nontrivial, 
convex, lower semi-continuous functions. We consider the case in which 0 G 
A Dom /  — Dom # and 0 G A*Dom<?* -F Dom /*  (which is equivalent to the 
assumption that v and v* are finite).

I f we suppose that

0 G Int (AD om  /  — Dom g), (16)

then

(i) v +  v* =  0
(ii) 3 g G Y* such that f * ( —A*q) -p g*(q) =  v*. (17)

I f we suppose that

0 G Int (A* Dom g* -F Dom /* ), (18)

then

(i)
(« )

v -p u* =  0;
3 x  G X  such that f ( x )  -f g{Ax)  =  v. (19)
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P roof.
a) We shall begin by proving the theorem for the case in which the space Y  is 
finite dimensional.

We introduce the mapping 4> from Dom /  x Dom g to Y  x IR defined by

4>{*> y ) =  i A x -  y > f ( x ) +  g{y) }  (20)

together with

(i) the vector (0,z;) G Y  x IR
(ii) the cone Q =  {0 }x ]0 ,o o [c  T  x IR (21)

In a proof analogous to that of Proposition 2.6, it is easy to show that the 
linearity of A  and the convexity of the functions /  and g imply that

<̂ >(Dom /  x Dom g) +  Q is a convex subset of Y  x IR. (22)

Furthermore, if we suppose that (0, v) belongs to <£(Dom/ x Dom g) +  Q, we 
may deduce the existence of a; G Dom /  and y G Dom g such that Ax — y — 0 
and v > f { x )  +  g{y) =  f ( x )  +  g(Ax),  which would contradict the definition of 
v. Thus,

(0,1») ^ 0(Dom /  x Domg) +  Q ■ (23)

Since y  is a finite-dimensional space, we may use the Large Separation Theorem 
to show that there exists a linear form (p, a) G Y* x IR such that

(i) (p,a) ^  0
(ii) av =  {{p,a) , (0,v) )

<  inf [a{f{x)  +  g{y)) +  (p, Ax  — y)] +  inf a9. (24)
i f c U o m /  a > 0
y € D o m g

Since the number infe>0 ad is bounded below, we deduce that it is zero and that 
a is positive or zero. We cannot have a =  0, since in that case, the inequality 
(24) (ii) would imply that

0 <  inf (p,Ax — y ) =  inf (p,z). (25)— xeDom/^’ ZGADom/-Doms
y g D o m s

Since the set A D om f — Dom g contains a ball of radius 77 and centre 0, by 
virtue of (16), we deduce that 0 <  —7?||p|| and thus that p =  0. This contradicts 
(24) (i).

Consequently, a is strictly positive. Dividing the inequality (24)(ii) by a and 
taking p =  p/a> we obtain

v <  inf [(A*p,x) -  (p,y) +  f { x ) + g { y ) ]
iG D o m ;
y € D o m g

=  -  sup[{-A*p, x) +  (p, y) -  f ( x )  -  g{y)]
xex 
ve y

=  - r ( - A ' p ) - g - { p ) .
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Whence, f * ( -A*p )  +  g*(p) =  - v  <  v*, which proves that p  is a solution of the 
dual problem and that v* — —v.

The second assertion is proved by replacing /  by g*> g by f*  and A  by —A*.

b) We now give a proof in the case of infinite-dimensional spaces»
In this case, we consider the mapping ^  from Dom/*  x Doing* to IR x X* 
defined by

^(p,q)  =  +  g*(q),p +  A*(i) (26)

together with the set

^(D om /*  x Domg*) -f 1R+ x {0 } . (27)

a) It is easy to prove that this set is convex. We show that it is closed. For this, 
we consider a sequence of elements (vn,rn), belonging to this set, converging to 
(i>*,r*) in IR x X*. Thus, there exist elements pn £ X* and qn £  Y* such that

Vn > f*{Pn) +  g*{qn) rn =  pn +  A*qn. (28)

We shall deduce from the assumption (16) that the sequence of elements qn is 
weakly bounded.

In fact, the assumption (16) implies the existence of a ball of radius 7 >  0
contained in Dom g — A D o m f .  Thus, for all z £ Y,  there exist x £ Dom /  and

7
y £  Dom g such that ~̂ ~T\Z =  V ~  Ax - Consequently,

*> (qn, y) (21 q-n, x )

= (qn,y) +  (pn,x) -  (rn,x)
<  g ( q n )  +  f*(pn) + g ( y )  +  f { x )  -  (rn,x)
< g(y) +  f ( x )  + v n -  (rn,x) .

Since the sequences vn and (rn, x)  arc convergent, they are bounded and thus 
we have shown that

VT £ Y, sup(gn, z) <  -foo. (29)
n>  0

The Banach-Steinhauss theorem then implies that the sequence of elements 
qn is weakly compact; whence, it has a subsequence qn> which converges weakly 
to an element g* of Y* and consequently, the subsequence pn> — rn> — A*qn 
converges weakly to p* =  r — A*q* (see Schwartz 1970).

Since the functions /*  and g* are weakly lower semi-continuous, we deduce 
that

P(p*) +g*(q*) <  lirn mf /*  (pn) +  lim m f g* (qn)

<  +  g*(qn)) < =  v.

Thus, we have shown that
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v > /* (?* ) 4  g*{Q*)} r =  p* +  A*g*,

whence, that (v ,r) belongs to ^(Dom  /*  x Dom#*) 4  1R+ x {0 }.
(5) Next we shall show that

( - v ,0 )  G iP{Domf* X  Domp*) 4IR +  x {0 }. (30)

This assertion implies the theorem, since there exists q G Dom g* such that 
—Aq G Dom /* and —v >  f * ( —A*q) 4  g*(q) > v * >  —v.

Consequently,

- v  =  v* =  f * ( —A*q) +  g*{q).

We shall now suppose that assertion (30) is false. Since the set 
^(Dom  /*  x Dom#*) 4- 2R+ x {0 } is convex and closed and since IR x X  is 
the dual o f R  x J * , the pair (—-u,0) may be strictly separated from this set; 
thus, there exist (q , - x ) g R x I  and e >  0 such that

- o c v <  inf \a{f*{p) +g*{q) )  +  (p +  A*q,x)] 4  inf oc6 -  e.
(p,q) o > o

Since inf0>o a^ is bounded below, it follows that infe>o a0 =  0 and that a  is 
positive or zero. It cannot be zero, for in that case we would have

0 <  inf (p 4  A*q, — x) — e.
(jp,q) €Dom/* x Dom g*

Since (14) implies the existence of p G Dom /* and q G Dom <7* such that 
p 4  A*q =  0, we would have 0 <  — e, which is impossible.

Dividing by a  >  0 and setting x :=  x/a  and 77 =  e /a , we obtain

- v  <  m î [ f * ( p ) + g * ( q ) - ( p , x ) - { q yA x ) ] - r ]
(P.9)

=  -  sup[(p, x)  4  (g, Ax) -  f*{p) -  g*(q)] -  77

(P.9)
=  ~ { f { x )  +  g{Ax))  - e  <  - v  - 7 7 .

This is impossible. Thus, assertion (30) is true and the proof of the theorem is 
complete. □

3.4 Properties of Conjugate Functions

Firstly, we note the following elementary propositions.

Proposition 3.1.
a )  I f f < g ,  then g * < f * .
b) If  A  G L ( X , X )  is an isomorphism, then

U  o A y  =  f ' o A - 1.
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c) If  9{%) :=  f { x  -  xo) +  (po,x) +  a, then

9*{p) =  f * { p~Po )  +  (p,x0) -  (a +  {po,x0)).

d) If  g(x)  :=  / ( Xx), then g*(p) =  /*  and if h(x)  :=  Af ( x ) ,  then h*{p) =
A/* ( ? ) ■

Proof. The first assertion is evident. The second assertion may be proved by 
showing that

sup[{p,x) -  f {Ax) }  =  s u p -  f (y) ]  =  /* (A *_1p)-
x£X y£X

For the third assertion, we observe that

sup[(p, a:) -  s(x)] =  sup[(p -  p0, x ) -  f ( x  -  x0)] -  o
xex xex

=  s u p [ ( p - p 0,y) -  f (y) ]  - a  +  ( p - p o , x 0) 
xex

=  f * ( p - P o )  +  {p,x0) -  a - ( p o , x Q). □

Proposition 3.2. Suppose that X  and Y  are two Hilbert spaces and that f  is a 
nontrivial convex function from X  x Y  to IRU{4-oo}. Set g (y ) :=  infx€x  f { x , y ) .  
Then

<?*(«) =  /* (  0 ,?)- (31)

Proof.

sup[(?,ÿ) -  inf f (x,y)\
y£Y x ^X
supsup[(0,x> -f (gt y) -  f { x , y ) ]  =  f*{0,q). □

Proposition 3.3. Suppose that X  and Y  are two Hilbert spaces, that 
B  € L( Y , X)  is a continuous linear operator from Y  to X  and that 
f  : X  —> IRU {+ o o }  and g : Y  -> IR U {T o o } are two nontrivial functions. 
Set h(x)  :=  infyeY( f ( x  — By)  +  g{y)).  Then

h*{p) =  r { p ) + g ' { B * p ) .  (32)

Proof.

sup[(p, x ) -  inf ( f ( x  -  By)  +  g(y))] 
xex y£y

sup[(p,x) -  f ( x  -  By)  -  g(y)]
x € X
y € Y

sup[(p, X +  By) -  f ( x )  -  g(y)]
ie .vy€>'
r i p ) + g ' ( B - p ) .  □
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When X  =  Y  and B  =  I is the identity, the function h :=  /  © f g defined 
by h(x ) :=  infye y { f ( x  — y) + g ( y )) is called the inf-convolution of the functions 
/  and g. The above proposition states that the conjugate o f the inf-convolution 
of two functions is the sum of the conjugates.

Next we shall calculate the function conjugate to /*  T g* o B*. We shall 
not recover the function h, since we do not know if the latter is lower semi- 
continuous. For this, we need a slightly more restrictive assumption, namely

0 G Int (B* Dorn /*  -  Dorn g*). (33)

In fact, this is a consequence of the following proposition:

Proposition 3.4. Suppose that X  and Y  are two Hilbert spaces, that 
A  G L ( X , Y )  is a continuous linear operator and that f  : X  —> IR U {T o o } 
and g : Y  —» IR U {-f-oo} are two nontrivial, convex, lower semi-continuous 
functions. Suppose further that

0 G Int (A  Dom /  — Dom g). (34)

Then, for  all p G A* Dom g* -f D om /* , there eocists g G h *  such that

(f  +  g ° A ) ' { p ) =  r { p - A ' q )  +  g'(q)
=  inf ( r ( p - A ' q )  +  g'(q)).  (35)

Proof. We may write

sup((p, x) -  f ( x )  -  g{Ax)) =  -  inf[ f (x)  -  (p, x)  +  g{Ax)\.
x £ X

We apply Fenchel’s Theorem with /  replaced by /(•) — (p, •), the domain of 
which coincides with that of /  and the conjugate function of which is equal to 
q —> f*(q +p ) .  Thus, there exists q G P  such that

s u p [ (p ,a : ) - /(a O -s (A c ) ]  =  -  A ‘ q) +  g'(q)

=  ™ i \ r ( V - A ' q ) + g ' ( q ) } .  O

It is useful to state the following consequence explicitly:

Proposition 3.5. Suppose that X  and Y  are two Hilbert spaces, that 
A  G L ( X , Y )  is a continuous linear operator from X  to Y  and that 
g : Y  —> 1R U {T o o } is a nontrivial, convex, lower semi-continuous function. 
We suppose further that

0 G Int (Im A  — Dom g) (36)

Then, for  all p G A* Dom g*, there exists q G Dom<?* satisfying
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A*q =  p and (g o i4)*(p) =  g*(q) =  min g*(q).
A *q= p

Proof. We apply the previous proposition with f  =  0, where the domain is the 
whole space X.  Its conjugate function /*  is defined by f*(p) =  {0 } if p =  0 and 
f*(p)  =  + ° °  otherwise. Consequently, f*{p — A*q) is finite (and equal to 0) if 
and only if p =  A*q. □

The following result will be used later; in the meantime, it may be considered 
as an exercise.

Proposition 3.6. Suppose X  and Y  are two Hilbert spaces, that A  € L (X , V ) 
is a continuous linear operator from X  to Y  and that f  : X  —» IRU {-t-oo} and 
g : Y  —» IR U {+oo} are two nontrivial, convex, lower semi-continuous functions.

We suppose further that

0 G Int (Dom g — A  Dom / )  (37)

We set e(x, y ) :=  f ( x )  -P g{Ax  + y ). Then, for  all (p, q) G X* x Y*

e’ (p,q) =  r ( p - A - g ) + g ’ (q). (38)

Proof. We may write

e{x, y) =  f  (x) +  g(Ax +  y) =  h {C{x , y))  (39)

where h is a function from X  x Y  to IR U { + 00} given by h(x,y)  =  f ( x )  +  g(y) 
with domain Dom /i =  Dom/  x Dom g and where C  G L ( X  x Y ,X  x h ) is 
defined by C(x,  y) =  ( x , Ax  -f y). Its transpose C* G L(X*  x Y*,X*  x Y*) is 
defined by C*(p, q) =  {p 4- A*q,q).  We shall apply Proposition 3.1 to calculate 
the function conjugate to h o C,  since the operator C  is clearly an isomorphism 
of X  x Y  onto itself. □

Corollary 3.1. The assumptions are as in Proposition 3.6, above. We set 
h(y) := infxeX{ f { x )  +  g{Ax  +  y)). Then

h * ( q ) = r ( - A * q ) + g * ( q ) .  (40)

Proof. We apply Propositions 3.2 and 3.6 □

Example. Conjugate functions of quadratic functions.

Proposition 3.7. Suppose that X  is a Hilbert space and that L is a continuous 
linear operator from X  to X* satisfying

(i) £  =  £*
(ii) {Lx, x) >  0 Vx G X
(iii) Im L is closed in X*. (41)
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Let f  be the function from X  to 1R+ defined by

f ( x ) =  \(Lx,x) . (42)

Then its conjugate function is equal to

f*(p) =  | 2 ^ x ) where x  G L~'(P) when p G Im L 
when p £ Im L (43)

P roo f.
a) First we take p £ Im L. Since the image of L is closed, it follows that Im L =  
(Ker L )L

(see Theorem 3.4, below) and thus there exists an element x0 G KerL such 
that (p, x0) is strictly positive. Whence,

f*ip) >  sup((p,Aæ0) - / ( A æ 0)) =  (supA] f a x 0) =  +oo
A>0 \ \ > 0  }

since f ( Xx 0) =  |(AL(x0), Ax0) =  0.
b) Now we take p € Im L with x  a solution of p =  Lx.  Then l(x, y) =  (Lx , y) is 
a scalar semiproduct and the Cauchy-Schwarz inequality implies that

{Lx } y) <  yj {Lx, x)yJ{Ly, y) <  ^(Lx , x )  +  ^(Ly,y) .

Whence

f*iP) =  sup ( ( Lx , y )  -  ^(Ly,y)^j <  ^ {Lx , x )  =  ^ f a x ) .

On the other hand,

i (p ,x )  =  f a x )  -  ~ (Lx , x )  <  f*{p).

Thus, we have shown that f*fa)  =  f a x )  for all solutions x  of the equation 
Lx  =  p. □

C orolla ry  3 .2. Let X  be a Hilbert space and L G L(X,  X*)  the duality operator. 
The conjugate function o f the function f  defined by f ( x )  =  |||x||2 is the function 
f*  defined by

r i p )  =  \\\p Wl where IIp II* =  sup =  yJ{L~lp,p).  (44)

P roo f. The duality operator L satisfies the properties (41), is surjective and 
is associated with the norms ||x|| and ||p||# by the relationships ||rc||2 =  (L x , x ) 
and ||p||2 =  (L~lp,p).  D



48 3. Conjugate Functions and Convex Minimisation Problems

Corollary 3.3. Let X  be a Hilbert space and f  : X  -> IRU {+oo} a nontrivial, 
convex, lower semi-continuous function. Then, fo r  all A > 0,

M  + à lw|2) + M -  [ r { p ) + i IM*)= °- (45)

P roo f. We apply Theorem 3.2 with g(x) =  |̂|x||2, where the conjugate func­
tion is defined by g*(p) =  |||p||2. O

3.5 Support Functions

We have already mentioned that it is possible to characterise a subset K  C X  by 
its characteristic function defined by iPk {^) — 0 if x  € K  and iPk {x ) =  +oo  
otherwise.

Its conjugate function is defined by

iI>k (p ) =  sup (p,x).  (46)
x € K

D efin ition  3.2. The conjugate function of the indicator function o f a subset 
K  is called the su p p ort fu n ction  o f K  and is often denoted by

crK(p) :=  a(K,p)  :=  swp(p,x). (47)
x £ K

The domain o fa^f . )  is called the barrier con e K  and is often denoted by 
b(K)  :=  Dom o k -

Examples.
a) If K  =  {æ0} then aK (p) =  (p,x0).
b) If K  =  B  then aK{p) =  ||p||*.
c) If K  is a cone then

0 k (p ) =

where

K -  =  { p e  € K, (p,x)  <  0}

d) If K  is a vector subspace then

a K { p )  = i p K -*-{p)  

where K 1 =  {p  G AT*|Vx G K, (p,x)

and b(K) =  K~  (48)

is the negative polar cone of K. (49)

and b{K) =  K 1 (50)

=  0}  is the orthogonal subspace corre­
sponding to K  (the orthogonal for short).
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We note that 

and that
if 0 G K  then >  0 

if K  is symmetric then aK is even.

(51)

(52)

P rop os ition  3.8. Any support function gk  o f a non-empty subset K  C X  is 
a convex, lower semi-continuous, positively homogeneous function from X* to 
IRU {- fo o }.

Conversely, any function a : X* -> IR U {- fo o } which is convex, lower 
semi-continuous and positively homogeneous is the support function of the set

K a :=  {x  e X\Vp e X *, {p,x) <  a(p)} .  (53)

P roof. The first assertion is evident. To establish the second assertion, we 
calculate the conjugate function of a.

If x  belongs to K a, then er*(æ) =  0, since

a*(x) — sup((p,rt) —a(p)) <  0 =  (0,a;) -  cr(0) <  g*{x )
p € X

If x  does not belong to K c , then there exists p0 with (po,x) — cr(p0) >  0. 
Thus,

a*{x) >  sup((Ap0,x ) -  er(Apo)) >  sup \{{p0,x)  -  a{p0)) =  -foo.
A>0 A>0

Thus, we have proved that a* is the support function of K a. □

T h eorem  3.3. I f K  is a convex closed subset o f X , then

K = { x e  X\\/p € X *, (p,x) <  aK(p)}.  (54)

If K  is a closed convex cone then

K = ( K - ) ~ .  (55)

I f K  is a closed vector subspace then

K  =  [ K ^ f .  (56)

P roo f. If K  is convex and closed then 'ipK is convex and lower semi-continuous 
and consequently ipK =  ( ^ ) *  =  cr^. Thus, is the indicator function of the 
set K ok, which is nothing other than the right-hand side of formula (54).

Formulae (55) and (56) follow from the above together with the fact that 
cTk  =  'ipK~ if K  is a cone and gk  =  ^ j. if RT is a vector subspace. □
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The following result is known as the bipolars theorem.

T h eorem  3.4. Suppose that A  G L ( X , Y ) is a continuous linear operator and 
that K  is a subset o f X . Then

A(K)~  =  A*~l (K~)  (57)

and if A ( K )  is a closed convex cone, then A ( K )  =  {A* 1{ K  )) .
In particular,

Ker.<4* =  (Imu4)x (58)

and if  Im A is closed, Im A =  (Ker A*)1 .P roof. In fact, p belongs to A ( K )  if 
and only if

\/x G K,  (p, Ax) =  (.A*p, x)  <  0,

that is to say, if and only of A*p belongs to K~.  The second assertion follows 
from Theorem 3.3. The equality (58) is the particular case in which K  — X ,  
K~ =  {0 }. □

Since the restriction of a function /  to a subset K  is the sum of /  and the 
indicator function o f K , we obtain the following formula.

P roposition  3.9. Let f  be a nontrivial, convex, lower semi-continuous func­
tion from X  to IR U {T o o } and let K  be a closed, convex subset o f X . If 
0 G Int(Dom / — K ) and p G Dom/*  T  b(K),  then there exists q G b(K) such 
that

(/IkT ( p ) =  /*(p - 9 )  +  ^ (9 )-  (59)

Since the barrier cone is the domain of the support function of K , which is 
convex and positively homogeneous, it is a convex cone, which is not necessarily 
closed.

It is clear that K  is simply bounded if and only if b(K)  =  X , since to say 
that K  is simply bounded is equivalent to the statement that

Vp G X *, ak {jp) =  sup(p, x) <  Too. (60)
xeK

The ‘uniform-boundedness’ theorem says that, in fact, the simply bounded 
sets are the bounded sets (as simple as that!).

It follows that barrier cones in some way measure the ‘ lack of boundedness’ 
of sets. The smaller the barrier cone of a set, the more ‘ unbounded’ this set, if 
we dare to use this ill-sounding neologism.

P rop os ition  3.10. Let K  be a closed convex subset. Then, fo r  all x 0 G K ,

b ( K ) ~ =  Q H K - x o ) .
\>o

(61)
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Definition 3.3. The negative polar cone o f the barrier cone of K  is called the 
asymptotic cone of K .

Proof of Proposition 3.10. Provisionally, we set L n^>oA(ÜT — Xq).
a) We take x  E L. For all A > 0, there exists y\ E K  such that x — A(y\ — x 0). 
Thus, (p ,x) =  \{(p,yx) -  (p,x0)) <  X{crK{p) -  (p,x0)) <  +00 if p belongs to 
the barrier cone. It suffices to make A tend to zero to see that (p, x)  <  0 for all 
p E b ( K ), that is to say that L is contained in b(K)~.
b) Conversely, we take x  in b{K)~ and A > 0. Since f  belongs to b(K )~ , we 
deduce that for all p E b(K),

( p , x  0 +  j  )  <  f a x  0) +  ( p ,  j )  <  (p,æ 0) <  & k  (p) •

Since K  is convex and closed, Theorem 3.3 implies that f  +  x0 belongs to K , 
whence that x  belongs to L.

Formulae relating to support functions and barrier cones

of The following formulae relating to support functions and barrier cones may 
be deduced from the properties o f conjugate functions.

Remark. If /  is a proper, convex, lower semi-continuous function, then
a E p i f ) { p , - l )  =  f * { p ) .

• If K  G L then
b(L) C b (K ) and ok  <  &l - (62)

• If Ki C Xi (i =  1 , . . . ,  n), then

b ( f [  K *) =  n  b(Ki ) and aK{Pu-  . • >Pn) =  i t ,  VKiiPi)- (63)

\ i= l  )  i=0 *=1

• b ^ c o j j ^ c  n w ) and ° ^ c° = s a p aKr(p)- (64)

• If B e L { X , Y ), then

b(B(K) )  =  B*~lb ( K) and o ^ y ( p )  =  aK(B*p). (65)

b(Ki +  K 2) =  b{Ki)  D b(K2) and aKl+K2(p) =  <rKl (p) +  <?Ka{p)- (66)
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• If P  is a convex closed cone then

b(K  +  P) =  b(K)  n  P -  and c K+P(*) =  {  otherwise ^

• b(K  4- {x 0})  =  b{K)  and aK+X0(p) =  crK{p) 4  (p, x 0>. (68)

• If A  € L(X,  y), if L C X  and M  C Y  are closed convex subsets and if 
0 G Int(7i(L) — M)  then

b{L D A ~ \ M )) =  b(L) 4  A*b{M)

and Vp G b(K ), 3q  G b(M)  such that

< ? L n A - H M ) ( p )  =  ° l { p  -  A*q) 4  aM{q) =  inf (<r£(p -  A*q) 4  o M(g))- (69)

• If Tl G L (X , y ) , if M  C y  is convex and closed and if 0 G Int(Im(vl) — M ), 
then

b(A~1(M))  =  A*b(M)  

and Vp G &(j4_ 1 (M )), 3 g G 5(M) satisfying

A*q =  p and aA- i (m}(p ) =  ^m (ç) =  inf aM(q)- (70)
Amq—p

• H K i and K 2 axe convex closed subsets of X  such that 0 G Int(jFsTi — K 2), 
then b(Ki D K 2) =  b{K\) 4  b(K2) and for all p G b{K\ n K 2), there exist 
pi G b(Ki) (i =  1,2) such that p =  pi 4  p2  and

o*,n/r2(p) =  ^ ( P i )  +  <W P2) =  pjnî+^ (a Kl(Pl) 4  o K2{p2)). (71)

3.6 The Cramer Transform

The Cramèr transform C  associates with any nonnegative measure dp on a, 
finite dimensional vector space IRn the nonnegative extended function : 
1R” i~> IRf. U {4 o o }  defined on IRn (identified with its dual) by :

CM(p) :=  sup ^(p,x) -  log e{x'y)d p (y)Sj^
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In other words, it is the product o f the Laplace transform p j  e<iX'y^dp(y), of
the logarithm and of the Fenchel transform (conjugate functions) g(-) >-» g*(-). 
This Cramèr transform plays an important role in statistics, and in particular, 
in the field o f large deviations. Since CM is the supremum of affine functions 
with respect to p, this is a lower semicontinuous convex function. It satisfies

CM  >  (p, 0) — log e(0'y}dp(y)^ =  -  log dp{y)Sj

so that when dp is a probability measure, its Cramèr transform is nonneg­
ative.

We may regard nontrivial nonnegative extended functions as membership 
cost functions o f “toll sets” , following a suggestion of Dubois and Prades. In­
deed, they provide another implementation of the idea underlying “fuzzy sets” 
exposed in chapter 13, since the set [0, oo]E of nonnegative extended functions /  
from E  to IR+ U{-f-oo} is the closed convex hull o f the set {0, ooj-^ o f indicators:

D efin ition  3.4 We shall regard an extended nonnegative function f  : X  >-> 
IR+Uf-j-oo} as a toll set. Its domain is the domain of f , i.e., the set of elements 
x such that f ( x )  is finite, and the core of f  is the set of elements x  such that 
f ( x )  =  0. The complement of the toll set f  is the complement o f its domain 
and the complement of its core is called the toll boundary.

We shall say that the toll set f  is convex (respectively closed, a cone) if 
the extended function f  is convex (respectively lower semicontinuous, positively 
homogeneous).

We observe that the membership function of the empty set is the constant 
function equal to Too.

The Cramèr transform provides a mathematical reason for  which toll sets 
furnish a sensible mathematical representation of the concept of randomness, 
but different from the representation by probabilities. This is justified by the 
following observations.

The indicators if>{a} of singleta a are images of Dirac measures 6a: Indeed, 
if 6a is the Dirac measure at the point a G IRn, then

C i M  =  - < “ •*>) =  {  +oo if Vp 7 °a  =  M p )

The Cramèr transform of the Gaussian with mean m  and variance a is the 
quadratic function G0t m defined by

G a, m(2:) :=  2

which we can regard as a Gaussian toll set with mean m  and variance a. Such 
toll sets play the role o f Gaussians in probability theory.

The function x  log (^J^n ^ x'v^dp{y)Sj  is

x  — m  
a
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1. convex

Indeed, applying Holder inequality with exponents we obtain

[  e{aiXl+aM)dfi{y) =  [  ( e {Xuy)) ai (e(X2'y)) a2 d/i{y)
J]Rn q JJRn ' '  ' '

-  (Le<I,,rfdw) 1 ( L  e<t2'y)d^ ) 2

By taking the logarithms, we get the convexity of this function with re­
spect to x.

2. and lower semicontinuous

Since the measure dy is nonnegative, Fatou’s Lemma implies that if xp 
converges to x> then

[  e(iX,ŷ dy(y) <  liminf [  e ^ 1̂  dy(y)
JIR" p-*00 Jntn

Hence the lower semicontinuity of the Laplace transform of dy is estab­
lished. Since the logarithm is increasing and continuous, it is continuous 
and nondecreasing.

Therefore
C; {x )  =  log ( f ^ e ^ M v ) )

It is actually differentiable and its gradient is equal to

v c *<x) =  -fa" yeM dfi(y)
In- e<*-»dM(y)

When dy is the probability law of a random variable, then its mean is equal 
to VC*(0), which is centered if and only if its Cramèr transform vanishes at 0.

Inf-convolution plays the role of the usual convolution product of two inté­
grable functions /  and g defined by

( f * g ) ( x )  := J ^ nf { x - y ) g { y ) d y

We thus deduce that the Laplace transform of a convolution product is the 
product of the Laplace transforms because

L ~ f { y ~ z)g{z)dydz =  JrRJ a ^ M 9U) e {l’y-^)g ( y - z ) d y d z

Therefore, taking the logarithm, we obtain

I  log ( / ifi" e<x,y) ( /  * 9) (y)dy)
1 =  log (iiR” e{x'y) f ( y)dy)  +  log (/an e ^ g { y ) d y )
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The Fenchel conjugate of this sum being the inf-convolution of the Fenchel 
conjugates, we infer that the Cramèr transform of a convolution product is the 
inf-convolution of the Cramèr transforms:

C f+ g  =  C f  © f -  C g

The Proximation Theorem implies that inf-convolution by a quadratic func­
tion maps a lower semicontinuous convex function to a continuously differen­
tiable convex function, in the same way that the convolution product by a 
Gaussian maps a function to an indefinitely differentiable function:

f a{x) :=  inf

The Cramèr transform thus maps the convolution by a Gaussian into inf- 
convolution by quadratic functions.

The quadratic functions

Cor, rn {%)
1
2

x  — m 2 
a

are regarded as Gaussian toll sets with mean m and variance a. They form a 
class stable by inf-convolution:

P rop os ition  3.11 The Gaussian toll sets are stable under inf-convolution:

P r o o f  —  One must compute the solution to the minimization problem

inf f i x — y  — mi 2 1 
+  ~

y — m 2
y 12 0\ 2 02

From Fermat’s Rule, this problem achieves its minimum at

crl(x — m i) +  a\m2

0 1 + 0 2

Consequently,

{Galtm\ © (®) 2
x  — y — mi 2 1 *S

i 1 3 to

+  2
0i 02

x — (mi +  m 2)
\ [ô f+ 0

=  G /—2—2 ny/crf+a£, mi+m2

Remark. The Cramèr transform justifies a striking formal analogy between 
optimization and probability theory. We shall only sketch it without entering
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details which may lead us too far. When /  is a nonnegative extended function 
from X  to IRU {- fo e }, we can regard the “set-defined map” K  M f ( K ) :=
infye/(y ) as a Maslov measure whose “density” is /  on the family T { X )  of closed 
subsets, i.e., a “set-defined map” satisfying

f  i )  M f ( X )  =  i n f y e x f i y )

< ii) M /(0 ) =  -foo
[ in) M f ( K U L )  =  min(Mf (K) ,  Mf (L)

Maslov measures axe analogous to usual nonnegative measures, which are set- 
defined maps from the ex-algebra A  on a measured space Q  to IR+ . Maslov 
probabilities are those satisfying

M , ( X )  =  inf f ( y )  =  0

To the integral
x(-) h-> /  x(uj)dp(uj)

Jn
of a nonnegative measurable function defined on a measured space (i?, A, dp) 
corresponds the infimum of a lower semicontinuous function g : E  t-f IRU {-fo o } 
on a metric space E  defined by

9 ( ’ ) ]nf (g{x) -f f ( x ) )

To the Dirac measure 6a : #(•) x(a) corresponds the indicator 'ipa because 

P(-) ^  in f(p («) +$a { x ) )  =  g{a)

To the integral / dg(uj) of the characteristic function of a measurable set A £ A  
J A

providing the measure dp of a subset A  corresponds the minimization problem 
of a function p(-) on the closed subset A

P(0 +  9 W )  =  inf^(a;)

Consequently, to the measure dp, which is a function from the cr-algebra A  to 
the half-line IR+ supplied with the operations 4- and x , corresponds the Maslov 
measure M f, function from the family of compact subsets of E  to [0, Too].

The analogy then becomes algebraic, because (IR+, -f, x ) supplied with the 
usual addition and multiplication and neutral elements 0 and 1 on one hand, and 
(IR+,inf, -f) supplied with the infimum and the usual addition and the neutral 
elements -foo and 0 on the other hand, are two instances of “dioids, which are 
kind of rings supplied with two operations which do not have inverses.
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4.1 Introduction

The crucial discovery of the concept of differential calculus is due to Pierre de 
Fermat (1601-1655), who was one of the most important innovators in the his­
tory of mathematics. It is to him that we owe a rule for determining extrema, 
described, without proof, in a short treatise Methodus ad disquirendam Maxi- 
mam et Minimam written in 1637. The importance of his discoveries in number 
theory has eclipsed the contributions which this exceptional and modest man 
made to other areas of mathematics. Fermat also was the first to discover the 
“principle of least time” in optics, the prototype of the variational principles 
governing so many physical and mechanical laws. He shared independently with 
Descartes the invention of analytic geometry and with Pascal the creation of the 
mathematical theory of probability. His achievements in number theory over­
shadowed his other contributions, as the Last Fermat Theorem which remained 
a challenge for such a long time, and still is a challenge if indeed the simple proof 
of Piere de Fermat did exist. Not to mention his compositions in French, Latin, 
Italian and Spanish verse and his Grecian erudition. It is also notable that he 
was able to find time for these occupations in the midst of his duties as coun­
sellor to the parliament of Toulouse (even taking into account Fermat’s genius, 
this makes us reflect on the leisure activities offered by a lawyer’s career).

But Fermat never knew the concept of the derivative which was only formu­
lated later by Newton (in 1671) and by Leibniz in his publication on differential 
calculus entitled Nova methodus pro maximis et minimis in 1684. However, New­
ton himself recognized explicitly that he got the hint of the differential calculus 
from Fermat’s method of building tangents devised half a century earlier.

Fermat was also the one who discovered that the derivative of a (polynomial) 
function vanishes when it reaches an extremum. (This is Fermat’s Rule, which 
remains the main strategy for obtaining necessary conditions of optimality, from 
mathematical programming to calculus of variations to optimal control).

The analogy between Fermat’s method (restricted to algebraic functions) 
and that of Leibniz is remarkable, since, as you know, this rule involves searching 
for the extrema of a function /  among the solutions of the equation f ' ( x ) =  0, 
a problem much more familiar to mathematicians.

This rule has been applied, justified, improved, adapted and generalised 
in the course of three centuries of work on optimisation theory, the theory of
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Fig. 4.1.

the calculus of variations and (now) optimal control theory. Three centuries of 
intensive work by numerous mathematicians, punctuated by important stages 
and bearing the seal of the works of Euler (XVIIIth century), Lagrange, Jacobi 
(XIXth century), Poincaré and Hilbert (at the dawn of this century) are con­
tinued even today, since the results which we shall describe are recent (which 
does not necessarily mean complicated, since scientific progress also involves 
simplification).

The concept of functions of several differentiable variables has been known 
since Jacobi and that of differentiable functions on normed spaces since Fréchet 
and Gâteaux. The rule due to Fermat and Leibniz remains valid. If the function 
/  attains its minimum with respect to x, the gradient of /  is zero at that point. 
There are many reasons why we should not stop there.

Firstly, we may seek to minimise so-called nondifferentiable functions. Op­
timisation theory, game theory, etc., involve such functions since the operations 
of supremum and infimum destroy the usual differentiability properties; for ex­
ample, we mention the function x  -4 |æ|, which is not differentiable at the 
point x  =  0, but which is obtained as the upper envelope of the differentiable 
functions x  —> a x  when a  ranges over [—1, +1].

We may wonder (like others before us) why there should be so much fuss in 
the case of nondifferentiability at a single point. All the more so since we shall 
see that any convex lower semi-continuous function may be approximated by 
differentiable functions; for example, the function x  —» |æ| may be approximated 
by the functions f\ defined by:

[ - y  ~  i  if y <  -A  
h (y )  =  \ £  if \y\ <  A 

l y - 1 if y >  a

However, if we are interested in the minimum of æ —> |x| which is attained 
at 0, we note that it is at this point that the function is not differentiable and 
thus that Fermat’s rule cannot be applied. What can we do? In fact, we may 
retain Fermat’s rule, modifying the concept of gradient and generalising it ap­
propriately. Examination of the function x ~^\x\ may put us on the right track. 
Since x  —> \x\ is the upper envelope of the functions x  —> a x  the derivatives of 
which at 0 are a,when a  ranges over [—1,4-1] why not consider the set [4-1, —1]
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of these derivatives as a candidate? Clearly, we must overcome our hesitation 
at the multi-valued nature o f this solution, which simply results from a lack of 
familiarity (and our conservatism). But, to convince ourselves of the importance 
of this stroke of daring, we need only note that Fermat’s rule remains true for 
this example, since

0 belongs to [—1, +1].

Since we have seen that any convex lower semi-continuous function is the 
upper envelope of the continuous affine functions x  —> {p ,x) — f*{%) which 
minorise it, we thus consider the set of the gradients p of those affine functions 
which pass through the point (#o, / ( # o))> in other words, the set of p such that:

(P ,xo) ~  f*{p) =  f{%o)-

In the context of this theory, we shall choose this set (convex, closed, pos­
sibly empty), called the subdifferential d f (x o) of /  at Xq as a candidate for a 
generalisation of the concept of gradient. In the context of other theories (for 
example, partial differential equations), other strategies such as distribution 
theory will be more appropriate.

If there is only one affine function (the tangent) then d f (x o) reduces to the 
usual gradient of /  at Xq: d f ( x 0) =  (V /(£ o ) } -

We shall show that Fermat’s rule remains true: x  minimises a nontrivial, 
convex, lower semi-continuous function /  if and only if 0 G d f(x ).

In order to exploit this result, we need to develop a subdifferential calculus, 
analogous to the usual differential calculus. We shall establish conditions under 
which formulae such as
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d( f + g ) { x  o) =  d f(x 0) +  dg{x0) 
d ( f o A ) ( x 0) =  A *d f(A x  o)

d (  sup f i ]  (£0) =  cô ( (J d fi(xo) ] ,
V = l , . . . ,n  /  \ f€ /(x o )  /

where / ( £ 0) {i  — 1 , . . .  ,n\fi(xo) — supi==1],,,infi(xo )} and eco' denotes the 
closed convex hull, are true.

One important class of convex nondifferentiable functions consists of the 
restrictions /k  =  f  +  ipK of convex functions to closed convex subsets K . When 
the interior of K  is empty, we cannot talk of either the derivative or the gradient 
in the usual sense.

However, we can apply the formula

d fK{x) =  d f(x )  +  diph-(x) 

which, when /  is differentiable, gives

d M x )  =  V f (x )  +  dipK(x).

A simple calculation shows that the subdifferential d'tpK of the indicator 
function of K  is the closed convex cone

dipK(x) =  { p e  X*\Vy G K , (p,y -  x) <  0}.

The elements p € X* of this set play the role of normals to K  at x. This is why 
d'ipK(x) is called the normal cone to K  at x  and is denoted by NK(x).

Since we have already replaced the notion of orthogonality for vector sub­
spaces by the notion of polarity for cones, it is natural to consider the negative 
polar cone Tk (oc) ■= Nk (x )~ of the normal cone to A  at & as the tangent cone 
to K  at x. This will be all the more justified when it is shown that

Tk (%) =  closure ( (J  ~ (K  — x)
\h>0 11

In fact, this formula shows that a vector is tangent to K  at x  if it is the limit 
of vectors v G X  such that x  +  tv belongs to K  for all t € [0, ho}. Such vectors 
are the derivatives (right) of the curves t —> x  +  tv passing through x  and lying 
in K .
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4.2 Definitions

We shall begin by exhibiting an important property of convex functions from 
X  to IR U {+ o o } .

P rop os ition  4.1. Let f  be a nontrivial con v ex  function from X  to IR u f+ oo}. 
Suppose æ0 € Dom/  and v € X . Then the limit

( ! )

exists in IR (:=  { —oo} U lRU {4 -oo}) and satisfies

/(S o ) -  /(S o  -  v) <  D f(xo )(v ) <  f { x o  4- v) -  f { x o ) .  (2)

Moreover,

v —» D f(x o)(v) is convex and positively homogeneous. (3)

P roof.
a) The function h -*• f ^.±f‘yJ- fSîsX is increasing. In fact, if hi <  h2, then 

/ ( s o 4- hiv) -  f ( x o) =  /  ^ ( s o  +  h2v ) 4- ^1 -  ^  ~  / ( s 0)-

Since /  is convex and hi/h2 is less than one, it follows that

/ ( s 0 4- h\v) -  f ( x 0) <  y J ( x ° +  h2V) +  ( 1 “  J^) ^ X°̂  ~  

whence, that

f ( x 0 +  hiv) -  f { x 0) <  f ( x o 4- h2v) -  f ( x 0) 
h\ h2

Thus, these differential quotients have a limit in IR as h —» 0+:

i~\ r/ \ f a . f f { x 0 4- hv) -  f ( x 0)D f ( Xo)(v) =  m f --------------------------- .

b) Taking h =  1, equation (4) implies that

D f (x 0)(v ) <  /(æ 0 4- v) -  f { x 0).

Writing x0 =  (x0 +  hv) +  (a:o — v) and using the convexity of / ,  we obtain

1 /i
/(S o ) <  Y T h ^ X0 +  ^ +  f ^ / ^ o  ”
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This inequality implies that for all h >  0

f i x  0) - f{X 0 - v ) < l i E 2 ± M ^ J M
h

and consequently, by virtue of (4), that f ( x o) — f { x o — v ) is less than or equal 
to D f(x 0){v).
c) Clearly, v —> D f(xo )(v )  is positively homogeneous. We show that it is convex:

f ( x o +  h{Xvi +  (1 -  X)v2)) -  f ( x o)
=  f(X (x 0 +  hvi) +  (1 -  \){x0 +  hv2)) -  X f(x0) -  (1 -  X )f(x 0)
<  X {f(x0 +  hv 1) -  f(xo )) +  (1 -  X ){f(x 0 +  hv2) -  f { x 0)).

Dividing by h >  0, and letting h tend to 0+, we deduce that

D f(x 0)(Au! +  (1 -  X)v2) <  X D f (xo)(vi) +  (1 -  X )D f(x 0)(v2). □

In general, v —> D f (x 0)(v) is not lower semi-continuous.

Définition 4.1. We shall say that D f(x o )(v ) is the right derivative o f f  at 
x0 in the direction v and that v —> D f (x 0)(u) is the right derivative o f f  at x0.

I f v -^ D f (x o ) ( v )  is a continuous linear function, we say that f  is Gâteaux 
differentiable at Xo, and the continuous linear form  V / ( æ0) defined by

V v e X ,  (V f ( x 0),v ) =  D f ( x 0)(v) (5)

is called the gradient of /  at Xo.

Whilst the right derivative is not necessarily linear and continuous, it is 
always convex and positively homogeneous. If it is nontrivial and lower semi- 
continuous, Proposition 3.8 tells us that the right derivative is the support 
function of the convex closed set

{.P €  X*|Vt; € X , (p, v) <  D f ( x „ ) (« ) } .

Nothing prevents us from considering this set in the general case.

Definition 4.2. Let f  : X  IRU {+ 00} be a nontrivial convex function. We 
call the subset d f (x 0) defined by

d f (x 0) :=  {p e  X'\\/v €  X , (p,v) <  D f (x 0)(v )}  (6)

the subdifferential o f f  at Xo. The elements p o fd f ( x o) are often called sub­
gradients.

The subdifferential d f(x o) is always a convex closed set and may be empty 
(this is the case if D f(x o ){v )  =  —oo for at least one direction v).

The concept of subdifferential generalises the notion of gradient in the sense 
that, when /  is Gâteaux differentiable at Xo, the subdifferential reduces to the 
set consisting simply of the gradient X  f(xo )  of /  at % :
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d f{x o) =  { V f ( x o)} when V /(rc0) exists. (7)

If the right derivative D f (x 0)(•) is nontrivial and lower semi-continuous, 
Proposition 3.8 implies that

D f(x  0){v) =  a {d f(x  o), v). (8)

We shall characterise the subgradient of /  at x 0.

P rop osition  4.2. Let f  be a nontrivial convex function from X  to IRU{-}-oo}. 
Suppose that d f ( x 0) ^  0.

The following assertions are equivalent

a) p e d f(x )
b) (p ,x) =  f { x ) + f * { p )
c) / ( z )  -  ip ,x) <  mf \f(y) -  (p ,y)) Vy e  X .  (9)

P roo f. The inequality (2), where v =  y — x  proves that a) implies c), whilst
c) and b) are clearly equivalent. We show that c) implies a). Firstly, taking 
y =  x  +  hv, c) implies that (p, v) <  an(j consequently, that (p, v) <
D f(x ) (v ) for all v G X . Thus, p belongs to d f(x ).  □

Remark. Property b), which characterises the subdifferential using the conju­
gate function will be very useful, since it is very simple to use.

Moreover, it has the following consequence

C orollary  4.1. Suppose f  : X  —> IR U {-Foo} is a nontrivial, convex, lower 
semi-continuous function. Then

p e d f ( x ) < & x e d f * ( p ) .  (10)

This may be expressed in another way, by defining the inverse of the set-valued 
map x  —> d f(x )  to be the set-valued map p —> (d f)~ l (p) given by

x e d f~ l (p) <^p  6 d f(x ) .  (11)

Then Corollary 4.1 states that: the inverse o f the subdifferential x  —» d f(x )  
is the subdifferential p —» df*(p) o f the conjugate function of f .  Whence, by 
abuse of terminology, it is again convenient to call the set-valued map x d f(x )  
the subdifferential.

It was Fenchel who recognised the analogue of the Legendre transformation 
which associates a function /  with a function g such that

p =  V /(æ ) ï  =  Vg(p).

It is easy to see the advantageous consequences of such a property.
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Since, at that time, no one dared to talk of set-valued maps, it was assumed 
that the mapping x  —> V /(rr) was a homeomorphism from an open subset Q\ 
of IRn onto an open subset o f  IRn (that is, a bijective and bicontinuous 
function).

Then the solution is given by the function g defined on Q2 by

5(p) =  ( p , ( v / ) - I( p ) > - / ( ( v / r i (P)).

Setting x  =  ( V / ) _1(p), we obtain the identity

(P>£> = 9 {p )  + / ( s )  

analogous to the property (9) b).
The function g is called the Legendre transformation of / .  When /  is also 

convex, g coincides with the conjugate f*.
Next we suppose that p G Ü2 and x  G df*(jp). Following (9) a), x  maximises 

the function y -+ (p,y) — /(y ) .  Since /  is differentiable at x , we deduce that 
0 =  V ((p, •) -  /(• ))(£ ) =  V ~  V /(æ ). Thus, p =  V /(æ ) and

r  (?) =  m  -  n x )  =  ( M v / r 1^ ) )  -  / ( ( v / r V )  =  9(P).

In summary, in the context of convex analysis, the conjugate function of a convex 
function plays the same role as that played by the Legendre transformation in 
classical (regular) analysis.

4.3 Subdifferentiability of Convex Continuous 
Functions

T h eorem  4.1. Suppose that a convex function f  is continuous on the interior 
of its domain. Then f  is right differentiable on Int Dom /  and satisfies

P / ( * ) ( U) =  Hmsup/ ( y  +  fc? - / ( r t . (12)

h-+ 0_f.

Moreover,

(i) (£,ti) G Int D om /  x X  —> D f(x )(u )  is upper semi-continuous
(ii) 3c >  0 such that Vu G X , \Df (x)(u)\ <  c||w||. (13)

P roo f. Since /  is bounded above on a neighbourhood of x , there exists a >  0 
such that x — au  and x +  au  belong to the domain of / .  The inequalities (2) 
of Proposition 4.1 imply that D f(x )(u )  is finite. Thus /  is right differentiable. 
Since /  is Lipschitz on a neighbourhood of x  by virtue of Theorem 2.1, there 
exists a constant c >  0 such that

Dm M < f{x+ku^ m < < M (14)
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which implies that D f(x )(- )  is Lipschitz, whence lower semi-continuous. Provi­
sionally, we set

P €f  (* )(» )  =  lim sup/ ( j /  +  H ~ / ( ; ; ) .
y-*x h/>-+ 0+

The inequality D f(x ) (u ) <  Dcf(x ) (u ) is clear and we show that the inverse 
inequality holds. Since the function

ih,y )
f ( y  +  hu) -  f (y )  

h
is continuous at (A, a;), there exists a  >  0 such that

f { y  +  hu) -  f ( y )  ^  f { x  +  Xu) -  f ( x )  ,
h -  x  + £

when \h — X\ <  a  and \\y — x\\ <  a. This implies, in particular, thanks to the
fact that h —> ^  ^ — LQl. is increasing, that

h
sup sup <  / ( «  +  A“ ) r / w  +  e.

||y—x ||< a  0</i<A-f-a h  A

Taking the infimum with respect to A and a, we obtain

Dcf(x ){u )  <  D f{x ){u ) +  e.

Thus, it is sufficient to let e tend to 0.
Finally, the function (x>u) -> D f(x ,u )  is upper semi-continuous as the

f(£  ]iy\ _ fix )
lower envelope of the continuous functions (x ,u ) —> -------------------------. □

We now state Theorem 4.1 in subdifferential terms.

T h eorem  4.2. Suppose that a convex function f  is continuous on the interior 
of its domain. Then,

\/x G Int Dom / ,  d f(x )  is non-empty and bounded. (15)

Moreover,

{x ,u ) G Int Dom /  x X  —> a (d f(x ) ,u )  is upper semi-continuous. (16)

P roo f. Since the function u -> D f(x )(u )  is nontrivial and lower semi-continuous, 
it is the support function of the subdifferential

d f{x )  : D f(x ) {u )  =  a {d f{x ),u ).

The inequality (14) may be written as a (d f(x ) ,u )  <  c||w|| =  a (cB ,u ), which 
implies that d f(x )  is contained in the ball cB  of radius c >  0. □

C oro lla ry  4.2. Suppose that a convex function f  is continuous on the interior 
of its domain. Then f  is Gateaux differentiable at x  G Int Dom /  if and only if 
d f(x )  contains only one point (which is the gradient o f f ) .
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4.4 Subdifferentiability of Convex Lower 
Semi-continuous Functions

When the convex function /  is only lower semi-continuous we can nevertheless 
show that /  is subdifferentiable on a sufficiently large set, since it is dense on 
the domain of / .

T h eorem  4.3. Let f  : X  —► IR U {+ o o }  be a nontrivial, convex, lower semi- 
continuous function. Then
a) f  is subdifferentiable on a dense subset o f  the domain of f  ;
b) for all A >  0, the set-valued map x —> x +  X df(x) is surjective and its inverse 
Jx := (1 +  A<9/(-))-1 is a Lipschitz mapping with constant equal to 1.

P roo f, a) This is a consequence of Theorem 2.2. We begin by proving the second 
assertion. For all A >  0, the unique solution J\X of the minimisation problem

f x{x) := infy€X f(y) + ^ \ \ y - n ‘

satisfies the inequality

Vy € X , f{J\x) -  f ( y )  <  -  Jxx ), Jxx -  y ^

which says precisely that J\x is the (unique) solution of the inclusion

x € J xx +  A d f(J xx) =  (1 +  X df(-))(Jxx). (17)

Thus, Jx is the inverse of the set-valued map 1 +  Ad f{-)  and Proposition 2.7 
implies that Jx is Lipschitz with constant 1. In particular, /  is subdifferentiable 
at Jxx.

b) For x  belonging to the domain of / ,  we shall show that Jxx  converges to 
x , which proves the first part of the theorem. We take p in the domain of /*  
(which is non-empty, by virtue o f Theorem 3.1). Since

A i i a *  -  *n2 + / ( ^ )  =  a w  <  / ( * )

and since

- f ( J x x ) < r { p ) - ( p , J x x )

we deduce that

^\\JXx -x \ \ 2 <  f ( x )  4- f*(p) -  {p ,x) +  (p ,x -  Jxx)

<  ^ 1 1 ' -  A 2 +  f ( x )  +  f*{p) -  {p ,x) +  Albll2 

(since ab <  a2/4A +  62A). Thus, since A converges to 0,



4.5 Subdifferential Calculus 67

\\J\X ~  «||2 <  4A(/(æ) +  f*(p) -  (p ,x) +  X\\p\\2) —» 0. □

Remark. The single-valued nonlinear operators J\ :=  (1 -f A<9/(-))_1 are often 
called the Moreau- Yosida approximation of the set-valued map d f  : x  - »  d f  (x) 
for the following reason. When /  is convex, the subdifferential map d f  is mono­
tone, i.e., that its graph is monotone in the sense that for all pairs {x,p) and 
{y,q) of Graph {d f),

( p -  Q , x - y )  >  0.
Indeed, it is sufficient to add the inequalities

/ ( « )  -  f ( y )  <  (p > x -y )

and
f ( y ) - f { x )  <

When /  is convex and lower semicontinuous, one can prove that the subdiffer­
ential is maximal monotone in the sense that its graph is maximal among the 
monotone graphs. For maximal monotone set-valued maps A :  E  E, one can 
prove that J\ :=  (1 -f AA)-1 i the Yosida approximation o f A.

4.5 Subdifferential Calculus

Theorem 4.4. We consider two Hilbert spaces X  and Y , a continuous lin­
ear operator A  € L (X , Y ) and two nontrivial, convex, lower semi-continuous 
functions f  : X  —» IRU {+ o o }  and g : Y  - »  IR U {- fo o }.

We assume further that

0 G Int(j4 Dom /  — Dom g ) . (18)

Then,
d { f  +  g o A ) (x )  =  d f{x )  +  A*dg{Ax). (19)

Proof. It is easy to check that d f(x )  +  A*dg(Ax) is contained in d (f+ g o A )(x ) .  
The inverse inclusion follows from Proposition 3.4. We take p € d ( f  +  go  A )(x). 
There exists q ç Y *  such that ( f  +  g °  A)*{p) =  f* [p  — A*q)+g*(q). Thus, from 
equation (9) b),

(p ,x ) =  f { x )  +  g{Ax) +  { f +  g oA )* {p )
=  (/(® ) +  f * ( p -  A*q)) +  (g{Ax) +  g*(q)).

Consequently,

0 =  ( ( p -  A*q,x) -  f ( x )  -  f* {p  -  A*q)) +  {(q ,A x) -  g{Ax) -  g*{q)).

Since each of these two expressions is negative or zero, it follows that they 
are both zero, whence that q €  dg(Ax) and p -  A*q G d f{x ).  Thus, we have
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shown that p =  p -  A*q +  A*q £ d f(x )  +  A*dg{Ax). D -

C oro lla ry  4.3. I f f  and g are two nontrivial, convex, lower semi-continuous 
functions from X  to IR U { + oo} and if

0 G Int (Dom /  — Dom g) (20)

then
9 ( f  +  g){x) =  d f(x )  +  dg(x). (21)

I f g is a nontrivial, convex, lower semi-continuous function from Y  to IR U 
{+ o o }  and if A  £ L (X ,Y ) satisfies

0 £  Int (Im A — Dom g) (22)

then
d (g o A )(x )= A * d g (A x ) .  (23)

P rop os ition  4.3. Let g be a nontrivial convex function from X  x Y  to IR U 
{ - fo o } . Consider the function h : Y  —» IR.U {- fo o }  defined by

h{y) :=  M g { x ,y ) .  (24)

I f x  £ X  satisfies h(y) =  g {x ,y ), then the following conditions are equivalent:

(a) q £ dh(y)
(b) (0 ,ç) G d g{x ,y ). (25)

P roo f. Since h*(q) — g*{0,q), following Proposition 3.2, we deduce that q be­
longs to dh(y) if and only if (q,y) — h(y) +  h*(q) =  g {x ,y ) +  £*(0, q), that is, if 
and only if (0, q) G d g(x , y). □

P rop os ition  4.4. We consider a family of con vex  functions x  —>■ f {x ,p )  in­
dexed by a parameter p running over a set P . We assume that
(i) P  is compact
(ii) There exists a neighbourhood U o f x  such that, for  all y in U,

V fiViP) is uPT>er semi-continuous.
(iii) Vp G P, y —» f {y ,p )  is continuous at x. (26)

Consider the upper envelope k o f the functions f { - ,p ) , defined by 
k{y) =  su pp€P f  {y, p). Set

P {x ) :=  {p  G P\k{x) =  f { x ,p ) } .  (27)

Then

and

D k(x)(v ) =  sup D f(x ,p )(v )
p€P (x)

(28)
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dk(x ) =  co U df ( x >P)
*EP(x)

(29)

P roo f. Since when p belongs to P (x ) we may write

f { x  +  hv,p ) -  f { x }p) ^  k(x +  hv) — k(x) 
h ~  h

letting h tend to 0 we obtain

sup D f(x ,p ) (v )< D k (x ) (v ) .  (30)
p£P(x)

We must establish the inverse inequality. Fix e >  0; we shall show that there 
exists p £ P {x ) such that D k(x)(v ) — e <  D f(x ,p )(v ) . Since the function k is 
convex we know that

D k{x){v ) =  inf
k(x  -f- hv) — k(x) 

h

Then, for all h >  0, the set

- {Bh :=  { p e P f ( x  +  hvtp) — k(x)
h

>  D k(x)( v) (31)

is non-empty. Consider the neighbourhood V  mentioned in assumption (26) (ii). 
There exists ho >  0 such that x +  hv belongs to U for all h <  h0. Since 
p —> f ( x  +  hv,p) is upper semi-continuous, the set Bh is closed. On the other 
hand, if hy <  /12, then B^  C Bh2\ if p belongs to the convexity of /  with 
respect to x  implies that

D k { x ) { v ) - e  <  —  
hi

1 -  ( / ( « ,P )  -  fc(æ)) +  +  h2v,p) -  k(x))

<  T - ( f { x  +  h2v ,p ) - k ( x ) )  
h2

since x +  hyv =  1̂ — x  +  +  h2v) and since f {x ,p )  — k(x) <  0 for all
p. Consequently, since P  is compact, the intersection n 0</1</loB/1 is non-empty 
and all elements p of this intersection satisfy

h (D k{x)(v) — e )  <  f ( x  -f hv}p) -  k{x). (32)

Letting h tend to 0, we deduce that f { x ,p )  -  k(x) >  0, whence p belongs to 
P (x). Dividing the inequality (32) by h >  0, replacing k(x) by f ( x ,p ) and 
letting h tend to 0, we obtain the inequality

D k(x)(v ) — e <  D f(x ,p )(v )  <  sup D f(x ,p )(v ) .
p € P (x )
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Thus, it is sufficient to let e tend to 0.
Since y -> f { y ,p ) is continuous at x , we know that D f(x ,p ) (•) is continuous 

for each p , whence that D k(x)(-) is lower semi-continuous. Equation (28) may 
be written as

a (d k (x ),v ) =  sup cr(d f(x ,p ),v )
p€P (x)

which, by virtue of equation (64) of Chapter 3, implies equation (29). □
C orollary  4.4. Consider n convex functions fi continuous at a point x. Then

d ( sup (#) — CO U d/i(s)
jei(x)

where I{x ) =  { i  =  1 , . . .  ,n| fi{x ) =  supi=1>>. n f j {x ) } .

(33)

4.6 Tangent and Normal Cones

We consider a convex subset K . If x £  it is easy to check that

dipK(x) =  { p £  X*|(p, x) =  crK(p)}. (34)

D efin ition  4.3. If K  is a convex subset and if  x  € K , difK{x) is called the 
norm al cone to K  at x and is denoted by

N k (x ) :=  dipKix) (35)

The cone defined by

Tk {%) :=  closure - ( ! <  -  *) (36)

is called the tangent cone to K  at x.
These two cones are polar to each other.
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P rop os ition  4.5. The tangent and normal cones to K  are linked by the rela­
tionship

\/x£K , N k { x ) =  T k { x ) ~ .  (37)

P roo f. Since K  — x  is contained in Tk (x ), when p belongs to Tk {x )~ , we have 
(p ,y — x) <  0 for all y £ K  and consequently p belongs to the normal cone to 
K  at x. #

Conversely, we fix p in NK(x )} choose v €  TK(x) and show that (p, x) <  0. 
But v =  limn-yoo p^{yn — x) where hn >  0 and yn £ K . Since (p,pn — x) <  0, 
we deduce that (p, v) is the limit o f a sequence of negative or zero numbers

x) and thus is itself negative or zero. □

We note that

if £ € In tX , then Nk {x ) =  {0 }  and Tk {x ) =  X  (38)

and that
if K  =  {æ0}, then Nk {xo) =  X  and TK(x0) =  {0 }. (39)

It is also easy to show that if K  :=  B  is the unit sphere, if \\x\\ =  1 and if 
L denotes the duality operator, then

NK(x) =  {XLx}x>o and TK(x) =  {v  £  AT|(?;, x) <  0}. (40)

This follows from the Cauchy-Schwarz inequality, which implies that

(XLx, y - x ) <  A||;c||(||j/|| -  11*11) =  A(||y|| -  1) < 0

when ||p || <  1. Thus, A Lx £ Nj<(x). Conversely, if p £ Nk (x ), we deduce 
that IIp IIIÎ H =  ||p|| =  suP||y||<i(p>2/) <  (p ,x) and consequently, that p =  A Lx. 
Similarly, if K  :=  IR”  and if a: € IR” , then

(*)
(«)

N k ( x ) =  {p £  — ]R” |pi =  0 when Xi >  0} 
T k { x ) =  {?; £  IRn|ui >  0 when Xi =  0} (41)

This follows from the fact that supy6JRn (p, y) — (p,x) =  om.nh (p) =  ^nt"(p). 
Thus, p £ N k ( x ) if and only if p £  IR" and if (p, x )  =  Y,i\Xi> o P ix i =  0- The 
second formula is obtained by polarity.

We denote
M " : = | * € K "  f > i  =  l } -

We shall deduce the formulae

NMn(x) — {p  £ IRn|pi =  max pj when Xi >  0}
i=i.—>«

and
T{An ix ) =  {v  £  IRn| ^2 Vi =  0 and vi >  0 when Xi — 0}

i=l

(42)

(43)

(44)

from formula (49), below.
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Formulae Relating to Normal and Tangent Cones

By applying the subdifferential calculus to set indicator functions, we obtain a 
number of formulae which enable us to calculate normal and tangent cones.

• If K  C L and x  € K  then TK{x) C TL(x) and NL{x) C NK(x ). (45)
• If Ki C Xi (i =  1 , . . . ,  n) then

n
=  n ^ )  and 

2=1 
n

%■_ Ki (*1 » • * * > Xn )  = n  N Ki(xi) (46)
*-1 i= l

• U B e  L {X ,Y )  then

Tb(K){Bx ) =  closure(£2/c(æ)) and N b(K){Bx ) =  B*~lNk (x )> (47)

• TKi+k2{xi +  x 2) =  closure(T/c1(rr1) +  T/c2(®2)) and
Nk i +k2{x 1 + ^ 2) =  N Kl(x i ) n N K2(x 2). (48)

• If A e  {L (X , y ) )  and if L C X  and M  C Y  are convex closed subsets 
satisfying 0 € Int(7l(L) — M ), then

TLnA-HM){x ) =  Tl {x ) H A~lTM{A x) and 
Nlc\a- 1(M){x ) =  Nl {x ) 4- A*Nm {A x ). (49)

• If A e  L (X ,Y )  and if M  C F  is a convex closed subset satisfying 
0 £  Int (ImTl — M ), then

Ta- i(M){x ) =  A~1Tm (A x ) and Na- i(m ){x ) =  A*Nm {A x ). (50)

• If Ki and K 2 axe convex closed subsets o f X  such that 0 6 Int (K j — ify), 
then

=  î j f , ( ï ) n  Tjk2{x ) and
NKinK2(x) =  NKl(x) +  NK2(x ). (51)

Proof of formulae (45)—(51). Formulae (45), (46), (47) and (48) are trivial 
to check for normal cones and follow by polarity for tangent cones.

Since the indicator function ipLnA-HM) o f L fl A~l (M ) is equal to 
ipL -f TpM°A, formula (49) for normal cones follows from Theorem 4.4, and may 
be deduced for tangent cones by polarity. Formulae (50) and (51) are corollaries 
of formula (49).
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Since M n jæ € IR” 1]C*Li Xi =  l } ,  formula (49) may be applied with 
X  =  IR ", Y  — IR, L =  IR", M  =  { 1} and A  equal to the operator defined by 
A x =  X{. Thus, we derive formulae (43) and (44). □

Remark. There are closed relations between tangent and normal cone to convex 
subsets and right-derivatives and subdifferentials of a convex function. First, the 
normal cone to K  at x  was defined by Nk {x ) :=  dipxi^)- One can check easily 
that

D iPk (%) =  ^TK{x)

so that the concepts of normal and tangent cones can be derived from the 
concept of subdifferential and right-derivative of a convex function. Conversely, 
one can also observe that

\ / x € E ,  Ep(D f(x ) )  =  TEpU)(x, f { x ) )

and that p € d f(x )  if and only if

(P ,- l)  £ ^Ep(/)(®,/(®))

so that the concepts of right derivative and subdifferential of a convex function 
can be derived from the concepts of tangent and normal cones.



5. Marginal Properties of Solutions of Convex 
Minimisation Problems

5.1 Introduction

Fenchel’s Theorem has already given us sufficient conditions for the existence 
of solutions of convex minimisation problems. As a consequence o f Fermat’s 
rule, suitably adapted, instead of searching for solutions of the minimisation 
problem,

- / • ( 0 ) =  m f / ( z )  (*)

we may seek to solve the inclusion (or set-valued equation)

0 € d f(x ) .  (**)

Moreover, Fenchel’s transformation shows that the set of solutions of the 
minimisation problem (*) is the subdifferential

d f ' ( 0) =  { x  €  X \ f(x ) =  —/* (0 )}  

of the conjugate function f*  at 0.
We shall call this property (which is a very simple property in convex anal­

ysis) a marginal property of the solutions x , to underline the use by neoclassical 
economists of adjective ‘marginal’ instead and in place o f the adjective ‘differ­
ential’ used by mathematicians.

The sub differential calculus which we described in the previous chapter will 
enable us to exploit this double characterisation for more specific minimisation 
problems. We have chosen a class o f problems with a structure which is strong 
enough for us to acquire sufficiently useful information, but general enough to 
cover numerous examples. (This compromise is a matter of taste -  that is, it is 
subjective.)

We shall consider a family o f minimisation problems of the form 

h{y ) :=  mf [f (x )  -  (p, x) +  g{A x  +  y)]

where

/  : X  —» IRU {+ o o }  and g : Y  —» IR U {+ o o }



are nontrivial, convex and lower semi-continuous and where A £ L (X ,Y ) is a 
continuous linear operator. We shall show that there exists a solution x  of this 
problem under the assumption

p £  Int (Dom f*  4- A* Dom g*)

which provides an additional justification for the introduction of conjugate func­
tions.

We shall then show that if

y £  Int (Dom g — A  Dom / ) ,

then the set of such solutions is the set of solutions o f the inclusion (or set-valued 
equation)
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p £ d f ( x ) +  A*dg(Ax. +  y )

That is not all: we may associate the problem h{y) with its dual problem 

e*{p) =  ~ a *Q )+9*{q) ~  (Q,V)]

We shall then prove that the set of solutions x  o f the problem h(y) is the 
subdifferential de*(p) of the function p - »  e*(p).

This more precise result (which describes the set o f solutions of a minimi­
sation problem as the subdifferential o f the function e*) plays a very prominent 
role in economic theory: a minimal solution x  o f h(y) measures the rate o f 
variation of the marginal function e* as the parameter p is varied.

Moreover, the same assumptions also imply the same results for the dual 
problem e*(p): the set of solutions is non-empty, it is the subdifferential of the 
marginal function h : y —> h(y) and it is the set of solutions of the inclusion

y £ dg*(q) -  A df*{p  -  A*q).

5.2 Fermat’s Rule

As previously mentioned, the set of solutions x  of the minimisation problem

- / * ( ° )  := j n f / (£ )  (1)

is the set of solutions of 0 € d f {x ) since x  belongs to d f* (0) if and only if 

f { x )  =  (0 ,x) -  /* (0 ) =  mf f ( x ) .

Consequently, when /  is nontrivial, convex and lower semi-continuous

d f*( 0) is the set of solutions o f the minimisation problem (1). (2)
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To exploit this result, we shall use the properties of conjugate functions and 
subdifferentials, as established above.

The following structures provide a framework which is sufficiently general to 
be the source of numerous examples and sufficiently specific that the technical 
difficulties are limited:

(i) two Hilbert spaces X  and Y  ;
(ii) two nontrivial, convex, lower semi-continuous functions 

/  : X  -*  IR U { + 00} and g : Y  —> IR U { + 00};
(iii) a continuous linear operator A £ L (X , T ). (3)

We shall choose elements y € Y  and p £ X* as parameters of the optimisa­
tion problems

h(y) :=  jn f ( / ( « )  -  (P,æ) -F g{A x  -F y)) (4)

and
e*{p) ••= inf A*q) +g*{q) -  (q ,y )) (5)q€l *

which we shall solve simultaneously.
We shall say the minimisation problems h(y) and e*(p) are dual and that 

the (convex) functions h : y —> h(y) and e* : p —> e*(p) are the marginal 
functions which describe the variation of the optimal values as a function of the 
parameters y G Y  and p € X * .

The study of these marginal functions and above all of the properties of 
their gradients (or failing that their subgradients) is a subject of interest to 
economists.

Theorem 5.1. a) We suppose that the conditions (3) are satisfied. If

p G Int (Dom f*  +  A* Dorn#*), (6)

then there exists a solution x  o f the problem h(y) and

h {y )+ e* (p ) =  0. (7)

b) If we suppose further that

y £  Int (Dom g — A  Dom / )  (8)

then the following conditions are equivalent

(i) x is a solution of the problem h(y);
(ii) x  belongs to the subdifferential <9e*(p) o f the marginal function e*;
(iii) x  is a solution o f the inclusion p G d f{x )  -F A*dg(Ax +  y). (9)
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c) Similarly, assumption (8) implies that there exists a solution q o f the problem 
e*(p) and the two assumptions imply that the following conditions are equivalent:

(i) q is a solution o f the problem e*(p);
(ii) q belongs to the subdifferential dh(y) o f the marginal function h;
(iii) q is a solution o f the inclusion y € dg*{q) — A df*{p  — A*q). (10)

d) The two assumptions imply that the solutions x and q o f the problems h(y) 
and e*(p) are solutions o f the system of inclusions

(i) p G  d f{x )  +  A*{q)
(ii) y € - A x  +  dg*{q). (11)

Remark. An optimal solution of one of the minimisation problems h{y) or e*(p) 
is usually called a Lagrange (or Kuhn-Tucker) multiplier, the inclusion (9) (iii) 
is usually called the Euler-Lagrange inclusion and the inclusion (10) (iii) is the 
Euler-Lagrange dual inclusion. The system of inclusions (11) is usually called 
the Hamiltonian system.

The mapping (x , q) —> (d f ( x ) -f A*q) x { —A x  +  dg*(q)) from X  x Y* to its 
dual X* x Y  may be written symbolically in matrix form by

d f
- A (12)

The set o f solutions (x ,q ) of the minimisation problems h{y) and e*(p) may be 
written in the form

d f  A * y l ( p
- A  dg* )  \ y

This notation highlights the variation of the set of solutions as a function of the 
parameters p G X * and y GY.

P r o o f  o f  T h eorem  5.1. a) The existence of solutions of the problems h{y) 
and e*(p) and the equality h{y) -f e*(p) =  0 follows from Theorem 3.2 (Fenchel’s 
Theorem) with /  replaced by x f ( x )  -  (p, x) and g replaced by z ->• g{z +  y), 
since in this case v =  h{y) and v* =  e*(p).
b) We may write

H y) =  jn f V>(C(xty))

where

y) *= /(®) -  (p, + 9{y)
C {x ,y ) :=  {x ,A x  +  y).
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Since the operator C  is clearly an isomorphism of X  x Y  onto itself, Proposi­
tion 3.1 implies that

d(<poC )(x ,y ) =  C T d rfC fa y ))
=  C * ((d f(x ) -  p) x dg(Ax +  y))
=  { (d f (x )  - p  +  A*q) x {q}}q£dg(Ax+yy

Proposition 4.3 implies that if x  is a solution of the problem h (y)} then q 
belongs to dh(y) if and only if (0, q) belongs to d(ip o C )(x ,y ),  in other words, 
if q € dg(Ax  - f  y) and 0 Ç. d f ( x ) — p +  A*q, by virtue of the previous formula. 
Thus, we have shown that if x  is a solution of h (y), then the following conditions 
are equivalent

0) Q € dh(y)
(ii) 0 € d f(x )  — p +  A*q and q € dg(Ax +  y). (13)

Eliminating q from these two inclusions, we find that

p €  d f(x )  +  A*dg(Ax +  y). (14)

This last property implies that

0 € £(/(•) -  (p, •> +  g (A (‘ ) +  y ))(x ) (15)

which shows that any solution x  o f the inclusion (14) is a solution of the minimi­
sation problem h(y). Conversely, assumption (8) and Theorem 4.4 imply that 
any solution of h(y) which is a solution o f the inclusion (15) is a solution of the 
inclusion (14). This latter implies that there exists q € dg(Ax +  y) such that 
p €  d f(x )  +  A*q> in other words, such that q €  dh(y). Thus, we have proved that 
properties (9)(i) and (9)(iii) are equivalent. Similarly, replacing the functions /  
and g and the operator A  by g*, f*  and —A *, respectively, properties (10) (i) 
and (10)(iii) may be shown to be equivalent.

The system of inclusions (11) is clearly equivalent to the systems of inclu­
sions (9) (iii) and (10) (iii) : this proves the last part of the theorem. The equiv­
alence of (13) (i) and (13) (ii) then implies the equivalence of (9)(i) and (9)(ii) 
and, replacing / ,  g and A  by g*, f*  and —A*, the equivalence of (10)(i) and
(10)(ü). □

Remarks. When assumptions (6) and (8) of Theorem 5.1 are satisfied, solu­
tion of the problem h(y) is equivalent to solution of the inclusion ( set-valued 
equation)

p €  d f(x ) +  A*dg(Ax +  y). (16)

Theorem 5.1 indicates another way of solving this problem. This involves 
first solving the inclusion

y e d g * ( q ) - A d r ( p - A * q ) (17)



and then choosing x  in the set

d f ( p  -  A 'q) n  A -\ d g '{q ) -  y). (18)

This procedure is only sensible if the second inclusion is easier to solve than 
the first. This clearly depends on the functions /  and g. If g is differentiable, 
it may be better to solve the inclusion (16). If, moreover, /*  is differentiable it 
may be easier to solve the inclusion (17) which, in this case, may be written as

A V r ( p - A * q )  +  y € d g * (q )  (19)

or as

V ?€  V, ( - A V r ( p - A ' q ) - y , q - q ) + g \ q ) - g ' ( q ) < Q .  (20)
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5.3 Minimisation Problems with Constraints

Let us consider

(i) two Hilbert spaces X  and Y  ;
(ii) a continuous linear operator A £ L(X ,Y )\
(iii) a convex closed subset M  C Y\
(iv) a nontrivial, convex, lower semi-continuous function

/  : X  —>■ IR U { + 00}  and two elements y £ Y  and p £ X*. (21)

We consider the minimisation problem

k(y) :=  A À M - y ^  ~  <P’ (22)

with its associated dual problem

e*{p) ■= ^nf (/* (p  -  A*q) +  crM{q) ~  (q,y))- (23)

C orollary  5.1. I f we suppose that

p £  Int (Dorn f*  +  A*b(M )) (24)

then there exists a solution x (satisfying Ax £ M  — y ) o f the problem h(y). If 
we suppose further that

y £  Int (M  — A  Dom / )  (25)

then the solutions x o f the problem h(y) are the solutions o f the inclusion

p £ d f(x )  +  A*Nm {Ax +  y) (26)

and the set o f solutions x  o f h(y) is the subdifferential de+ (p) o f the marginal 
function e*.
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The following solutions are then equivalent:

(i) q € dh(y);
(ii) q is a solution o f the problem e*(p);
(iii) q is a solution o f the inclusion y €  duM{q) — A df*(p  — A*q). (27)

The optimal solutions x  and q o f the problems h{y) and e*(p) are related by

p € d f ( x ) +  A*q and q £ Nm (A x +  y). (28)

The minimisation problem

h(y) ^ jnf=o(/(rr) - f a x ) )  (29)

which is a minimisation problem with ‘equality constraints’ is obtained as the 
particular case in which M  =  {0 }. Its dual problem is

e*(p) :=  in f.(/* (p  -  A*q) -  (q, y)). (30)

C orollary  5.2. If we suppose that

p £  In t(D om /*  +  ImTi*) (31)

then there exists a solution x  o f the problem h(y).
If we suppose further that

~ y  £  Int (A  Dom / )  (32)

then the solutions x o f the problem h(y) are the solutions o f the inclusion

p £ d f{x )  +  Im A *, Ax  -f y =  0 (33)

and the set o f  solutions x  is the subdifferential de+(p).
The following conditions are equivalent

(i) q £ dh{y);
(ii) q is a solution o f the problem e*(p);
(iii) q is a solution o f the inclusion y £ —A df*{p  — A*q). (34)

The optimal solutions x and q o f the problems h{y) and e*(p) are related by

p £ d f ( x ) +  A'q. (35)

Suppose that P  C Y  is a convex closed cone and denote its negative polar 
cone by P~ •
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The cone P  defines an order relation >  by

2/i > 2/2 if and only if yx -  y2 € P  (36)

and the cone P~ defines the order relation

Qi <  <?2 if and only if qx — q2 G P ~ . (37)

The minimisation problem

h.{y) :=  J n f ïo ( / (x )  -  (p ,x )) (38)

which is a minimisation problem with ‘inequality constraints’ is obtained in the 
special case in which M  — P. Its dual problem is

e.(p) :=  inf {f*{p  -  Aq) -  (q ,y)). (39)

C orollary  5.3. If we suppose that

p G Int (Dorn f*  +  A*P~) (40)

then there exists a solution x  o f the problem h(y).
If we suppose further that

y e  Int (P  — A  Dom / )  (41)

then the solutions x o f the problem h(y) are the solutions o f the inclusion

p E d f(x )  +  A*NP(Ax  +  y) (42)

and the set o f solutions x  is equal to cte*(p).
The following conditions are equivalent

(i) q <E dh{y);
(ii) q is a solution of e*{p);
(iii) q is a solution o f the inclusion y  G Np — (g) — A df*(p — A*q). (43)

The solutions x  and q o f the problems h(y) and e*(p) are related by

(i) p € d f(x )  -  A*q
(ii) Ax  4- y >  0, q <  0 and (q, Ax  4- y) =  0. (44)

5.4 Principle of Price Decentralisation

We consider

(i) n Hilbert spaces Xi (i =  1 , . . . ,  n);
(ii) n nontrivial, convex, lower semi-continuous functions / ,  : Xi —» IR U {+ o o };
(iii) a Hilbert space Y\
(iv) continuous linear operators Ai G L (X t, T );
(v) a convex closed subset M  C Y . (45)
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We shall now solve the minimisation problem

h( y ) ~  inf E l / W - f e 1)) • 
E i=i A iX i+ yeM  \ i=zl

This is a particular case of problem (22), in which

(46)

x  :=  f ( x )  :=  Y l M x i) and A x  =  ^  A p i.
*=1 z=l i=l

The dual problem is

V ti
e.(Pi> •••.».) =  inf ~  A ‘ q) +  aM(q) -  (q,y) I . (47)

Corollary 5.4. If we suppose that

(Pu • ■ - >Pn) e  Int { i l D o m /*  +  J

q€b(M)

then there exists a solution {x \,. . .  , xn) of the problem h(y). 
If we suppose further that

y € Int ( m  — ^2 Ai Dom f
\ Z=1

(i)

( ü )

Xi e  dfi {jpi -  A*q) (i =  1 , . . . ,  n) 

q € Nm AiXi +  y

(48)

(49)

then the solutions ( x i , . . . ,  xn) and q of the problems h(y) and e*(p i,. . .  ,pn) are 
the solutions of the system

(50)

where q is a solution of the dual problem e*(p i,. . .  ,pn) and the set of solutions 
(x i , . . . , i n) is the subdifferential de*(p i,. . .  ,pn).

The following conditions are equivalent

(i) q € dh{y);
(ii) q is a solution o f e*(P\, • • • ,Pn);
(iii) q is a solution o f the inclusion y € dcrM(q) — 5X=i A'd/*(Pz — A*q). (51)

When the conjugate functions f*  are differentiable, the solutions (x i, . . . ,  xn) 
are obtained using the Lagrange multipliers q (the solutions q of e*(pi,. . .  ,pn)) 
from the formulae

Xi = V ffipi -  A?q) (i =  1 ,... ,n).
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In other words, once we know a Lagrange multiplier q, we may obtain an optimal 
solution (£1, ,  ain) by solving n independent minimisation problems

inf -  (pi, Xi) +  (q, A iXi)) (52)

which are obtained by adding a ‘cost of violating the constraints’ (q, A&i) to 
the initial loss function /,(•) — (pi} •).

It is this result which justifies the role of prices q (subgradients of the 
marginal function h(y)) in economic models as a means of decentralising deci­
sions; in other words, a means of solving the n problems (52) independently. 
We shall return to this fundamental problem of decentralisation in Chapter 10, 
in the context o f the theory of economic equilibrium.

5.5 Régularisation and Penalisation

Consider a nontrivial, convex, lower semi-continuous function /  from a Hilbert 
space X  to IRU {-boo}. With any A > 0 we associate the function f\ defined by

f x(x) :=  inf [/(?/) +  -  z||2] • (53)

We shall show that the functions f\ are convex differentiable functions which 
are simply convergent to the function /  as y  tends to 0. This provides us with a 
régularisation procedure which enables us to approximate /  by a more regular 
function.

When y tends to infinity, we may interpret the minimisation problem (53) 
as a penalised version of the minimisation problem

—/*(0) =  inf f ( x ) .  (54)
x £ X

We recall that the minimisation problem f\(x) has a unique solution denoted 
by J\x (see Theorem 2.2 (Proximation Theorem)).

T h eorem  5.2. Suppose that f  : X  —> IR U {-foo } is a nontrivial, convex, lower 
semi-continuous function. Then the functions f\ are convex and differentiable 
and

V / a(z ) =  i ( z  -  J\x) € df{J\x). (55)

Moreover, when A tends to 0,

Vx e  Dom / ,  fx (x ) —>• f ( x )  and Jxx  -»• x  (56)

and when A —> oo,

fx (x ) tends to — /* (0 )  =  inf f (x ) . (57)
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P roo f, a) In the proof o f Theorem 4.3, we showed that || Jxx  — x\\ converges to 
0. Moreover, f x(x) <  f ( x )  +  ^\\x -  x\\2 =  f ( x ) .  Since f { x )  <  liminfA_+o f{J\x) 
(because /  is lower semi-continuous) and since

f {J xx) =  f x{x) -  -^|| J\x -  x\\2 <  f x{x),

it follows that f ( x )  <  liminfA-+o fx {x ). Thus, f ( x )  =  \imx^ 0 f x(x).

b) Provisionally, we set ,4 a (re ) •'= y (z  — J\x). In Theorem 4.3, we showed that 
A x(x) belongs to d f(J xx ). Thus,

f x ( x ) - h ( y )  =  / ( ^ ) - / ( A t / )  +  ^ I K W I I 2 -^ l|^(t/)||2 

<  (,*»(*). A x  -  A y ) +  ±\\Ax(x )II2 -  ^|A a(v)||3 

(because ,4a(z ) € d f(J xx))

<  (A x( x ) , x - y )  -  \ (A x(x ) ,A x(x) -  A x(y)) +  ^||A(*)||2 -  ^||A(y)||2 

(because Jx — 1 — A,4a)

=  (A x(x ) ,x  -  y ) - \  (i||A(x)||2 +  ^||A(y)||2 -  ( A M ,  A fe )> )

=  (A x( x ) , x -  y) -  ^||A M  -  A (y )l|2

<  (Ax{ x ) , x - y ) .

Thus, we have shown that
A x(x) e  d fx(x). (58)

Moreover, since A x(y) belongs to d fx(y ) for all y, we obtain the inequalities

/ aW  ~ fx(y) > {A\{y),x -  y)
=  {Ax( x ) , x - y )  +  (Ax(y) - A x(x)yx - y )
>  (AU(z), x - y ) -  ||Ax{y) -  Ax{x)||||rr -  y\\

> (Ax( x ) , x - y ) - j \ \ x - y \\2

since ||̂4A(^) -  ^ a(2/)II <  j\\% ~  2/11 (see Proposition 2.7, since ,4a =  y ( l  -  J\))- 
Thus,

fx(x) ~ fx(y) -  (Ax{x),x- y)
I k -2/11

<  ^lk-2/||,

whence A ^ k ) =  V f\(x).
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c) Prom Fenchel’s Theorem, we know that

h ( x )  +  ( / ' ( - « )  +  ^ l l « f  -  (q ,x ))  =  0.

In other words, we may write

/ a(*) +  ( / ' - z )1a (0 )= 0 .  (59)

Consequently, when A —> oo, ( /*  — æ)1/A(0) tends to ( /*  — æ)(0) =  /* (0 ) =  
— infyex  f {y )  from the above.
d) Prom Theorem 5.1, we know that J\x and the optimal solution qx/\ o f the 
problem (/*  — x )1/X are related as follows:

(i) 0 € df(J\x) — qi/x
(ii) x =  —J\x +  \qi/\. (60)

This shows that V  f\{x) is the unique solution of the problem (/*  — x ) 1̂ x. Thus, 
if 0 belongs to the domain of df*  (in other words, if there exists a minimum 
of / ) ,  then V f\{x) converges to 0 as A tends to infinity. Consequently, if the 
limit of J\X as A tends to infinity exists, it belongs to d f* (0); in other words, 
it generates the minimum of / .  □



6. Generalised Gradients of Locally Lipschitz 
Functions

6.1 Introduction

Since both continuously differentiable functions and convex continuous func­
tions are locally Lipschitz functions, it is natural to wonder if the latter are 
‘differentiable’ in some weak sense. In 1975, Prank H. Clarke introduced the 
concept of the generalised gradient of a locally Lipschitz function which is a 
convex, closed, bounded subset. The generalised gradient reduces to the gra­
dient of the function if the function is continuously differentiable and is equal 
to the subdifferential of the function if the function is convex and continuous. 
Since the upper envelope of Lipschitz functions is Lipschitz, this upper enve­
lope also has a generalised gradient. Finally, Fermat’s rule applies: if £ is a local 
minimum of a locally Lipschitz function, 0 belongs to its generalised gradient 
at x.

Furthermore, the concept o f generalised gradient will enable us to define 
the normal cone at x for  an arbitrary non-empty subset; we shall show that this 
coincides with the normal cone at x  for a convex closed subset.

6.2 Definitions

The concept of differentiation plays such an important role that it has been 
generalised and extended in many directions, according to specific applications. 
We shall only describe the concepts which one meets when trying to define 
directional derivatives for locally Lipschitz functions.

Definition 6.1. Let f  be a function from X  to IR U {T o o } with a non-empty 
domain. We shall call the following limit (when it exists), the Clarke right 
directional derivative of /  at x  in the direction v:

r-> rt \t \ r  f ( y  +  M  -  f (y)  mD cf(x ) (v )  :=  lim sup------------------------ . (1)
h-> 0+ fly—► x

We shall say that f  is Clarke right differentiable at x  if  for all v G X , the 
limit D cf(x ) (v )  exists and is finite.



88 6. Generalised Gradients of Locally Lipschitz Functions

We recall that (when it exists) the limit

D f(x )(v )  := Bm + to ) ~ M  (2)
h-¥ 0+ h

is called the right derivative o f f  at x  in the direction v, and that /  is right 
differentiable at x  if D f(x )(v )  exists for all v.

We shall say that /  is Gâteaux differentiable at rr if /  is right differentiable 
and v —> D f(x )(v )  =  (A f ( x ) ,v } is linear and continuous.

We shall call V /(rr) € X* the gradient of /  at x. We shall say that /  
is continuously differentiable if for all v € U, the function y —>• (V /(y),t>) is 
continuous at x. We shall say that /  is Fréchet differentiable at x  if

lim
v—>0

f { x  +  v ) ~  f ( x )  -  (X7f(x),v)

Ml
=  0 (3)

and that /  is strictly Fréchet differentiable at x  if 

f(y +  v ) ~  f (y )  -  (V /(rr), v)limy -+ x  
u—*0 Ml

=  o

We note that the function v —>■ Dcf(x ) (v )  is positively homogeneous and 
that, when the limits below exist, we have

D f(x )(v )  <  D J (x )(v ) .  (4)

We also note that a Gâteaux-differentiable function /  is not necessarily 
Clarke differentiable. However, we do have the following result.

Proposition 6.1. Suppose that f  is continuously differentiable at x. Then f  is 
Clarke differentiable and

(X f (x ) ,v )  =  Dcf(x ) (v ) . (5)

Proof. Since /  is continuously differentiable at x , then for every e  >  0, there 
exists 77 >  0 such that

I W W , v ) - ( V / ( 2) , v ) | < e  when ||̂ — â|| <  77. (6)

If \\y\\ <  y/2 and if 0 <  t <  ??/2||t;||, we set g (t) =  f ( y  +  tv). Then g is 
differentiable and

P '(0 =  b a t k - W j - f b  +  V  =  (V / f o  +  * ) .„ > .  (7)

Thus, if 6 <  77/2||ti||, we have 

H y  +  e v ) - m _ { v f ( x ) v ) g ( e ) - 9 ( 0 )
e - ( V f ( x ) , v )

l f ( ( V f ( y  +  tv ),v ) -  (V f(x ) ,v ))d t
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and consequently, since ||y 4- tv — rr|| < 77,

when

f(y + Ov) -  f(y)
e {V f {x \ v ) <  £

\\y -  x\\ <  77/2 and 6<r)/2\\v\\.

This imphes that if a  <  77/2 and f3 <  77/ 2||t;||,

sup sup eV\!— <  (V /( z ) ,  v) +  e.
||y—x||<a 0<0 &

Taking the infimum with respect to a  and /?, we have

D J (x )(v )  <  (V /(a :), v) +  e, 

which, taken with (4), implies (5).

(8)

(9)

□

We recall that any convex function continuous at a point x  is Clarke differ­
entiable (Theorem 4.1); we restate this result.

P rop os ition  6 .2. Suppose that a function f  : X  IRU { + 00}  is continuous 
at a point x in the interior o f its domain. Then f  is Clarke differentiable and

V v e X , D f(x ) (v )  =  Dcf (x )(v ) .  (10)

We recall that continuously differentiable functions and convex continuous 
functions are locally Lipschitz (see Theorem 2.1).

We shall show that not only continuously differentiable functions and convex 
continuous functions but also, more generally, locally Lipschitz functions are 
Clarke differentiable.

T h eorem  6.1. Any locally Lipschitz function f  : X  —> IRU { + 00} is Clarke 
differentiable on the interior of its domain. For all x  € Int Dom/ ,

v —> Dcf(x ) (v )  is positively homogeneous, convex and continuous. (11)

Moreover,

{ x ,7;}  € Int Dom/  x U —> D xf(x ) (v )  is upper semi-continuous. (12)

Remark. Propositions 6.1 and 6.2 show that the Clarke derivative of locally 
Lipschitz functions provides a natural generalisation of the concepts of Fréchet 
and right derivatives in convex analysis.
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Proof of Theorem 6.1. Suppose x  G Int Dom / .  Since /  is locally Lipschitz, 
there exist 77 >  0 and L >  0, such that

\/y} z e x  +  rjB, |f {y )  -  f{z)\ <  L\\y -  z\\. (13)

Then, for all a <  rj/2 and (3 <  ?7/ 2||ii||,

- r iH I  <  / M M . - / ( »  <  l ||,||

when y G x  4- ex B  and 6 <  (3. It follows that

—L\M <  D cf(x ) (v )  =  inf sup +  <  L\\v\\,
a,p>0  ||ÿ -æ || < û  (7

o<e<p

whence, /  is Clarke differentiable; in particular, we obtain the inequality

\Dcf(x)(v)\ <  L|M|. (14)

We already know that v -4  Dcf(x ) (v )  is positively homogeneous. We shall show 
that this function is convex. Writing

f {y  +  +  ( ! ~ Xw)) -  f { y )
e

(i X)f(z + aw) -  f (z) , Xf{y + M - f ( y )
a (3

where z =  y +  6Xv converges to x, and a =  (1 — A)6 and (3 =  X6 converge to 0, 
and taking the upper limits of the two sides, we obtain

D cf(x )(X v  +  (1 -  X)w) <  Dcf(x ) (v )  4- (1 -  X)Dcf(x )(w ). (15)

It remains to show that { x ,v }  —> D cf(x ) (v )  is upper semi-continuous. From 
the definition of Dcf(x ) (v ) ,  given e >  0 there exists oo such that

sup +  <  D cf(x ) {v )  4- e/2. (16)
||s-l||<2«0 A

A<q0
If ||z — j/ll <  ao and ||j/ — z|| <  ao, then since /  is locally Lipschitz, we obtain

(17)/ ( *  +  Aîü) "  Z W  <  / f a  +  At,) ~  M  +  L\\v -  «,11.
A

Consequently, if y  G x  4- cxoB, a  <  ao and (3 <  fio> then
f { z  4- Xw) -  f ( z )  ^  _  f { z  4- Xv) -  f ( z )

sup
X<0

X
< sup

||z-x||<2cr0A<o0
A 4- L\\v — re||

<  D cf  {x){v) 4- e / 2  4- L\\v — ic||
<  D cf(x ) (v )  4- £

when ||v — ic|| <
Letting a  and f3 tend to 0, we deduce that 

Dcf{y )(w ) <  D cf (x ) (v )  4- e when \\y -  x\\ <  a 0 and \\v -  w\\ <  

whence, Dcf(x ) (v )  is upper semi-continuous at {rr,i;}. □
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6.3 Elementary Properties

Next we shall establish certain elementary properties of Clarke derivatives.

Proposition 6.3. Suppose that f  and g are two locally Lipschitz functions from  
X  to IR U {+ o o }  and that x  € Int Dom /  n  Int D om g. Then

D c{ a f  + Pg) (x ) (v )  <  a D cf { x ) { v ) +  (3Dcg{x){v)

if et, P >  0. I f  x  €  Int Dom f , then

Dc( - f ) ( x ) ( v )  =  Dcf { x ) { - v ) .

Proof. Formula (18) is self evident. To prove (19), we write

~f (y  +  Xv) -  ( - f ( y ) )  =  f ( z  4- A ( -  y))  -  f ( z )
A A

where z =  y +  Xv converges to x  when y converges to x  and A >  0 tends to 0. 
Taking the upper limits as y and z converge to x  and A converges to 0, the term 
on the left converges to Dc(—f) (x ) (v )  and that on the right to Dcf ( x ) ( —v). □

(18)

(19)

(20)

Proposition 6.4. Let f  be a locally Lipschitz function from X  to IR U {+ 00} 
with a non-empty domain. Let P  be a closed convex cone in X . I f f  is increasing 
on P  in the sense that

f ( x ) < f ( x  +  v), V v e P ,  (21)

then
\/v e  X , Dcf (x ) (v )  <  a ( P +,v)  (22)

where a ( P +, v ) is the support function of the positive polar cone P + o f P. 
Proof. For all v G P, we have the inequality

f { y  + 0v + 0{-v))  -  f {y  4- 6v)
e -  ‘

Taking the limit of the supremum as y tends to x  and 6  tends to 0, we de­
duce that Dcf ( x ) ( —v) <  0, \/v G P.  Moreover, o ( P +, v ) =  0 if v G — P  and 
o ( P +,v) =  4-00 if v ^ — P. Whence inequality (22) holds. □

Proposition 6.5. Let f  : X  —» IR U {4-oo} be a locally Lipschitz function. 
Suppose that x  € Int Dom/  is a local minimum o f f . Then, for all v G X , 
Dcf (x ) (v )  >  0 . I f  x  is a global minimum o f f  on a convex set X  then

Dcf { x ) ( y  — x) >  0.V y e K , (23)
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Proof. Suppose that x  minimises /  on the ball x + t]B with centre x  and radius 
77. Then, if A <  77/2 and fi <  77/ 2||t;||, we have, if 6 <  P

f ( x  +  6v) -  f { x )  ^ f { x  +  Ov) -  f { x )
u s e e

Taking the limit as (5 tends to 0, we obtain Dcf ( x ) ( v ) >  0. If K  is convex, we 
may take v =  y — x, since x  +  6v =  (1 — 6 )x  4- 6 y € K  if 6  is sufficiently small.

□

Proposition 6.6. Suppose that a nontrivial function f  : X  —> IRU {+ 00} is 
positively homogeneous and locally Lipschitz. Then, for  all x  € Int Dom / ,

D cf ( x ) ( x )  =  f ( x ) .  (24)

Proof. We note firstly that

/ ( * )  =
f ( x  +  hx) -  f { x )

<  lim sup

h
f{y +  hx) -  f { y )

y-+xh->0+
=  D cf (x ) {x ) .

Suppose L is the Lipschitz constant of /  at x. We may write

(25)

f (y  + hx) ~ f(y) =  +  f {y  + hx) -  f { y  + hy) ^

<  f ( y )  +  L\\y-w\\.

Whence, taking the upper limit as h -> 0+ and y  tends to x , we obtain 
D cf ( x ) ( x )  <  f ( x ) .  □

Next we shall study the differentiability of the composition g =  f  o G where 
G maps an open subset Q  o f a Hilbert space Y  into Dom / ,  the domain of / .

Definition 6.2. We shall say that G is Gâteaux differentiable at x  G Q if there 
exists V G(x )  e  L ( Y , X ) such that

G {x  +  0y) -  G{x)
Vv e Y,

e
converges to VG(x )  -v in X  as 6  0. (27)

We shall say that G is Fréchet differentiable if

Um HG(x +  D ) - G ( a;) - V G ( a:)-t.|| =  Q
IMHO ||t)||

G is said to be strictly Fréchet differentiable if

lim l|G(ÿ +  t t ) - G f a ) - G M - « | |  0
iiw—®ii—0 ||t;||

If v|| —►O 11 11

(28)

(29)
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Proposition 6.7. Suppose that f  is locally Lipschitz. I f G is strictly Fréchet 
differentiable at x  then

D cg(x)(v)  <  (D J ) ( G ( x ) ) ( V G (x )  • v). (30)

P roo f. Since /  is locally Lipschitz, given e >  0 and u G X ,  there exist numbers 
a , such that

n 1 ± M - m ^ D J ( G { x ) ) ( u ) + £  (31)

when \\z — G(a:)|| <  a, 6  <  ft and ||ro — n|| <  We take u — V G (r ) • v. There 
exists 77 <  f3 such that if ||y — z|| <77 and # <  77, then ||Gr(?/) — G(x)|| <  a  and

v ( g ) . „ - g f r  +  * > > - g f r )

since G  is strictly differentiable. Taking 2 =  G(y)  and w =  ft
follows from (31) that

Dcg(x)(v)  <

<

sup
llv—

0<T)

g{y 4- 0v) -  g{y)
0

D cf ( G ( x ) ) ( V G ( x ) - v ) + e . □

C orolla ry  6.1. Let A G L (Y ,X )  be a continuous linear operator. Then

D c( f  A)(x)(v)  <  (Dcf ) (A x ) (A v ) .  (32)

I f A  e  L(Yt X ) is surjective, then

Dc( f  A)(x)(v)  =  (Dcf ) ( A x ) ( A v ). (33)

P roo f. In this case, Banach’s theorem (see Theorem 4.3.1 of (Aubin 1979a)) 
implies that A(x  4- a By)  contains a ball Ax  4- 7 (ot)Bx- Consequently,

sup
||z —/ta;||<’y {a )  

6<0

f { z  +  0Av) -  f { z )
0

< sup
||y-x||<a

e<0

f  {Ay 4- 0Av) -  f  (Ay)
0

which implies that Dcf  (Ax)(Av) <  Dc( f  A)(x)(v) .  □
Suppose that /  is a Lipschitz function from X  to IR U { + 00} and that 

B  G L ( X , Y )  is a continuous, linear, surjective operator from X  to Y . We 
define

a{y)  =  inf f { x ) ,  (34)
B x - y

setting a(y)  =  +00 if y $ 13Dom/.
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Proposition 6.8. Suppose that f  is Lipschitz and that B  G L(X,  Y)  is sur­
jective. Then a  is Lipschitz if its domain is non-empty. If a(y)  =  f { x )  where 
B x — y , then

V w € l ,  0 < D ca { y ) ( B u ) + D cf {x ){u) .  (35)

Proof, a) We pick arbitrary y  and z in Y  and e >  0. There exists y£ G X  such 
that f ( y £) <  a ( y ) + e  and Bye =  y. Since B  is surjective, Banach’s theorem (see, 
for example, Theorem 4.3.1 of (Aubin 1979a)) implies that there exist a constant 
c >  0 and a solution z£ of the equation Bz£ =  z satisfying ||y£ — Z£\\ <  c\\y — z\\. 
Whence,

a (z) < f { z £) <  f { y £) +  L\\ye -  z£\\ <  a(y) +  £ +  Lc\\y -  z\\.

This implies that a  is Lipschitz with constant Lc, where L is the Lipschitz 
constant o f f .
b) Consider the inequality

a (y  +  6 Bu — 6 Bu) — a (y  +  6 Bu) f ( x  +  6v) — f ( x )
-  e  +  e
. a(z — 6 Bv) — a(z) f ( x  +  6v ) —f ( x )< sup ----------- I -------^  +  sup ^

0<P ~

Passing to the limit as a  and (3 tend to 0, we obtain the inequality (35). □

We consider m functions fy : X  IR U {+ o o }  and their upper enve­
lope g defined by g(x) =  maxie/ f t(x ) where I  =  {1 , . . .  ,n} .  We shall denote 
I{x)  =  { i e  I\g(x) =  fi {x)}-

We note that if the functions ft are locally Lipschitz, the same is true of 
their upper envelope. (If \fi(y) -  fy(z)| <  Li\\y -  z|| and y ,z  G x  +  77*£, then 
Ig{y) — #fy)| <  L\\y — z\\ if y, z G x  4- r\B where rj =  mmieJr)i >  0 and L =  
maXj€/ Li >  0.) Whence, the functions / ,  and g are Clarke differentiable.

Proposition 6.9. Suppose that the m functions f t are locally Lipschitz and that 
x  G flie/IntDom  fi. Then,

Dcg{x){v)  <  maxie/(x) D cfi (x) (v) . (36)

Proof, a) We first note that there exists ai > 0 such that if ||rr — y|| <  ai 
then I(y)  c  I{x).  (Suppose a =  g(x) -  m ax^/(l) f j (x )  >  0, e =  | and ai >  0 
are such that for all i G /  \fi{y) — fi{x)\ <  £ whenever \\y — a:|| < oq. Then if 
J € I{y)

fjix) > fj{y)-£ = 9{y)-£>9ix) -  2£

=  a — 2 e +  maxi0 (x)f i {x) >  maximx)fi(x).
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Thus j  € I(x). )
b) If q <  ai/2 and p  <  ai/2||t>||, we obtain the inequality 

g(y +  0v) -  g(y) ^  ____ /i(y  +  6v) -  M y )  ^  _  ff iy  +  Ov) -  fi{v)
j : IIIcLa. ----------------- ------------------ \  IIloX  ----------------- - -----------------

u i€ l(y+6v)  $  i<=I(x) 0

Whence,

D cg(x)(v)  <  inf maxi€/(x) sup —^
O,/3>0 l|î/—æ|1 <c* 0

O<0

Moreover, for all e >  0, and for all i € / ,  there exist a* >  0 and Pi > 0 such 
that

sup M y ± M s L l M  <  max D c f i { x ) ( v ) + £ ,
llv-s|l<«i 0  i e i ( x )

0<0i „

Taking a  =  mirij€/(x) a* > 0 and P =  mini<5/(x) Pi >  0, it then follows that:

My + fo>) -  My)D cg(x)(v)  <  max sup
i € l ( x ) ||v-æ||<û

e<p
0

<  max sup ------------ ------------ - <  max Dcfi(x)(v)  4- e.i e i { x )  H„—*j!<a 0  ~  ie / (x )  A  '
e<p

Letting e tend to 0 completes the proof o f the proposition. □

Remark. If the functions /* are continuously differentiable at x , then their 
upper envelope g satisfies Dg(x)(v)  =  maXi6/(x)(V /i(a:),t;}. If I(x)  consists of 
a single index, then g is Gâteaux differentiable and Vg(x)  — V /i0(a:) where 
9{x) =  f i0(x)-

6.4 Generalised Gradients

D efin ition  6.3. Suppose that the function f  : X  —> IR U {+ o o }  is Clarke 
differentiable at x. Then the subset d f ( x )  o f X  defined by

d f ( x )  =  {pe X * |(p,v) <  Dcf (x ) (v ) ,  \/v e X }  (37)

is called the generalised gradient o f f  at x.

T h eorem  6.2. Suppose the function f  : X  —> IRU {-f-oo} is locally Lipschitz. 
Then it has a non-empty generalised gradient d f ( x )  at any point x  in the interior 
o f Dom f ,  which is convex, closed and bounded and has a support function 
a (d f {x ) , v )  :=  sup{(p,^)|p € d f ( x ) }  which satisfies

a {d f { x ) , v )  =  Dcf {x) {v) . (38)
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Moreover, the set-valued map x € Int Dom f  —> dcf ( x )  G X* satisfies

(x,v ) € IntDom /  x X  —» a(df(x),v ) z,s upper semi-continuous. (39)

P roof. The theorem follows from Definition 6.1 and Theorem 6.1. Since 
Dcf(x) { - )  is convex, positively homogeneous and continuous, it is the sup­
port function of the convex closed subset of elements p € X*  such that 
(p, v) <  D cf (x ) (v )  for all v € X ;  in other words, of the generalised gradi­
ent d f ( x ) of /  at x. Thus, df(x )  is non-empty, convex and closed and (38) 
applies. Since a ( d f ( x ) , v ) <  L\\v\\ =  La(B*,v)  (where B* is the unit ball of 
X*),  it follows that

df (x )  C L B * (40)
This completes the proof of Theorem 6.2. □

P rop osition  6.10. If f  is continuously differentiable then the generalised gra­
dient d f ( x )  =  (V /(a ;) }  reduces to the usual gradient V  f ( x ) .  If f  is convex and 
continuous at x, then the generalised gradient is equal to the subdifferential of 
f  at x.

P roof. Proposition 6.1 shows that if /  is continuously differentiable, then 
a (d f (x ) ,v )  =  Dcf (x ) (v )  =  (S7f(x),v).  Thus, d f (x )  =  { V f ( x ) } .  Propo­
sition 6.2 shows that if /  is convex and continuous, then cr(dcf ( x ) , v )  =  
Dcf (x ) (v )  =  D f (x ) (v ) .  Now, the right derivative of a convex continuous func­
tion is the support function of the subdifferential d f (x )  (see Theorem 4.1).

□
Propositions 6.3 to 6.7 translate as follows in terms of the generalised gra­

dient.

P rop os ition  6 .11. Suppose f  and g are two locally Lipschitz functions. If 
x € Int Dom/  O Int Dom g, then if a  and ft >  0,

d ( a f  -f pg){x)  C a d f ( x )  -f pdg{x).  (41)

I f  x € Int D om /, then
dc ( - / ) ( x )  =  - d cf (x ) .  (42)

If f  is increasing on a convex closed cone P , then

d j ( x )  C P +. (43)

If x is a local minimum o f f ,  then x is a solution o f the inclusion

(Fermat’s rule). (44)0 € 3 f ( x )

If f  is positively homogeneous, then

Vp €  df {x) , (p,x) =  f (x ) . (45)
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I f  A E L (Y ,X )  and if A* G L{X*,Y*)  denotes its transpose, then

dc( fA ) (x )  C A*dcf ( A x )  (46)

with equality if  A is surjective.

Proof. It suffices to note that since the generalised gradients d f (x )  are convex, 
closed and bounded, they are weakly compact; whence d f ( x )  + A  is convex and 
closed when A  is convex and closed (see (Schwartz 1970)). □

Proposition 6.8 translates in the following way.

Proposition 6.12. Suppose that f  is a Lipschitz function from X  to 
IRU { - f  oo } and that B  G L (X , Y) is a surjective operator. I f y  G Int(£  • Dom / )  
and if x  is the solution o f the minimisation problem

a(y)  =  inf f ( x )  =  f ( x )  where B x  =  y, (47)
B x —y

then there exists p  G V* satisfying

p  G da (y) with B*p G df(x ) .  (48)

Proof. Following Proposition 6.8,

0 <  D ca { y ) { - B v ) +  Dcf (x ) (v )  =  a { -B * d a {y )  +  df(x ) ,v ) .

Whence 0 G d f ( x )  -  B*da(y).  □

Remark. An element p  G Y* satisfying (48) is called a Lagrange multiplier for 
the problem of minimisation of a Lipschitz function /  under the linear equality 
constraints B x =  y.

Proposition 6.9 may be restated as follows:

Proposition 6.13. Suppose that the m functions fo are locally Lipschitz and 
that x  G n ie/Int Dom /,. Then

dg(x) C cô (J dcfi(x).  (49)
i€ /(x )

6.5 Normal and Tangent Cones to a Subset

Suppose that K  is an arbitrary non-empty subset of X . We let dx denote the 
distance function measuring the distance from A', defined by

dK{y) =  inf \\x — 2/11- (50)
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This is clearly Lipschitz with constant 1:

\dK( Y ) - d K(z)\<\\y-z\\

Consequently, it is Clarke differentiable.

Definition 6.4. Suppose x £ K . We shall say that the set

Tk (x ) :=  { v  e  x \ B A W W  <  0 }  (51)

is the tangent cone to K  at x and that

NK(x) =  Tk (x )~ =  {p £ X*\(p,v) <  0, Vv € TK(x) }  (52)

is the normal cone to K  at x.

Since v —» jDcdx(x)(v)  is convex, positively homogeneous and continuous, 
Tk {x) is a convex closed cone. Since the normal cone is the negative polar cone 
of Tk {x ), Nk {x ) is a convex closed cone.

Whence
T k ( x ) =  N k ( x ) ~ .  (53)

It is useful to define the normal cone in terms of the generalised gradient of 
dx-

Proposition 6.14. The normal cone Nk {x ) is the closed convex cone generated 
by the generalised gradient o f dx at x

N k { x ) =  (ddK{x))~~. (54)

Proof. We show that ddfc{x) is contained in the normal cone Nj^(x). If 
p £ ddx(x)  and if v € T/^(æ), then (p, v) <  D cdx(x)(v)  <  0. Thus, the convex, 
closed cone generated by ddx{x)  is contained in the normal cone N^(x) .  To 
prove the inverse inclusion, it is sufficient to show that (dd/c(æ))~ C Tk (x ). 
Suppose then that v0 £  (ddK{x))~. Then DcdK{x)(v0) =  cr{ddK(x),v0) =  
suP{(Pi^o)|P € dcdK(x) }  <  0. Thus v0 belongs to Tk {x ). □

Next we state certain elementary properties of tangent and normal cones. 
First we mention the following fact

If Int K  ^  0 and if x  £  Int K , then T k { x ) =  X  and N k [ x ) =  0. (55)

Indeed, if x  -F rjB C K ,  then, for all v £  X , y +  6v belongs to K  if ||y — x|| <  a 
and 6  <  (3 whenever a <  p/ 2  and (3 <  t? /2||'l>||. Thus,

D c dK{x){v) =  inf sup
Q-P>° ll?/-*ll<o

dK{y +  6 v) - d K(y)
6

< 0 .
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6.6 Fermat’s Rule for Minimisation Problems with 
Constraints

Proposition 6.15. Let f  be a locally Lipschitz function. Suppose that x  6 K  
minimises f  over K . Then, there exists L >  0 such that

V y e X ,  f ( x )  +  LdK( x ) < f ( y )  +  LdK (y) (56)

and consequently, 0 C d f ( x )  4  NK (x) (or - d f ( x ) n  NK(x) ^ 0/
Proof. Since /  is locally Lipschitz, there exists a neighbourhood x  4  r)B on 
which /  is Lipschitz with constant L. We take a <  rj/ 2  and e <  nẑ L which is 
destined to tend to 0. Let y £ x  4  aB.  Then, we may associate y with some 
y£ €  K  such that ||y -  y£|| <  dK {y){ 1 4  e). Moreover, |jx -  p|| <  a  <  p, 
dK(y) <  \\x — y|| < a  and ||x -  x £\\ <  \\x -  p|| 4  ||p -  y£|| < a  4  q (1 4  e) =  
a (2 4  e) <  rj. Consequently, f { y e) <  f ( y )  4  L\\y -  ye\\ <  f  {y) 4  L (1 4  e)dK(y). 
Since dx{x)  =  0 (because x  G K )  and since f ( x )  <  f { y £) (because ye £ K ) we 
obtain f ( x )  4  Ld^(x) <  f ( y )  +  L(l  +  e)dK(y) lor all y € x +  aB . Letting e tend 
to 0, we deduce that x is a local minimum of the function y - »  f ( y )  4  Ld/^(?/). 
Whence, by virtue of Propositions 6.3, 6.5 and 6.14, we obtain the inequality

0 <  D c( f  4  LdK)(x){v) <  Dcf ( x ) (v )  4  LDcdK (x)(v)
<  &{dcf { x )  4  LddK{x ), v)

for all v € X.
This implies that 0 € d f (x )  4  L d d ^ x )  C d f ( x )  4  NK (x), following Propo­

sition 6.15. □

Remark. The first assertion is very important in the sense that it allows us 
to replace a minimisation problem with constraints by a minimisation problem 
without constraints.

Remark. I f  K  is convex, NK (x) is the normal cone o f convex analysis (see 
Definition 4.3). We note that the function dx is convex. Take p £ Nk - If y £ K , 
we have

( p , y - x )  <  DcdK {x){y - x )  =  DdK {x){y -  x) <  dK(y) -  dK{x) =  0.

Conversely, if x  maximises y —> (p, y) over K,  Proposition 6.15 implies that 
0 £ —p 4  Nx(x ) .  Thus, the two concepts of normal cones coincide.





T. Two-person Games. Fundamental Concepts 
and Examples

7.1 Introduction

Let us consider two subsets E  and F.  Our aim is to choose pairs (æ, y) € E  x F  
using various optimisation techniques motivated by so-called decision theory. 
This means that we shall provide mechanisms for selecting elements (called 
decisions or strategies) of sets (decision sets, strategy sets) which should reflect 
real decision-taking techniques as closely as possible.

The history of science shows us that parlour games have presented math­
ematicians with numerous problems. Thus, the chevalier de Mere consulted 
Blaise Pascal about the problems of dice games. This led to a correspondence 
between Blaise Pascal and Pierre de Fermat; the six letters they exchanged 
served as a departure point for modern probability theory (which proves that 
mathematicians may also profit from immoral company!) 1.

The terms players and strategies have been used since the start and tradition 
(conservatism) has led to their retention. The current status of the theory of 
games as a mathematical theory is due to John von Neumann who, between 
1928 and 1941, proposed a general framework, with a view to applications in 
the social sciences, within which conflicts and cooperation of players may be 
taken into account. This fundamental work formed the skeletal structure of the

ll. .. My best teacher of this worldly science was Antoine Gombaud, chevalier de Méré----
He was a strong little man, very elegant and scented, who voluntarily established himself as 
a judge of etiquette and graces. After several sea campaigns, he limited his gallantry to the 
conquest of the salons and gave up the sword for the pen. He was very friendly with Pascal, 
Balzac, Ménage, Clérambault and other men of letters of his time and himself perpetrated 
a number of treatises on ‘true honesty’, ‘eloquence’, ‘the delicacy of expression’ and ‘worldly
intercourse’___However, I was taken by the idea of passions and the feelings which engender
them stole into my mind with no specific object in view. It is true that they could have 
settled on the chevalier himself and that it was not because of him they did not rest there. 
In fact, Monsieur de Mere was enamoured of his fourteen year old school girl; he told me 
as much in poems in which, because of my journeys to the islands, he referred to me as the
‘beautiful Indian’ ___For my part, Monsieur de Méré was not to my liking----- However, I was
flattered that he took a liking to me: the first and the last conquests are those for which one is 
most grateful.’ FRANÇOISE CHANDERNAGOR. L ’Allée du Roi. Recollections of Françoise 
d’Aubigné, marquess of Maintenon, wife of the King of France.
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book Theory o f Games and Economic Behaviour, which he published in 1944 
in collaboration with the economist O. Morgenstern.

In fact, this change of direction is due to Léon Walras, who introduced the 
description of a consumer as an automaton seeking to maximise a utility func­
tion subject to various types o f constraints imposed by its environment In this 
case, the strategies are commodities and prices and the players are consumers, 
manufacturers and other economic agents. The individuals who adopt this be­
haviour of an automaton are said to be “rational” . This should not be taken 
as the definition of the adjective ‘rational’ in the philosophical context (in the 
sense of natural knowledge, as opposed to that which comes from myths or from 
faith). Anyway, the concept of reason is the subject of cognitive psychology and 
little is known about this topic except that most of the time a rational individ­
ual cannot maximise his utility function, assuming that he has one. Some ten 
years ago, H. Simon and others questioned the universality of this behaviour 
and proposed replacing the notion of optimality by a less nontrivial notion of 
satisfactoriness.

Whilst we await the psychologists’ findings about knowledge, one way of 
resolving the dilemma is to realise that the first point of view is static, whilst 
the second is dynamic. Taking into account evolutionary phenomena, we need 
no longer assume that an individual is looking for a permanent optimum but 
may suppose that he seeks to increase his utility as he goes along. The second 
point of view is less unrealistic in this sense.

We shall restrict ourselves here to the static case (anyway, investigations 
of the dynamic framework are now under course). Even with these limitations, 
game theory has provided economists with useful tools for clarifying concepts. In 
order to avoid being distracted, one must always remember that these are only 
imperfect and perfectible tools and that one should beware of all dogmatism 
when using them.

Curiously enough, the mathematical problems which have been motivated 
by game theory have led to major contributions to nonlinear analysis which 
have ultimately been useful in very many areas; this is another example of the 
universality of mathematical results which we mentioned when talking about 
Banach at the end of Chapter 2.

7.2 Decision Rules and Consistent Pairs of Strategies

Let us christen our two players Emil and Frances. Emil’s task is to choose a 
strategy x in the set E  and that of Frances is to choose a strategy y  in the set 
F. The pair {x ,y )  £ E  x F  is also called a bistrategy.

One elementary mechanism which allows Emil and Frances to select their 
respective strategies involves providing them with decision rules.

D efin ition  7.1 .A  decision  rule for Emil is a set-valued map C e from F  to 
E  which associates each strategy y £ F  o f Frances with the strategies x £ Ce {v ) 
which may be played by Emil when he knows that Frances is playing y .
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E , set of strategies for Emil

Fig. 7.1. Examples of one-to-one and discontinuous decision rules where there are no 
consistent strategy pairs.

Similarly, a decision rule for Frances is a set-valued map Cp from E  to F  
which associates each strategy x G E  played by Emil and known to Frances with 
the strategies y £ C f ( x ) which Frances may implement.

Once the players Emil and Frances have been described in terms of their 
decision rules Ce and Cp, we may distinguish pairs of strategies- (x, y) which 
are in static equilibrium, in the sense that

x  G C e (V) and ÿ G CF(x) (1)

D efin ition  7.2. A pair o f strategies (x ,y) which satisfies condition ( 1 )  for the 
decision rules Ce o f Emil and C'f  o f Frances is called a consistent pair o f 
strategies or a consistent bistrategy.
The interest of this concept of consistent bistrategies naturally depends on the 
choice of decision rules.

The most simple example of a decision rule is that of a constant decision 
rule. A  strategy x  G E  of Emil may be identified with the constant decision rule
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y £ F  —> x  G E, which describes obstinate behaviour by Emil, who plays the 
strategy x  irregardless of the strategy chosen by Frances.

Consequently, when Emil and Frances play the strategies x  and y, respec­
tively, the pair (x, y) forms a consistent pair.

The set of consistent pairs may be empty or very large or it may reduce to 
a small number of bistrategies. A mechanism will only be of interest to a game 
theorist if, firstly, the set of consistent pairs is non-empty and, secondly, this 
set is small (in the best case consisting of a single pair).

We note that the problem of finding consistent strategy pairs is a so-called 
fixed-point problem. We use C  to denote the set-valued map of E  x F  into itself 
defined by

V(x, y) <E £  x F, C {x ,y )  := CE{y) x CF{x). (2)

The inclusions (1) which define the consistent pairs may clearly be written in 
the form

{x ,ÿ)  €  C (x ,ÿ ). (3)

This is a primary motivation behind the derivation of fixed-point theorems. 
We shall quote (and admit without proof the prototype of these theorems, the 
Brouwer Theorem) the most famous of these theorems.

7.3 Brouwer’s Fixed-point Theorem (1910)

T h eorem  7.1. Let K  be a convex compact subset o f a finite-dimensional space. 
Any continuous mapping o f K  into itself has a fixed point.

We shall discuss the consequences of this theorem, which turn out to be conve­
nient and easy to handle, above all in applications to game theory.

The Dutch mathematician Brouwer (1881-1966) is famous for his contri­
butions to mathematical logic and was one of the founders of combinatorial 
topology, where he innovatively introduced the important notion of a simplex 
and the triangulation technique which he used to prove this famous theorem 
which is at the root of nonlinear analysis.

Thus, we obtain the following corollary.

C orolla ry  7.1. Suppose that the behaviours o f Emil and Frances are described 
by one-to-one continuous decision rules and that the strategy sets E  and F  are 
con vex  com p a ct subsets o f finite-dimensional vector spaces, then there is at 
least one consistent strategy pair.
P roo f. We take K  :=  E  x F  which is convex and compact. Then the set-valued 
map C  defined by (2) is a continuous mapping and thus has a fixed point. □

We shall generalise this theorem to the case of multi-valued decision rules.
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7.4 The Need to Convexify: Mixed Strategies

Brouwer’s Theorem which, in practice, is the fundamental tool for finding consis­
tent strategies together with the Separation Theorem which, as we have already 
seen, is at the root of optimisation theory, both assume that the strategy sets 
are convex. This is an exorbitant assumption which excludes, for example, the 
use of finite strategy sets.

What then should we do? As so often in mathematics, starting from a 
situation which appears hopeless because of the absence of desirable properties, 
one boldly invents another situation in which the validity of these properties is 
re-established.

We shall follow this course, beginning with a finite strategy set. Suppose 
that E  =  { 1 , . . . ,  n } is a set of n elements.

We associate E  with the subset

M " : = { A 6 lR "| y ;A i =  l }  (4)
i=l

called the (n — 1) simplex of IRn.
This is clearly a convex compact subset of IRn. We can embed E  in M n by 

the mapping <5 which associates the zth element of E  with the zth element ei of 
the canonical basis of IRn:

6  : i €  { 1, . . .  ,n }  -> <5(0 :=  e‘ :=  (0, . . . ,  1, . . .  , 0) (5)

We also note that
M n =  c o { e ' , . . . , e n}  (6)

Interpretation

J. von Neumann proposed interpreting the elements A G M n as mixed strategies. 
In this framework, a player does not choose a single strategy as before but plays 
all the strategies and chooses only the probabilities with which he plays them.

One important justification for a player’s use of mixed strategies is the 
protection which he obtains by disguising his intentions from his partners. By 
playing the different strategies randomly, in such a way that only their proba­
bilities are determined, he prevents his partners from discovering the strategy 
which he is going to play, since he does not know it himself.

We must not hide the fact that, in ‘convexifying’ strategy sets, we are moving 
away from our original static framework, since random play assumes that the 
game will be repeated!

However, one might reason that there is a ‘game’ if there is uncertainty in 
the choices of the players and, thus, taking this uncertainty into account we 
may rejoin the static framework.

Psychologists and sociologists suggest that this uncertainty which enables 
the players (actors) to take a detached view of the decisions with which they 
are faced should be considered as a component of the notion of power.



We shall also have recourse to this convexification process later in the context 
of cooperative games, where we convexify the set of coalitions o f players (see 
Chapter 13).

In fact, this is a mathematical necessity which provides a palliative improve­
ment of the static case bringing it halfway towards the dynamic framework 
which has just been invented.
Any set-valued map C  from E  =  { l , . . . , n }  to a vector space X  may be ex­
tended to a set-valued map C  from IRn to A  as follows

V A S E " ,  C W -.=  ± \ iC (ï) (7)
i=  1

If Ô is the mapping from { 1 , . . . ,  n}  to M n defined by (5), we have the following 
scheme
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C  =  C 6

If C  is a one-to-one mapping, it is clear that its extension C  is a linear 
mapping from IRn to X .

The process which associates the mapping C  : { l , . . . , n }  —> X  with the 
linear mapping C  : M n —>• X  may be thought of as a linearisation process 
associated with the convexification process which associates the convex compact 
set M n with the finite set { 1 , . . . ,  n }.

7.5 Games in Normal (Strategic) Form

The traditional way of modelling game theory is to assume that each player 
classifies the bistrategies using an evaluation function f .  This function has 
several names, for example, criterion function, utility function , gain function, 
loss function, cost function, etc. The terminology is a matter of taste. Whatever 
terminology is used, such a function may be associated with a partial order > 
(called the partial order o f preferences) as follows

(x i ,2/i) € E  x F  is preferred to {x 2 , y2) G E  x F  
if and only if f { x u yi) <  f { x 2 , y2) (8 )
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(for loss functions or cost functions; for utility functions and gain functions, the 
direction of the inequality is inverted).

A  player behaves so as to minimise his losses as far as possible.

Remark. We have associated a partial order with a loss function / .  We note 
that the partial order remains unchanged (in fact this is the only thing that 
matters) if we replace the function /  by any function <po f  where <p is a strictly 
increasing bijection from IR to IR.

In particular, if a >  0 and 6 € IR are given, the function a f  +  b defines the 
same partial order as / .

The inverse question then arises: can we represent any partial order by an 
evaluation function? Sadly, the most common partial order on IRn, the lexico­
graphic partial order cannot be represented by a continuous utility function. 
This led to a debate lasting several decades between supporters and adversaries 
of utility functions, until Gérard Debreu derived a theorem showing that a large 
class of partial orders may be represented by continuous functions (for a simple 
version of this theorem, see Theorem 5.4.1 of (Aubin 1977)).

We shall not become embroiled in this debate, especially since considerations 
of cognitive psychology seem to indicate that the mechanisms of choice do not 
obey (globally) rules for classification according to a partial order. Moreover, 
this notion is of little meaning in a dynamic framework.

Nonetheless, this is still a source of intrinsically interesting mathematical 
problems. The relevance of the assumption that the behaviour of the players is 
based on evaluation functions is a concern of economics, which is not an exact 
science.

None of this is very serious since, whilst the use of utility functions may 
legitimately be rejected, it is more difficult to take issue over the use of decision 
rules at this level of generality.

Let us return to our problem. We now suppose that the players Emil and 
Frances choose (separately) their strategies using their loss functions f E and f E 
from E  x F  to IR.

We set
f (x, y) :=  ( / e (x , y), If {x , y)) £  IR2. (9)

D efin ition  7.3. A two-person game in norm al (strategic) form  is defined 
by a mapping f  from E  x F  into IR2 called a biloss m apping.

We have described a natural way of associating decision rules with the 
players o f a game in strategic form. Let us now consider Emil’s loss function 
f E. If he happens to know the strategy y £ F  played by Frances, he may be 
tempted to choose the strategy x  £ E  which minimises his loss x f ( x }y), 
assuming Frances’s strategy is fixed. In other words, he may choose a strategy 
in the set C E(y) defined by
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C E{y) ■■= { x  € E\fB{x , y) =  inf f E(x, y)} .  (10)
{x£E}

This enables us to define a decision rule C F ' F  —» E  for Emil. Similarly, we 
define the decision rule C F : E —> F  for Prances by the formula

C F{x) := { ÿ  € |f F{x tÿ) =  inf / f (x , î/) } . (11)

Definition 7.4. The decision rules C F and C F associated with the loss functions 
by formulae ( 1 0 )  and ( 1 1 )  are called the canonical decision rules.

A consistent pair o f strategies (x } ÿ) based on the canonical decision rules 
is called a non-cooperative equilibrium (or a Nash equilibrium) of the 
game.

Thus, a pair (x,zj) is a non-cooperative equilibrium if and only if 

(i) Î E % ÿ )  =  mf f E{x ,y )
(ü) f F % y )  =  inf f F{x,y) .  (12)

Consequently, a non-cooperative equilibrium is a situation in which each player 
optimises his own criterion, assuming that his partner’s choice is fixed. This is 
called a situation with individual stability.

One convenient way of finding non-cooperative equilibria is to introduce the 
functions

(i) f bE(y) :=  jn f f E{x, y) f E fiat

(n) fUy)  :=  inf f F(x ty) f F flat. (13)

Thus, we note that a pair (x 7ÿ) €  E x  F  is a non-cooperative equilibrium if 
and only if

(i)
(n )

7.6 Pareto Optima

Does the concept of non-cooperative equilibrium provide the only reasonable 
scheme for solution of a game in strategic form? This is not necessarily the case, 
particularly if we assume that the players communicate, exchange information 
and cooperate. In this case, they may notice that there exist strategy pairs (x, y) 
satisfying

f E{x,y)  <  f E{x ,ÿ )  and f F{x,y)  < f F{x,ÿ)  (15)

where the two players Emil and Prances have losses strictly less than in the case 
of non-cooperative equilibrium (x ,ÿ). When this situation occurs, it betrays a

f E{x,y) =  f F{y)
fF {xyÿ) =  f F{x) (14)
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lack of collective stability , since the two players can each find ‘better’ strategies 
for themselves.

D efin ition  7.5. A strategy pair (x*, y*) € E x  F  is said to be P areto  optim al2 
if there are no other strategy pairs (x, y) G E x  F  such that f F(x , y) <  / F(x*, y*) 
and f F(x,y)  <  / F(x*,y*).

The idea is that there exist non-cooperative equilibria which are Pareto 
optimal. Regrettably, there are few examples of such equilibria and no general 
theorem is known.

We denote the set of losses of each player by IRF =  1R and IRF :=  IR 
(respectively) and the set o f the players’ bilosses by IR2 :=  IRF x IRF.

Figure 7.2 shows the set f ( E x F )  C IR2 of bilosses f(x,  y) — ( / F(x, y), / F (x, y)) 
suffered by the two players. The bilosses corresponding to the Pareto optima 
are shown by thick lines. We note that the selection of the Pareto optima is not 
a very precise mechanism.

Suppose, for example, that there exists a pair (x, y) which minimises Emil’s 
loss function f E on E x F:

M s , y) =  inf /fs(x,y) =: aE.
ye F

(16)

Clearly, such a pair is Pareto optimal. For Frances to accept this situation, we 
must assume that her only goal in life is to please Emil. Similar comments apply 
to any Pareto-optimal strategy pair (rc, y) which minimises / F on E  x F

fF {x ,y )  =  inf / F(x, y) =:  a F.
y€ F

(17)

2In fact, to be exact, we should use the term ‘weakly Pareto optimal’. We commit this 
abuse of terminology consciously.
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We observe that if a strategy pair (x ,y)  minimises both f F and f F simultane­
ously on E  x F,  then it is the best candidate for a solution scheme. In this case, 
we would have

is called the 'virtual or ‘shadow’ minimum o f the game.
We also note that the bistrategy {x ,y)  of (16) (or the bistrategy (£, y) of 

(17)) is not a propitious choice if one takes into account sensible psychological

will agree to replace a given strategy pair by another strategy pair which will 
result in lower losses for each o f them. One cannot sensibly imagine that one

In fact, one of the objectives of the theory of cooperative games is to provide

is the case in which Frances’s behaviour consists of pleasing Emil without taking 
her own interest into account (devoted behaviour); this leads to the strategy 
pairs (x ,y ) of (16).

7.7 Conservative Strategies

If behaviour of this type exists, it is not universal. There is also the contrary 
behaviour, in which Frances’s only goal is to annoy Emil and where Emil is 
aware of this (we assume that Emil is convinced of Frances’s dark designs, or 
that he is paranoic, etc.). In this case, Emil evaluates the loss associated with 
a strategy x  using the function fg  (fg  sharp) defined by

This conservative value may be used as a threat. Emil may always reject a 
strategy pair (x ,y)  € E  x F  satisfying

ctE =  fE{x,y)  and qf =  f F{x ,y )  

which only happens in exceptional cases. This is why the vector

oc :=  (ctg> otF) £ IR2 (18)

considerations. It is reasonable to think (or rather to expect) that the players

player would let the other player be the sole beneficiary of this operation.

mechanisms for selecting Pareto optima. One example of this selection process

f e ( x ) '■= sup/«(-'''.y)- (19)
y € F

f g  is said to be Emil’s worst-loss function. In this case, Emil’s behaviour consists 
of finding strategies x ü €  E  which minimise the worst loss, namely solutions of

/!(- 'sc) =  inf f E(x). (20)

We shall say that Emil’s strategy x  is conservative. We set

(21)

and call Emil’s conservative value.
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y) >  fJe (22)

since, by playing a conservative strategy x  ̂ G E , Emil ensures that his loss 
fE(x*,y)  is strictly less than f E( x , y ) since f E(x\ y ) <  f E(xK) = : v*E <  f E{x,y).

Consequently, if he cannot reach agreement with his partner, he can always 
threaten to play a conservative strategy x 11 so as to limit his loss to v\.

In a symmetric fashion, Frances’s conservative value is defined by

v f  :=  inf sup f F ( x ,  y) = :  inf f F(y) (23)
veF xçE y^F

where we have set

f F(y) :=  sup f F ( x , y )  ( f F  sharp). (24)
xeE

We shall call the vector
V» :=  ( 4 , 4 )  (25)

the conservative vector for the game.
Thus, the only strategy pairs of any interest are those which satisfy

f ( x ,2 / ) < v fi. (26)

Thus, the set of bilosses of the strategies of interest is contained in the
rectangle [a#, vE] x [ar, ^f ] (see Fig. 7.3). Here we have a first selection process.

Fig. 7.3.

The idea is to find non-cooperative equilibria which are Pareto optimal or 
pairs of conservative strategies which are Pareto optimal. Games in which the 
conservative vector is Pareto optimal are usually called inessential games. We 
shall show that certain zero-sum games are inessential.
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7.8 Some Finite Games

We shall give examples o f games to illustrate the concepts described above.
In all these games, Emil and Frances have strategy sets consisting of two 

elements E  { I , II}, F  =  {1 ,2 }. The biloss mapping is represented by bima­
trices

Frances
Emil 1 2

I (a, 6) (c,d)
II ( e , / )

For example, if the strategies {1 ,2} are played, Emil’s loss is equal; to c and 
that of Frances is equal to d.

We begin with the well-known game of the prisoner’s dilemma.

P rison er ’s dilem m a

Emil and Frances are accomplices to a crime which leads to their imprisonment. 
Each has to choose between the strategies of confession (strategies I and 1, 
respectively) or accusation (strategies II and 2, respectively).

If neither confesses, moderate sentences (û years in prison) are handed out. 
If Emil confesses and Frances accuses him, Frances is freed (0 years in prison) 
and Emil is sentenced to c > a years in prison. If both confess, they will each 
have to serve b years in prison, where a <  b <  c.

Frances
Emil 1 (peaceable) 2 (aggressive)

I (peaceable) (a, a) (c ,0)
II (aggressive) (0,c) (M )

Many authors have embroidered on this game. The original interpretation may 
also be modified in favour of diplomatic or military illustrations.

For example, strategies I and 1 may be interpreted as being peaceable whilst 
strategies II and 2 are aggressive .

Figure 7.4 shows the losses incurred in each case. We illustrate this game in 
the space of bilosses. We have

Æ (I) =  c, 4 (11 ) =  6, 4 ( 1 )  =  C. 4 ( 2 )  =  6

whence

4  =  4 (11 ) =  b, 4  =  4 ( 2 )  =  b

and the strategy pair (11,2) is conservative. It follows that the pairs (1,2) and 
(II, 1) are useless, since, for example, by playing I, Emil risks a loss of c and by 
playing II, Emil limits his loss to b < c.
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In addition, we have

fkil) = 0,/k(2) = b, Æ(I) = 0, / f(H) =  b

whence the strategy pair (II, 2) is also a non-cooperative equilibrium, since

0) / f (II,2) =  6 < / e (I,2) =  c

(>>) / f ( H ,  2) =  6 <  / f ( H ,  1 )  =  c.

The strategy pairs (1 ,1), (II, 1) and (1,2) are Pareto optimal.

Fig. 7.4.

If there is no cooperation or communication between the players, aggressive 
strategies will be chosen, whilst an examination of the situation and a minimum 
of cooperation will enable the players to choose peaceable strategies. However, 
when playing a peaceable strategy, a player runs a large risk if he allows his 
partner to play an aggressive strategy.

The paradoxes which arise en masse stem from the elementary and simplistic 
nature of this game, which it is improper of us to have interpreted in terms of 
war and peace.

The fact that it is impossible to propose a strategy pair as a candidate 
for a ‘solution to the game’ is due, amongst other things, to the static nature 
of the game and the obligation to choose once and for all between polarised 
strategies with no room for compromise, etc. But this game does provide a 
direct illustration of some of the difficulties one meets.
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Game of Chicken

If a < b <  c, this game is represented by the matrix

Frances
Emil 1 2

I (a, a) (M )
II (0, 6) (c, c)

The bilosses are shown in Fig. 7.5:

Fig. 7.5.

This may be interpreted as follows. Emil and Frances are driving and reach 
a crossroads with no signals and no rules of priority. The strategies in each case 
are to stop (strategies I and 1) or to cross (strategies II and 2). If both cross, the 
cost to each player of the subsequent accident is c. If both stop, they are only 
penalised by a slight delay, represented by a loss a <  c. If one crosses and the 
other stops, the one who crosses loses nothing, while the one who stops incurs 
a delay and a loss costing 6 €]a, c [.

We have

Æ ( I)  =  f>, / i ( I I )  =  c, /« .( l)  =  6, Æ (2) =  C

whence the strategies I and 1 are conservative and =  (1,1). The game is 
inessential since (1,1) is Pareto optimal as are the pairs (1,2) and (II, 1).

Since

/ e (1) =  0, f B(2) =  b, f bF (I) =  0 and /*  (II) =  b

we note that the pairs { 1, 2}  and { 11, 1}  are non-cooperative equilibria which 
are Pareto optimal. However, they are not interchangeable.
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Battle of the Sexes

The strategies of Emil and Frances consist of going to a football match or going 
shopping. Emil prefers the match, Frances prefers window-shopping; however, 
they both prefer to be together. This game is represented by

where 0 <  a <  b.

Frances
Emil 1 2

I (0 ,a ) ( M )
II • 0M ) (a, 0)

We note that the pairs (1,1) and (II, 2) are Pareto optimal, that 

/ i ( I )  =  Æ (II) =  /« .( l )  =  Æ ( 2 ) = 6

and that

v 11 =  (6, b).

Whence, the four strategy pairs are conservative. We also note that the pairs 
(1,1) and (II, 2) are the non-cooperative equilibria for the game.

Coordination Game

Emil and Frances have to open a door to escape from a fire. The strategies of 
the players are, respectively, to go through the doorway (strategies I, 1) or to 
push the door open (strategies II, 2). If no one opens the door, they stay in the 
fire, incurring a loss of c. If Emil pushes the door open (strategy II) and Frances 
passes through (strategy 1), she escapes

first (zero loss) and Emil escapes second with a loss a <  c.
If they both push the door open at the same time, it takes longer and both 

come out with slight burns (loss b G]a, c[). This game is represented by the 
matrix
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Fig. 7.7.

Frances
Emil 1 (go through) 2 (push)

I (go through) (M ) (0 ,a)
II (push) (o .0) (c, c)

and the bilosses are as shown in Fig. 7.7:
The Pareto-optimal pairs are the strategies (1,2) and (11,1), where one of 

the players pushes the door open and the other passes through the doorway. 
Since

4 ( i )  =f>, 4 ( i i )  =  c, 4 ( i )  =  6, 4 (2 ) =  c,
we deduce that

v K =  (6, b)

and that the conservative strategies involve both players pushing the door open. 
Since

4 ( 1 ) =  4 ( 2 )  =  0, 4 (1 )  =  a, 4 (11) = 0

we deduce that the pairs (1,2) and (II, 1) are the non-cooperative equilibria of 
the game, which are Pareto optimal.

7.9 Cournot’s Duopoly

We next describe the fundamental example of the duopoly, where the two players 
are each manufacturers of the same single commodity. In this case, the loss 
functions are cost functions which depend on the production of the two players. 
This game and the concept of non-cooperative equilibrium were introduced 
by Antoine Cournot in 1838. He was the first to propose the concept of non- 
cooperative equilibrium, which he introduced in the framework of an economic 
model. This model has played an important historical role in explaining the 
behaviour of competing manufacturers in the same market.
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Description of the Model

We suppose that Emil and Frances manufacture the same single commodity. We 
denote the quantities of this commodity produced by our players by x  € IR+ 
and y € IR+.

We assume that the price p(x, y ) is an affine function of the total production 
x +  y

p(x,y)  :=  a - p ( x +  y) ( a > 0 , / ? > 0 )  (27)

and that the cost functions CF and CF of each manufacturer are affine functions 
of the production

Ce {x ) : = 1x +  5, CF( y ) : = y y  +  6} (7 > 0 , a > 0 ) .  (28)

Emil’s net cost is equal to

/ e(z > y) ■= i x  +  ô -  p { x , y ) x  =  p x [ x  +  y  +  +  0

and that of Frances is

/ f (z , y) :=  + X  +  Ô -  p (xy y)y =  py ( x  +  y +  +  ô -

Taking p  =  1 and 6  =  0 does not modify the game. Then, setting u =  a  — 7,
the duopoly may be viewed as a two-person game, where

E : = [ 0,u], F  :=  [0, «], (29)

with loss functions defined by

fE(x,y)  : = x { x  +  y - u ) ,  f F( x , y ) : = y ( x  +  y - u ) .  (30)

The biloss mapping is then defined by

f (x ,  y) :=  (x(x  +  y - u ) , y ( x  +  y -  u)). (31)

This maps the upper triangle

T+ := { (x ,  y) e  [0, u f  \x +  y >  u}  (32)

into the rectangle S+ =  [0, u2}2, the diagonal

T0 :=  {(x , y) e  [0, u]2\x +  y =  u } (33)

onto {0 }  and the lower triangle

TL :=  {(a;, y) G [0, uf\x +  y < u }  (34)

onto the triangle



118 7. Two-person Games. Fundamental Concepts and Examples

Fig. 7.8.

S - : =  ( / ,< ; )€ - T ’°
U

I f  +  g > —

We observe that the set

P  :=  |(a:, y) G [0, u]2\x +  y =  | }  

is mapped into the subset

.2 12
f(-P) :=  (/,<?)€ ~ T ’ °

IT
\f +  g - —j

(35)

(36)

(37)

(see Fig. 7.8).
We then note that the subset P  o f (36) is the set o f Pareto strategies.
The strategy pair:

u u
Xp :=  4 » yp :== 4 (38)

2
results in a loss to each player of — ̂  Thus, if the manufacturers agree to 
cooperate, this Pareto-optimal strategy pair is a reasonable compromise.

It is clear that Emil’s worst-loss function f E

f E{x) =  sup x(x  +  y — u) =  x 2 (39)

attains its minimum at x 11 =  0. In a symmetric fashion, f E, defined by f E(y) =  y2 

attains its minimum at y$ =  0. Consequently the conservative strategies o f Emil 
and Prances are equal to 0, whence the production of each player is zero.

The conservative vector for the game is equal to (0,0).
We note that the virtual minimum is equal t o o  — [—
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Fig. 7.9.

Non-cooperative Equilibria

Suppose that Frances produces y units. In this case, Emil will produce x  units 
to minimise his cost function x  —> x (x  +  y — u) on [0, u], where

x  =  C E(y) =  ^ ( u - y ) .  (40)

Thus, C e  : y —> \ {u — y) is Emil’s canonical decision rule. Similarly, Frances’s 
canonical decision rule is given by C F : x  —> \{u — x). Consequently, the non- 
cooperative equilibrium of the duopoly (also called Cournot’s equilibrium) is 
the fixed point of the mapping (x ,y )  - »  (CTQ/), CV(z)); in other words, this is 
the strategy pair

U  U  f A 1 \

x c  :=  g ,  yc  :=  g  (41)

which results in a cost of — ~  to each player. We npte that, in this game, the 
non-cooperative equilibrium is not Pareto optimal.

We also note that the non-cooperative equilibrium may be attained algo­
rithmically. Consider the following scenario. We suppose that the players play 
alternately, Emil in the even periods and Frances in the odd periods. When 
Frances produces y2n-i in the period 2n — 1, Emil produces x^n Ce(?/2n-i) 
in the period 2n. Frances then changes her production rate and produces 
y2n+i ■= C F{x2n), and so on.

The sequences of elements x 2n and y2n- i are subsequences (indexed by the 
even and odd indices, respectively) extracted from a sequence of elements zk 
which satisfies the recurrence relation

2zfc+i +  zk — u.
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Multiplying each of these equalities by (—l ) fc+12fc and adding them, we 
obtain

zn
u 1 -f 2-n 
2 1 +  2 - 1

+  ( ~ l ) n+12~e~l z\.

Wlience, the sequence zn, and thus also the subsequences x 2n and ij2n+\, con­
verge to |.

Unfortunately, this algorithm does not converge in general games.

Associated Game Relating to the Decision Rules

A duopoly may be associated with another game, which involves choosing not 
the strategies but the decision rules.

Let us consider Emil’s point of view. He may decide to play an affine decision 
rule C a of the form

CE(y) a(u — y ) where a g]0, 1[. (42)

This means that he does not produce anything when Frances produces the 
maximum u and that he decides to produce u if Frances produces nothing.

When, in turn, Frances decides to behave according to an affine decision 
rule Cp defined by

C bF{x) :=  b(u — x ) where b e]0,1[, (43)

the subsequent consistent strategy pair is equal to

/ a ( l  — b)u 6(1 — a)u\
\ 1 — a& ’ 1 — a6 J (44)

This subjects the players to the following costs:

0)

(ü )

ffE(a* b)

9 f (cl, 6)

a (l — a)( l  — b)2u2

(1 — a6)2
6(1 — 6)(1 — a)2u2

(1 — a6)2 (45)

Thus, we have constructed a new game, the strategies of which are the slopes 
of the affine decision rules. In this new game, if Frances plays a slope 6, Emil 
will play the slope â =  cte(6) which minimises the function a gE(a,b). We 
obtain

à =  aË(b) =  (46)

Similarly, Frances’s canonical decision rule of in this new game is given by

1
2 —  aaF(a) = (47)
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The non-cooperative equilibrium of this game is formed by the pair of slopes

(g =  1 , 6 = 1 )  (48)

Adopting this concept, Emil and Frances implement the decision rules

Cp(y)  =  u — y and Cp(x)  — u — x. (49)

The set of consistent strategy pairs associated with these decision rules is 
equal to:

A  :=  {(æ, y) e  [0, u)2\x +  y =  u }. (50)

These consistent strategy pairs result in a zero cost to the players.

Stackelberg Equilibrium

As in the initial game, the non-cooperative equilibrium (â, 6) =  (1,1) may be 
obtained algorithmically, as follows. Frances, who starts, plays the slope |, which 
is just her canonical decision rule Cp. If Emil knows (or guesses) that Frances 
will play Cp =  Cp^ 2, in the new game, he will play the slope op  (|) =  §•
The associated decision rule Cp2^3 is called Emil’s Stackelberg decision rule. 
The consistent strategy pair associated with the decision rules C p 3 and C p 2 is 
equal to

u u
xs  =  2> Vs ■= 4* (51)

This pair is called Emil’s Stackelberg equilibrium after the economist 
H. von Stackelberg who described this behaviour in 1933 in a review of price 
theory.

The associated costs are given by the formulae

xi? v?
} e { x s , Vs ) = —g-, { f ( x s , Vs ) =  - ^ (52)
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Fig. 7.10.
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By playing his Stackelberg equilibrium, Emil achieves a cost better than that 
provided by the non-cooperative equilibrium, — ̂  as against whilst Frances 
loses.

Suppose now that Frances follows the same reasoning as Emil. In this case, 
both will play their Stackelberg decision rules C%z and C p .  The consistent 
strategy pair associated with these two decision rules is

2 u 2 u
XD ;=  T -  y°  :=  T

This is called the Stackelberg disequilibrium, since the costs incurred

2ü  ̂ 2 uf
fE (xD,y D) = —— , f U d) =  —  (54)

are greater than those in the case o f the non-cooperative equilibrium).
We are in the paradoxical situation where unilateral use of the Stackelberg 

decision rule is advantageous for the player who uses it, whilst simultaneous 
use of the Stackelberg decision rule is unfavourable to both players. We have 
rediscovered the prisoner’s dilemma:

(53)

Frances
Emil canonical (1/2) Stackelberg (2/3)

canonical (1/2) f U 2 U 2 '

\ 9 ’ 9 l
( V ?  \
V 16’ 8 /

Stackelberg (2/3) u 2 u 2

8 ’ 16 J i

-y»l

The algorithm associated with the new game yields the series o f slopes 
1 =  Q ) .  !  =  ° f  ( I ) ,  . . . .  1 -  i ,  , since

f f ( 1 - ï ï )  =  2 ^ T T i  =  1 - ^ T T

These clearly converge to the slope 1. Thus, Emil will successively play the 
slopes 1 — |, 1 — |, — in the even periods, whilst Frances will play
the slopes |, 1 — 1 , 1 — ^  in the odd periods.

In the even periods, the consistent pairs are

u (2 n — 2 )n
Z 2 n  : =  - ,  V2n —  2 ( 2 n  -  1 )

and in the odd periods they are

(2n — l)w _ _  u
%2n+\ "—  Z > ?/2n4-l • 77"4 n 2

They converge to the pair ( f , |) ^ A.





8. Two-person Zero-sum Games: 
Theorems of Von Neumann and Ky Fan

8.1 Introduction

It is in the context of two-person zero-sum games (called duels) that we shall 
prove the two fundamental theorems of this book, theorems which have appli­
cations in many other domains outside game theory. The first statement and 
proof o f the minimax theorem are due to John von Neumann in 1928. Since 
then, many different proofs and variations on this theorem have been given. 
The proof we describe here is in our opinion the most elementary.

In 1972, Ky Fan proved another minimax inequality, which is stronger since 
it has been shown to be equivalent to Brouwer’s fixed-point theorem.

This inequality also plays a crucial role, not only in game theory, but also as 
a useful tool for proving many theorems of nonlinear analysis. Experience shows 
that it is better to use Ky Fan’s Inequality than the fixed-point theorems due to 
Brouwer or Kakutani, although all these results are equivalent (see Chapter 9).

8.2 Value and Saddle Points of a Game

We now consider the important class of two-person zero-sum games, which by 
definition satisfy

\/x € E, \/y € Fy f E{x, y) +  f F(x, y) =  0. (1)

In other words, Frances’s loss is Emil’s gain and vice-versa. Since f ( E x F )  is 
contained in the second bisectrix o f IR2, any strategy pair is Pareto optimal, so 
that this concept is not of interest here. Condition (1) enables us to set

f(x,y) :=  fB(x,y), -f(x ,y)  '■= I f (x } y) (2)

and consequently

f\ x )  :=  sup f { x , y ) , :=  inf sup f ( x ,  y) (3)
yeF

f\y) ■= in f / ( z ,y ) ,Xkzth
vb :=  sup inf f ( x , y ) .

yÇ.F
(4)
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Fig. 8.1.

We set

E* := { x  e E\f*(x) =  v*}
=  {yb € F | / V )  =  vb}. (5)

Then we have
/£ (* )  =  /"(*)> M y ) =  - f b(y) (6)

and
=  î;11, Vp =  — vb, =  (t;11, —-ub). (7)

The subsets E 11 and F* consist of the conservatives strategies of Emil and 
Frances, respectively.

Since

V:C G E ,  Vy €  F, f ( y )  <  f ( x )

we deduce that
vb < v11 (8)

in other words that
v# =  ( ^ 5 —vb} (9)

lies above the second bisectrix.
We shall call the duality interval. The set K  of strategy pairs

K  :=  { ( 2c,y) e  E x  F\vb <  f { x , y )  <  v#}, (10)

which is equal to the set of strategy pairs (x ,y)  G E x F  such that f  (x ,y )  <  Vs, 
contains E ü x  F b. There are situations in which vb is strictly less that

Example. In November 1713, in a letter to Nicoli Bernoulli, Rémond de Mont- 
mort proposed the following game of ‘pure reason’ :

A father wishes to give his son a Christmas present and says to him: I shall 
take an odd or an even number of tokens in my hand, as I think fit.
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• If you guess that the number is even and the number in my hand is odd, 
I shall give you two écus.

• If you guess that the number is odd and the number in my hand is even, 
you will give me one écu.

• If you guess that the number is odd and the number in my hand is odd, 
you shall have one écu.

• If you guess that the number is even and the number in my hand is odd, 
you will give me one écu.

I wonder

1. What rule should one prescribe for the father, so that he saves as much 
money as possible?

2. What rule should one prescribe for the son, so that he turns the situation 
to his advantage?

3. Determine the advantage that the father gives his son, and calculate the 
value of the gift, assuming that each behaves in the way which is most 
advantageous to himself.

R. de Montmort’s intuition is that ‘it would be absolutely impossible to prescribe 
any rule for such a game between equally astute and perceptive players’ .

Let us call the father Emil and the son Francis. This moving family scene 
translates into the finite game

Francis
Emil even (1) odd (2)

even (I) 2 - 1
odd (II) - 1 1

where Francis plays the columns and Emil plays the rows.
The coefficients of this matrix represent Emil’s losses or Francis’s gains.
Let us calculate the conservative values.
Since Emil’s worst losses are 2 and 1, respectively, his conservative value is 

given by r;8 =  1, which he obtains by taking an odd number of tokens in his 
hand.

Francis’s worst gain is —1 in both cases and, consequently, his conservative 
value is given by =  — 1 <  rA The strategy pairs (odd, even) and (odd, odd) 
belong to the set K .

Let us now analyse the different ways of playing. Suppose that Francis plays 
the odd strategy (2), which is conservative. Anticipating this choice and using 
his canonical decision rule, Emil would be well advised to play the strategy even 
(I), which gives him a loss o f —1. But, at that moment, Francis, guessing this 
ruse, actually announces an even strategy (1), which causes Emil to lose two
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ecus. He should have been satisfied with his conservative strategy (odd) which 
would have limited his loss to one.

This situation illustrates the consequences of the absence of non-cooperative 
equilibria. In fact, Emil’s canonical decision rule C e is given by

C e { 1) =  {11} and C E{2) =  {1} 

and that of Francis is given by

C F(I) =  {1 }  and 0 (1 1 )  =  {2 }.

We note that the mapping C  :=  (C F x C e ) is defined by

C (I,1 ) =  (11,1), C (1 ,2) =  (1,1)
C(H, 1) =  (11,2), C (II,2) =  (1,2)

which we represent by the following scheme

Francis
Emil even (1) odd (2)

even (I) 4
odd(II) ->• t

graph of C

This scheme illustrates not only the absence of fixed points, but also the 
circular nature o f the evolution of the ‘natural’ algorithm. If Emil plays I, Francis 
plays C f (I) =  {1 } , Emil plays C e { 1) =  {I I }, Francis plays 0 (1 1 )  =  {2 }, Emil 
plays C e {2) =  {1} and so on.

We note that we have only left the static framework to illustrate R. de Mont- 
mort’s intuition.

It was two centuries before Emile Borel suggested the notion o f mixed strate­
gies and von Neumann proved the theorem mentioned above and the determin­
istic framework was left behind.

Example. Let us consider the finite game where E  {1 ,2 } , F  :=  {1 ,2 ,3 } and 
/  is described by the matrix

Frances
Emil 1 2 3

1 - 6 2 - 3
2 4 - 5 - 4

where Emil plays the rows and Frances plays the columns.
The coefficients of this matrix represent Emil’s losses and Frances’ gains.
Let us calculate the conservative values. Emil’s worst losses are 2 and 4, 

respectively, his conservative value is given by u11 =  2 and his conservative 
strategy is 1. Frances’s worst gains are —6, —5 and - 4 ,  respectively, it follows 
that vb =  —4 and that Frances’s conservative strategy is strategy 3. The strategy 
pairs (1,2), (1,3) and (2,3) belong to the set K .
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Here again, there are no non-cooperative equilibria. Emil’s canonical deci­
sion rule C e is given by

ÜE(1) =  {1 }, Ü E(2) =  {2 }, Ü e (3) =  {2 }

and Frances’s canonical decision rule Cp  is given by

C f (1) =  {2 }, CV(2) =  {1 }.

We note that the mapping C  :=  (Cp x  Cp) has no fixed points.

The absence of non-cooperative equilibria when i>b is strictly less than is 
a general fact.

P rop os ition  8.1. The following conditions are equivalent:

(a) (æ, ÿ) is a non-cooperative equilibrium;
(b) V { x , y ) e E x F , f ( x , y )  <  f ( x , ÿ )  <  f ( x ty) ;
(c) =  vb and x  € E\ ÿ  € F b are conservative strategies. (11)

P roof. The equivalence of properties (11) (a) and (11) (b) clearly follows from 
(2) and ( l l ) (b )  evidently implies ( l l ) (c ) .  The converse is also easy. We let v 
denote the common value — vb. If x  G E  ̂ and ÿ £ F b are conservative 
strategies, then v =  f b{ÿ) <  f ( x , y )  <  / B(x) =  v, which implies the inequalities 
( l l ) (b ) . □

D efin ition  8.1. When vb =  vB, the common value v =  t»*1 =  vb is called the 
value o f  the gam e and the non-cooperative equilibria are called saddle points.

Fig. 8.2.
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by the matrix
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Frances
Emil 1 2 3

1 - 2 - 1 - 4
2 1 0 - 6

We note that v =  — 1 and that the pair (1,2) is a non-cooperative equilib­
rium or saddle point of the game.

8.3 Existence o f Conservative Strategies

To find non-cooperative equilibria, we must first find the conditions which imply 
the equality of t»1* and vb. To this end, we introduce an intermediate value (v
natural) and prove successively that i»13 =  (under topological assumptions) 
and that =  vb (under convexity assumptions).

We denote the family o f finite subsets K  o f F  by /C. We set

v\< :== inl  sup f { x , y )  (12)

and
v1* :=  supz;^ =  sup inf sup f ( x , y ) .

KelC K e K  X^ E  y € K
(13)

Since every point y o f F  may be identified with the finite subset {y }  € /C, we note 
that =  / b(y) and consequently, that vb =  supyeFfJyj <  supFeA:?;F = : v 
Since supyeK f ( x ,y) <  supy€F / (x ,y ) ,  we deduce that v*K <  v11, whence, that 
Ve* <  tA In summary, we have shown that

vb <  <  tA (14)

We shall now prove that reasonable topological assumptions imply that

P rop os ition  8.2. We assume that

E  is compact (15)

and that
Vy € F, x  —» f ( x , y ) is lower semi-continuous. (16)

Then, there exists x  G E  such that

sup f { x 1y) =  vi (17)
ye f

and
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v* =  v6. (18)

Remark. Since the functions x  —>• f ( x ,  y) are lower semi-continuous, the same 
is true of the function /** (see Proposition 1.5).

Since E  is compact, Weierstrass’s theorem implies the existence of x  € E  
which minimises fK  Following (3), this may be written as

sup f { x , y )  =  p ( x )  =  inf p ( x )  =  inf sup f { x , y )  =  (19)

Proposition 8.2 gives a stronger result with the same assumptions, which 
are the reasonable assumptions for obtaining conservative strategies (solutions 
of (17)).

P roof. It suffices to show that there exists x  € E  such that

sup f { x , y ) < v * .  (20)
y € F

Since v11 <  supy(zF f { x , y )  and we shall deduce that t»11 =  t»11.
We set

Sy :=  { x  € E\f {x ,y ) <  v*}.

The inequality (20) is equivalent to the inclusion

2 e  f l  Sy. (21)
y € F

Thus, we must show that this intersection is non-empty.
For this, we shall prove that the Sy are closed sets with the finite-intersection 

property.
The set Sy is closed since Sy is a lower section of the lower semi-continuous 

function x  - »  f { x , y ) .
We show that for any finite sequence K  := { y i , . . ., yn} G /C of F, the finite 

intersection

n
£ = l,...,n

is non-empty. In fact, since E  is compact, and since

x  max; f { x ,y i )  =  max f ( x , y )
z = l,...,n

is lower semi-continuous, it follows that there exists x  G E  which minimises this 
function. Such an x  G E  satisfies

max f ( x , y )  =  inf max f { x ty) <  sup inf m a x /(x ,y ) =  vh.
y £ K  x £ E  y £ K  K £ K

Since E  is compact, the intersection of the closed sets Sy is non-empty and 
there exists x  satisfying (21) and thus (20). □

We shall now show that convexity assumptions imply the equality vb =  v*.
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Proposition 8.3. Suppose that E and F  are convex sets and that

(i) Vy G F, x  —» / (x, y ) is convex, and
(ii) Vx G E, y  -4  f  (x, y) is concave (22)

then vb =  v*.
Proof. We set M n :=  {A e  IR+IEi^A* =  1}. With any finite subset K  :=  
{î/i»• ■ • >2/n} we associate the mapping <fiK from E  to IR" defined by

</>k {x ) :=  ( / ( » , 2 / 1  f ( x , y n)). (23)

We also set
wK :=  sup in f(A ,^ *(x )). (24)

A6M" *€£
We shall prove successively that

a) 4>k {E)  4- IR" is a convex subset (Lemma 8.1);

b) \/K G /C, 'ujf <  (Lemma 8.2);

c) V F  € /C, (Lemma 8.3).

Whence, the inequalities

t»13 :=  sup Vk <  sup wk  <  vb <  t»*1 (25)
KelC K£tC

will imply the desired equality vb =  tA

Lem m a 8.1. If E is convex and if the functions x  -4 / (x ,  y) are convex, then 
the set 4>k {E)  4- IR” is convex.

Proof. Any convex combination Qi (^k-(x i ) 4  U\)  4  0:2( ^ ( ^ 2) +  ^2) where 
01, 0:2 >  0, 01 4  o 2 =  1 { x i , x 2 G E,u\,u2 G IR") may be written in the 
form 4>k (x ) 4  u where x :=  O1X1 4  02X2 belongs to E  (since E  is convex) and 
u :=  cnUi+ot2U2 +cti(pK{xi)+ct2<!)K{x2 ) — <t>K{x)- Since the functions x —> /(x ,y )  
are convex, O i0/c(xi) +  oc24>k (x2) — 4>i<(ct\Xi 4  0:2X2) is a vector in IR" . Thus, u 
belongs to IR" and consequently, ai(<^K (^i)Tw i)4a2(^/c(^2) +  ̂ 2) =  4>j<{x ) + u 
belongs to 4>k (E) 4  IR". □

We recall that M n :=  {A G IR" 1 Z)iLi K  =  1} is convex and compact and 
that we set

wK :=  sup inf (A, <f>x(x)). 
A€M" xeE

Lem m a 8.2. If E is convex and if the functions x  —> / ( x ,  y) are convex, then 
for any finite set K , we have the inequality

4  <  WK. (26)
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P roo f. Let e >  0 and denote 1 :=  ( 1 , . . . ,  1). We shall show that

(w k  4- e ) l  € 4>k {E) 4- IR” . (27)

Suppose that this is not the case. Since <})k {E) 4- IR+ is convex, following 
Lemma 8.1, we may use Theorem 2.5 ( Large Separation Theorem). There exists 
A G IRn, A 7^0, such that

n

i{wK +  e) =  ( A , ( %  +  e ) l ) <  ini (X,v)
i=1 ve<f>K (E)+1R”

=  inf (A, 4>k (x )) 4- inf (A,u).

Then infu€JRn (A, u) is bounded below and consequently, A belongs to IR” and 
infueiRn (A, u) is equal to 0. Since A is non-zero, then X^Li Ai is strictly positive. 
We set X =  A/ £ ”=1 A* € M n and deduce that

w k  +  £ <  inf (A, 4>k (x )) <  sup inf (A, (f)K{x)) =  wK.
x £ E  ÀGA/71

This is impossible and thus we have established the property (27).
This implies that there exist x £ € E  and u£ € IR+ such that (wk  4- e ) l  =

(f)K{Xe) + u £.
Prom the definition of 4>k , we deduce that

Vz =  1 , . . .  ,n , f { x £,yi) < wK +  e.

Whence,

v]< <  max f ( x £,yi) <  wK + e .

We complete the proof of the lemma by letting e tend to 0. □

Lem m a 8.3. Suppose that F  is convex and that the functions y -4 / ( x ,  y) are 
concave. Then, fo r  any finite subset K  o f F , we have wk <  vb.

P roof. With each A G M n, we associate the point y\ :=  Yfi=i Kyi which belongs 
to F y since the latter is convex. The concavity of the functions y  -4 f { x , y )  
implies that

M x e E y  K f { x , yi) <  / ( x ,  yx ).
i= 1

Consequently,
n

The proof of Lemma 8.3 is completed by taking the supremum over M n. □
Lemmas 8.1 to 8.3 may now be applied, as indicated, to complete the proof of 
Proposition 8.3. Cl

Propositions 8.2 and 8.3 imply the existence of a value.
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T h eorem  8.1. Suppose that

(i) E  is convex and compact
(ii) Vy G F, x —» / (x, y) is convex and lower semi-continuous (28)

and that

(i) F  is convex
(ii) Vx G E, y -> f ( x , y )  is concave. (29)

Then f  has a value:
v :=  — vb (30)

and there exists x  G E satisfying:

sup f { x , y ) = v .  (31)
y€F

Applying Theorem 8.1 to /  and to —/ ,  we obtain the minimax theorem. 

T h eorem  8.2 (von  N eum ann). Suppose that

(i) E  is convex and compact
(ii) \/y G F, x  - »  / ( x ,  y) is convex and lower semi-continuous (32)

and that

(i) F  is convex and compact
(ii) Vx G E, y —V / ( x ,  y) is concave and upper semi-continuous. (33)

Then there exists a saddle point (x, ÿ) G E  x F.

C orolla ry  8.1. Consider a zero-sum game defined on finite strategy sets 
{ 1 , . . .  ,n }  and { 1 , . . .  ,p ] by a matrix {a ^ } i<*<n is Emil’s loss and Frances’s

i<j<p
gain).

We associate this with the game defined on the mixed strategy sets M n and 
M p by

f {\  ll) = J2Yl XiT3aH- (34)
i = l  j = l

Then there exists a saddle point formed from mixed strategies.

This provided an answer to R. de Montmort’s question. In this case, identifying 
A with (À, 1 — A) and p  with (y,, 1 — fi), the function /(A , y)  may be written as

f { \ , y )  2Xy — A(1 — y) — y ( l  — A) +  (1 — A )(l — y)
=  5\y — 2\ — 2y +  l.

Thus, we see that the value of the game is equal to v =  1 and that the saddle 
point is formed by the pair (§ ,§)>  which involves playing the even strategies 
with probability | and the odd strategies with probability |.
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8.4 Continuous Partitions of Unity

In the following paragraphs, we shall use convex combinations f ( x )  € M n which 
depend continuously on a parameter x  € E. This will enable us to cover the 
convex hull o f n points in a continuous fashion. Even better than this, we shall 
construct these functions f ( x )  so that the components /* are zero outside open 
sets Ai covering the space E. Such functions are called continuous partitions of 
unity.

Definition 8.2. Let f  be a real-valued function defined on a metric space E. 
The smallest closed set S such that f ( x )  =  0, x £ S is called the support o f f  
and is denoted by supp(/).

In other words, the support of /  is the closure in E  o f the set of elements 
x  G E  such that f ( x )  ^  0. It is also the set of elements x  G E  such that any 
neighbourhood V  of x  contains a point y with f ( y )  0.

Definition 8.3. Consider an open covering n of E. A family {f i}i£i
of continuous functions from E  to [0,1] such that:

(i) £S=i f i (x) =  1
(ii) V* =  l , . . . , n ,  supp/i C A { (35)

is called a partition of unity subordinate to this covering.
Before we prove the existence of a partition of unity subordinate to a finite 

open covering, we shall need the following propositions.

Proposition 8.4 (separation of two closed sets by a continuous func­
tion). Let M  and N  be two non-empty, disjoint, closed subsets o f a metric space 
E. Then there exists a continuous function g from E  to [0,1] such that

g(x)  =  0 Vx € M , g(x)  =  1 Vx € iV. (36)

Proof. Since M  and N  are disjoint, d(x , M )  +  d(x ,N)  >  0 for all x  G E. Thus, 
the function g defined by

djxJM)
9[ 1 d (x ,M )  +  d (x ,N) (37)

is a continuous function from E  to [0,1] which takes the value 0 on M  and is 
equal to 1 on iV. D

Proposition 8.5. Suppose that E  =  AU B is the union o f two open sets. Then 
there exists an open set W  such that

W  C  A and E  =  W  U B (38)



136 8. Two-person Zero-sum Games: Theorems of Von Neumann and Ky Fan

Proof. If A =  E 7 we take W  =  E, and if B =  E  we take W  =  0. Suppose now 
that A ^  E  and that B  ^  E. The non-empty closed sets [A and [B are disjoint. 
Thus, we consider a continuous function /  which takes the value 0 on [A and 
1 on [15 and we take W  {x  G E\f(x) >  |}. This is an open set. Since W  is 
contained in {re e  E\f(x)  >  |}, and since [A is contained in [W,  it follows that 
W  is contained in A. If x  does not belong to £?, f ( x )  =  1 and thus x  belongs 
to W.  Thus, E  is covered by W  and B. □

Proposition 8.6. Let {^4i}i=1 n be a finite open covering o f E. Then there 
exists an open covering { W i } i= l  n such that

Vi =  1 , . . .  ,n ,  W i C A i .  (39)

Proof. We construct the covering Wi recursively, using Proposition 8.5. 
Setting Bi =  Uf=2A-, we obtain E =  Ai U B\.
Proposition 8.5 implies that there exists an open set Wi C Ai such that 

W i  C A, and E  =  Wi U Bi =  Wi U \J Aj.
3=1

Suppose that we have constructed the open sets Wj (1 <  j  <  k — 1) such that

k— 1 n
W i C Aj if l < j < k - l ;  E = \ J W i U \ j A j .  (40)

i— 1 j=k

We introduce the open set

Bk =  \JW iU  Û  A,
i=l 1

such that E  =  AkD Bk following (40). Proposition 8.5 implies that there exists 
an open subset W k C A k such that W k C A k and E  =  Wk U Bk- Thus, we have 
constructed k open subsets Wi such that

W i  C Ai  if 1 < i <  k- E = \ J W i U  (J Aj.
i= l  j = k + 1

Thus, the recurrence may be continued and the proof of the proposition is 
complete. □

Theorem 8.3. Given any finite open covering o f a metric space E, there exists 
a continuous partition o f unity which is subordinate to it.
Proof. Suppose that E — Û =1Al for some open sets A f.

Following Proposition 8.3, there exist n open sets Wi C Ai such that W i C 
Ai and E  =  U”=1Wj.
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Since n?=1 [Wt =  0, 
tions fi defined by

the function £)”=1 d(x , \Wi) is strictly positive. The func-

/<(z) :=
d(x,[Wj) 

E?=i d(x, [Wi)
(41)

form a continuous partition of unity. If f {(x) >  0, it follows that x  £ [Wi (which 
is closed), whence x  e  Wt. Thus, the support of / ,  is contained in W t, which is 
itself contained in A*. □

8.5 Optimal Decision Rules

What should we do when the convexity assumptions are missing? As in Corol­
lary 8.1, we could embed the strategy sets in other sets of mixed strategies (we 
did this for finite sets). There is another approach which involves considering a 
strategy as a constant decision rule.

Let us consider, for example, the case of Prances. What value could she 
attribute to a decision rule Cp : E  —» F.  Since she plays Cp(x)  whenever Emil 
plays x, the worst gain than she may incur is

f b(CF) :=  inf. f ( x , C F(x)) (42)

when she has no means of knowing Emil’s choice in advance.
We note that this definition is consistent with the definition of the worst 

gain incurred by a strategy y0 considered as a constant decision rule x  —> yo, 
since

f ( y o )  :=  inf f { x , y 0) =  ini f ( x ,  y0(x)).
x e E  x&E

Consequently, if Cp is a set of decision rules which contains the set F  (of constant 
decision rules) we have:

vb :=  sup m i f ( x , y )  <  sup f b(CF) <  inf s u p /(x ,y ) = : vK (43)
yÇ.F X^B  CF <=CF X^E y £ F

P rop osition  8.7. We denote the set o f all the decision rules o f E  in F  by F E. 
Then

sup f b{CF) = i A  (44)
Cf € F e

P roof. By definition, we may associate any e >  0 and any x  G E  with a strategy 
De(x) e  F  such that

sup f { x , y )  <  f ( x , D £(x)) + e .
y £ F

(45)
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vs =  inf s u p /(x ,y ) <  f b(D£) +  e <  sup inf / ( x ,  CF(x)) +  e. 
xeE yeF c FeFE xeE

Since this inequality holds for all e >  0, we obtain the inequality <  
supCf€F£; infxeF f ( x ,  CF(x)) which, taken with the inequalities (43), implies the 
desired equality (44). D

We shall show that, under additional assumptions, the equation (44) remains 
true if Prances is forced to use only continuous decision rules (this enables us 
to model a regular behaviour for Prances).

T h eorem  8.4. Suppose that

(i) E is compact
(ii) \/y € F, x  —> /  (x, y) is lower semi-continuous (46)

and that

(i) F  is a convex subset
(ii) Vx G E, y —> f ( x , y )  is concave. (47)

Then if C(E, F)  denotes the set o f continuous mappings from E  to F , we 
have

sup inf f { x , D ( x ) )  =  inf sup f { x ,  y). (48)
D<=C(E,F)x<Et' x € E y e F

P roof. We already know that supDeC(E F) infxeE f ( x ,  D(x))  <  from (43). 
Thus, it remains to prove the opposite inequality. Firstly, we may associate 
any e >  0 with a mapping (not necessarily continuous) De from E  to F  which 
satisfies (45).

In addition, since the functions x  f ( x ,  y) are lower semi-continuous, there 
exist neighbourhoods B(x,r](x))  o f x  such that

\/z e  B(x,rj(x)),  f ( x , D €(x)) <  f { z } De{x)) +  e. (49)

Since E  is compact, it can be covered by n balls B (x iyr](xi)). Let n be
a continuous partition of unity subordinate to this covering. We introduce the 
function D  defined by

D (x ) =  £ f f i ( X)De(x i)> 
i=i

which is continuous since the functions are continuous. Finally, since the 
functions y —> f ( x , y )  are concave, since <?,(x) >  0 for all i and £SLi ffi(z) =  1, 
we have:

f ( x , D ( x ) ) >  9iix ) f ( x ,D s(Xi))
i € / ( x )

(SO)
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where I(x)  is the set of integers i =  1 , . . . , n  such that gi{x) >  0. This set is 
non-empty since g^x) =  1.

Moreover, if gi(x) >  0, x  belongs to the support of gl, which is continuous on 
the ball B (x iy r](Xi)). It follows from (49) that / ( x ,  D e(xi)) >  f  (xi, De(Xi)) — £ 
and from (45) that f ( x i}D£(Xi)) >  sup yeFf { x i}y) - e > r f - e .

Thus, if i G 7(x), we have f ( x , D e(xi)) >v^ — 2e. Then (50) implies that

f ( x tD(x ))  >  9 i{x){v* -  2e) =  v9 -  2e.
i€ l (x )

It follows that infxe£; f ( x ,  D(x))  >  î;1* — 2e, whence that 
suPj9€C(e,F) infxeE/ ( x ,  D{x))  >  v* -  2e.

We obtain the desired inequality by letting e tend to 0. □

We shall now establish another expression for v̂ .
In the game-theory context, we now suppose that Emil has information 

about Frances’s choice of strategy and that he has the right to choose continuous 
decision rules C  G C(F,E).  Thus, he may continuously associate any strategy 
y G F  played by Frances with a strategy C(y)  G E.

T h eorem  8.5. We retain the assumptions o f (46) and (47) o f Theorem 8-4■ If 
C{F, E) denotes the set o f continuous decision rules o f F  in E, then

inl  sup f ( C ( y ) ty ) =  inf s u p /(x ,y). (51)
CeC(F,E) y £ F  xÇ.E y^ F

P roof. We shall use the convex compact set

M n :=  { A G 1 R Î | Î >  =  1}.
i = l

The inequality in fcec(F,£) supyGF f ( C ( y ) , y )  <  t»11 is clearly always true. 
Since E  is compact and the functions x  —»■ / (x ,  y) are lower semi-continuous, 

Proposition 8.2 implies that there exists x G E  such that

sup / ( x ,  y) =  v* =  sup inf max / (x ,  yf) (52)
ye F  K = {y i ,...,yn}eic X^ B  *= 1 » - n

Thus, it is sufficient to prove that for any finite set K  — { y i , . . . ,  yn}  and any 
continuous mapping C  G C(F, E),  we have

inf max /(x ,y< ) <  su p /(C (y ),y ). (53)
x £ E  i= l , . . . .n  vp f

Firstly, we note that

inf max / ( x ,  y()
x£E

=  inf sup i f (x ,yi)
X€ F  X € M n i==1

n n
<  inf sup ^2Xif(C{Y^Pjy j) ,y i)  

M€M" xeM«

=  w L  sup < ^ > A)fj.eMn A6Mn

(54)
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where the function <p is defined on M n x M n by

Ĉ/u, A) = ± \ if ( C ( ± H yj ) ,y i). (55)
i=l  j =1

Since C  is continuous and since the functions x  —> f { x , l / i )  are lower semi- 
continuous, it follows that the functions p  —» 4>{p, A) are lower semi-continuous. 
The functions A —> <f(p, A) are linear, whence concave. The set M n is convex 
and compact.

Thus, Theorem 8.4 implies that

inf sup <£(/z, A) =  sup inf Mp,D{p ) ) .  
/j.eMn A 6M n D eC {M n,M n) fi e M

(56)

But, Brouwer’s Theorem implies that any mapping D  € C (M n, M n) has a fixed 
point fj>D G M n. Thus,

inf <f>(̂  D(p)) <  <j){pD, D {pD) =  4>{fj,D, ild )) <  sup p). (57)

This then implies that

sup -  sup
D eC (M n ,M n ) M<EM f ie M n

(58)

Moreover, since the functions y  —» f ( x ,  y ) are assumed to be concave we have

77i n

2=1 J= 1
n n

W E m A E t o )
J=1 J=1

su p /(C (y ),y ). (59)
y e F

Thus, the inequalities (54), (57), (58) and (59) imply the desired inequality 
(53). □

In particular, we deduce the following important inequality.

T h eorem  8.6 (K y  Fan’s Inequality). Suppose that E  is a convex compact 
subset o f a Hilbert space and that f  is a function from E  x E  to JR satisfying

(i) Vy G E, x —> f { x yy) is lower semi-continuous
(ii) \/x G E, y —> f { x , y )  is concave. (60)

Then there exists x  € E  such that

sup f { x yy) <  su p /(y ,y ).
y£ E  y(zE

=

<

<

(61)
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P roo f. Theorem 8.5 implies that there exists x  € E  such that

sup f ( x , y )  < v * <  inf sup f (C (y ) , y )  <  sup f ( y , y )
y € E  CeC(E,E) y(zE y£ E

since the identity mapping is continuous from E  to E. □

Remark. We have deduced Ky Fan’s Inequality from Brouwer’s Fixed-point 
Theorem. In fact, these two results are equivalent and we can deduce Brouwer’s 
Fixed-point Theorem from Ky Fan’s Inequality.

Let D  be a continuous mapping of a convex compact subset i f  of a finite­
dimensional vector space IRn into itself. Set

f ( x , y )  := ( x - D ( x ) , x - y )  (62)

where (•, •) is the Euclidean scalar product on ]Rn.
This function clearly satisfies the assumptions of Theorem 8.6 (Ky Fan’s 

Inequality); thus, there exists an element x  e  K  such that

(x — D (x), x — y) <  0 (63)

for all y € K.  Taking y =  D ( x ), we have ||x — D x ||2 <  0, whence x =  D(x) .

Remark. We can provide a direct proof of the Ky Fan inequality based on the 
Brouwer Fixed-Point Theorem by deriving a contradiction from the negation of 
the conclusion:

V x GRT,  3 y € K  such that f ( x , y) >  0 

Hence K  can be covered by the subsets

Vy :=  {x  e  K  I f ( x , y )  >  0}

which are open since /  is lower semicontinuous with respect to x. Since K  
is compact, it can be covered by n such open subsets Vyi. Let us consider a 
continuous partition of unity (ai)i=i,...,n subordinate to this open covering of K  
and define the map c : K  X  by

71
V X e  K y c(x) :=  ^2ai(x)yi  

2— 1

It maps K  to itself because K  is convex and the elements yi belong to K.  It is 
also continuous, so that Brouwer’s Fixed Point Theorem implies the existence 
of a fixed point y =  c(ÿ) € K  of / .  Since /  is concave with respect to y, we 
deduce that

ffov) = /(ÿ>èai(ÿ)&) ^ ±«i(v)f(v,yi)
i= l  i= l



142 8. Two-person Zero-sum Games: Theorems of Von Neumann and Ky fan

Let us introduce
I ( V )  ■= {i  =  l , . . . , n |  ai(ÿ) > 0}

It is not empty because a i(V) =  1- Furthermore

èû*(ÿ)/(y>3fi) = S  ai(y)f(v>yi) > 0
*=1 i€/(ÿ)

because, whenever i belongs to /(y ) , a* (y) >  0, so that y belongs to Vyt, and 
thus, by the very definition of this subset, f { y ,y i )  >  0. Hence, we have proved 
that f ( ÿ , ÿ )  is strictly positive, a contradiction of the assumption that f ( ÿ , ÿ )  < 
0.



9. Solution of Nonlinear Equations and 
Inclusions

9.1 Introduction

Ky Fan’s Inequality (which is equivalent to Brouwer’s Fixed-point Theorem) im­
plies a whole series o f existence theorems for the solutions of nonlinear equations 
or inclusions. Such theorems are very useful in many applications, particularly 
in mathematical economics and game theory, as we shall see in the following 
chapters.

We shall begin by indicating how to adapt the concepts of continuity to the 
case of set-valued maps; we shall consider only upper semi-continuous set-valued 
maps with convex closed values.

Then we shall describe sufficient conditions for the existence of a solution
n

x e  M n =  {x  e  IR” | Y l x i =  ! }
i= 1

of the problem

C{x)  H 1R$. =  0 (where 0 G C{x)  -  IR£)

when C  is a set-valued map from M n to IRn. In addition to certain technical 
assumptions, we shall assume that the condition

\/x € M n, sup {v, x) >  0
v€C(x)

is satisfied.
Then we shall study the existence of zeros x  o f the inclusion

0 G C(x)

when C  is a set-valued map from a convex compact subset K  C X  to A”.
In addition to technical conditions, we assume that the tangential condition

V x e K ,  C(x)  n  Tk {x ) 0

is satisfied, where (we recall) TK(x) denotes the tangent cone to K  at x  which 
we studied in detail in Chapter 4.
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This result has a number of consequences. Firstly, there is the famous fixed- 
point theorem due to Kakutani, which generalises Brouwer’s Fixed-point The­
orem to the case of set-valued maps. This says that any upper semi-continuous 
set-valued map from a convex compact subset into itself, with convex closed 
values, has a fixed point.

We shall then describe another consequence which will be very useful in 
economic models (viability theorem).

We assume we have convex closed subsets L C X ,  M  C Y  and P  C Y*, 
a continuous linear operator A  G L ( X , Y)  and a continuous mapping c from 
L x P t o Y  which is affine in its second argument.

We also suppose that

\/x G L, Vp € P, (p, Ac(x ,p )) <  0

together with certain technical assumptions. We shall then prove that there 
exists (x,p)  satisfying

(i) x e  L, A x  e  M, p e  P
(ii) c(x tp) =  0.

We shall also prove other theorems which will be useful in game theory. The 
implications of these results are summarised in a diagram at the end of the 
chapter.

9.2 Upper Hemi-continuous Set-valued Maps

We shall study a whole class of nonlinear problems which reduce to an inclusion 
of the following form

find x  € K  such that 0 € C{x)  (1)

where C  is a set-valued map from K  to a Hilbert space Y  which associates 
x  G K  with a subset C(x)  o f Y  which is always non-empty, convex and closed. 
If C  is an ordinary pointwise mapping, problem (1) may be written in the more 
familiar form of the solution of an equation:

find i G / (  such that C{x)  =  0. (2)

A solution x  of (1) is called a zero of C  or an equilibrium or stationary point.
The use of set-valued maps is mainly motivated by problems in optimisation 

theory, game theory and mathematical economics.
In fact, we only use a few elements of the general theory of set-valued maps. 

We use the fact that the images C ( x ) are convex closed sets to represent them 
by their support functions

Vp G Y*, we set a(C(x) ,p )  =  sup (p,y)
y€C(x)

(3)
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(since y E C(x )  if and only if (p,y) <  a(C(x) ,p )  for all p E Y*).

Definition 9.1. We shall say that a set-valued map C  is upper hemi- 
continuous at x0 E K  if and only if for all p EY*,  the function x  —» a(C(x) ,p )  
is upper semi-continuous at x0• It is upper hemi-continuous if it is upper hemi- 
continuous at all points x0 E K .

Any continuous mapping C  from K  to Y  clearly defines an upper hemi- 
continuous set-valued map (it is even sufficient if the functions x  —» (p,C(x))  
are continuous for any p E Y*).

Let B  be the unit ball of Y .

Definition 9.2. We shall say that a set-valued map C  from K  to Y  is upper 
semi-continuous at Xo if, for all e >  0, there exists a neighbourhood N (x 0) o f 
Xq such that C (x ) C C (x 0) +  eB  for all x  € N { xq). It is upper semi-continuous 
if  it is upper semi-continuous at all points Xq E K .

Thus, we see that upper semi-continuity is a generalisation of the notion of 
continuity to set-valued maps.

First we indicate the link between these two notions.

Proposition 9.1. Any upper semi-continuous mapping is upper hemi-continuous.

Proof. For fixed e >  0 and p E Y*, there exists a neighbourhood N (x0) such 
that

Vx e N{ xo), C ( x ) c C { x 0) + e B  (4)
whence also

Vx E N {x o), cr{C(x),p) <  a {C (x0),p) 4- e||p||, (5)

since a(eB,p)  =  e||p||*. Thus, x  - »  a(C(x) ,p )  is upper semi-continuous at x0.
□

Theorems 4.2 and 6.2 state that the subdifferentials of convex continuous func­
tions and, more generally, the generalised gradients of locally Lipschitz func­
tions, are upper hemi-continuous.

Theorem 9.1. Consider a nontrivial function f  : X  -4 IR U {-foo} which is 
locally Lipschitz on the interior o f its domain (in particular, a convex continu­
ous function on Int Dom f ) .  Then the set-valued map x E Int Dom/  —> d f (x )  is 
upper hemi-continuous.
We now note a useful property of upper hemi-continuous set-valued maps.

Définition 9.3. The graph of a set-valued map C  from K  to X  is the subset

Graph (C) :=  { ( x ,y )  E K  x Y\y E C (x ) }  (6)

and the inverse C~l of the set-valued map C  is the set-valued map from Y  to 
K  defined by

x E C ~ l (y) i f  and only i f  y E C(x) .  (7)



We note that the graph of a set-valued map characterises the set-valued map 
C  and its inverse. We also note that by inverting one-to-one mappings that are 
not injective, we obtain examples of set-valued maps.

Lastly, we recall that if /  : X  ->• IRU { + 00} is a nontrivial, convex, lower 
semi-continuous function, then the inverse of the set-valued map x  —» d f  (x) is 
the set-valued map p  —» df*(p) where /*  is the conjugate function of /  (see 
Corollary 4.1).
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P rop osition  9.2. The graph o f an upper hemi-continuous set-valued map with 
convex closed values is closed.
P roof. Consider a sequence of elements (x n,yn) G Graph(C) converging to 
the pair (x,y).  Since the functions x  —* cr(C(x)>p) are upper semi-continuous, 
the inequalities

{p,Vn) <  cr{C(xn),p) 

imply, by passing to the limit, that

(p,y) =  lim {p,yn) <  limsupcr(C(æn),p) <  o(C{x) ,p ) .
n ~>°°  n —>00

These inequalities imply that

y G cô(C(x))  =  C{x) .  □

Remark. We recall that if C  is a one-to-one mapping from K  to Y  then the 
following conditions are equivalent

(a) Ve, 1N(x0) such that \/x G N (x 0), C(x)  e  C (x0) +  e B ;
(b) whenever a sequence x n converges to x0, C (xn) converges to C'(xo). (8)

If C  is a set-valued map from K  to Y,  the notion of upper semi-continuity 
is the natural generalisation of condition (8)(a).

Generalisation of (8)(b) leads to the following definition.

D efin ition  9.4. We shall say that a set-valued map C  from K  to Y  is lower 
sem i-continuous at Xq € K  if  for any sequence xn converging to x0 G K , for 
all yo G C(xo), there exists a sequence o f elements yn G C [xn) converging to 
Vo

In the case of set-valued maps, the concepts of upper and lower semi­
continuity are no longer equivalent, as the examples o f Figs. 9.1 and 9.2 show.

D efin ition  9.5. We shall say that a set-valued map C  is continuous (at Xq)  if 
it is both lower and upper semi-continuous (at Xq) .
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C(x )  = ( {0} 
l

I- if X 5* 0
1, 4-1} if x  =  0

Fig. 9.1. Example of a set-valued map which is upper semi-continuous at 0, but not 
lower semi-continuous.

Fig. 9.2. Example of a set-valued map which is lower semi-continuous at 0, but not 
upper semi-continuous.

Remark. R.T. Rockafellar and R. Wets suggest to say that F  is outer semi- 
continuous at x  if Limsupx/_+;EF(a:/) C F(x )  and inner semicontinuous at x  
if F(x )  C Liminfx/_4xF (x '). The above proposition led several authors to 
call upper semicontinuous maps the ones which are outer semicontinuous in 
the Rockafellar-Wets terminology. Naturally, these two concepts coincide for 
compact-valued maps.

We shall need the following property of lower semi-continuous set-valued 
maps.

P rop os ition  9.3. Suppose that

(i) f ' - X  x Y  —»• IR is lower semi-continuous;
(ii) the set-valued map C  from X  to Y  is lower semi-continuous. (9 )



Then the function a  : x —» a (x ) :=  supyçc{x) f i (i) (ii) (iii) * * * * * * x iV) *s ^se f̂ lower semi- 
continuous.
P roof. We must show that if a sequence of elements x„ G X  converges to x0, 
then o(xo) <  liminfn_*.00a (x n). We fix e >  0.

Prom the definition of a(xo), there exists y G C'(xo) such that, a (x 0) <  
f ( xo ,y )  +  e/2.

Since C  is lower semi-continuous at Xo, there exists a sequence of elements 
Vn G C (x „) converging to y.

Since /  is lower semi-continuous, it follows that there exists N(e)  such that, 
for all n >  N(e) ,

/(^0>2/) — /{.'Em Un) “h Ŝ /2.

Since yn e  C (xn), we have f { x n,yn) <  a (x n). Thus, the above inequalities 
imply that a(xo) <  a (x n) +  e whenever n > N(e) .  □
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9.3 The Debreu-Gale-Nikaïdo Theorem

We shall begin with a theorem which is used to prove the existence of solutions 
of many problems in mathematical economics.

Consider the simplex

M n :=

T h eorem  9.2 (D eb reu -G a le -N ik a ïd o ). Let C  be a set-valued map from M n 
to IRn with non-empty values. If

(i) C  is upper hemi-continuous
(ii) Vx G M ny C(x)  — IR” is convex closed
(iii) Vx G M n, cr(C (x),x) >  0 (Walras’s law) (10)

then there exists x  G M n such that C(x)  H IR” ^  0.
P roo f. We introduce the function 4> defined on M n x M n by

4>{x,y) =  -c r(C(x) ,y ) .

This function is concave in y (since y —>■ a(C (x ) ,y )  is convex) and lower 
semi-continuous in x (since, as C  is upper hemi-continuous, x —» a(C (x ) ,y )  is 
upper semi-continuous). Since M n is convex and compact, Ky Fan’s Theorem, 
implies that there exists x G M n such that supyeM« 4>(x, y) <  supyeM„ f ( y ,  y) <
0 (following (10)(iii)), in other words that

0 <  cr(C(x), y) for all y G M n.

This condition is equivalent to
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0 < c j ( C (x ) - I R J ,y )  for all y GIFT (11)

since cr(-IR” ,y ) =  0 if y G IRn and cr(—IR” , 2/) =  Too if y <£ IR£. Since 
C(x)  — IR+ is convex and closed, (11) implies that 0 G C(x)  — IR+, whence that 
C(x)  DIRJ ^  0. □

9.4 The Tangential Condition

Let us suppose once and for all that we have:

(i) two Hilbert spaces X  and Y  ;
(ii) a continuous linear operator A  G L(X> Y ) }
(iii) a convex compact subset K  C. X\
(iv) an upper hemi-continuous set-valued map C  : K  -> Y  with

non-empty, convex, closed values. (12)

Y

In order to solve the inclusions

0 G C(x)  where x  G K  (13)

and
y G Ax — C(x)  where x  G K  (14)

we shall impose a condition which interrelates the objects given in (12). We 
recall that the tangent cone to K  at x  is defined by:

Tk {x ) :=  closure - {K - X) (15)

D efin ition  9.6. We shall say the set-valued map C  satisfies the tangential 
con d ition  with respect to A if

\/x G K } C (x ) D closure(ÆT/c(æ)) 7̂  0- (16)

We note also the dual version of the tangential condition.

P rop os it ion  9.4. The tangential condition (16) implies the dual tangential 
condition
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Vx e K , \ / p e  A ‘ - ' N k (x ), cr(C(x), - p )  >  0. (17)
The converse is true if the images C(x)  o f the set-valued map C  are compact 

(and convex).
P roof, a) Suppose x  G K  and v G C(x)  n  closure(ATk (x )) are fixed. Then 
v =  lim ^oo Aun where un belongs to Tk {x ). Let us take p such that A*p 
belongs to Nj<(x). Then

a (C (x ), —p) >  {—p,v)  =  lim^— p, Aun) — jUm)(—A*p, un) >  0 

since (A*p,un) <  0 for all un € Tk {x ) =  Nk {x )~ .
b) Let us now suppose that C(x)  is convex and compact and that the tangential 
condition is false.

0 $ C{x)  -  closure(ATk  (z) ) (18)
(since this is equivalent to C(x)  H closure (.AT/d#)) =  0).

The Separation Theorem (Theorem 2.4) implies that there exist p E Y*  and 
e >  0 such that

cr(C(x)t - p )  <  inf ( -p ,  Av) -  e.
veTK(x)

Since Tk {x ) is a cone, this inequality implies that A*p belongs to Tk {x )~ =  
N k {x ) and that infv€TK(x)(— p, Av) =  0. Consequently, cr(C(x),p) <  — e < 0, 
which contradicts the dual tangential condition. □

The properties of tangent cones to convex closed sets which we described in 
Chapter 4, in many cases enable us to check whether the tangential condition 
is satisfied. The following self-evident proposition is very useful.

P rop os ition  9.5. If two set-valued maps C\ and C2 satisfy the tangential con­
dition (or the dual tangential condition, respectively), so do the set-valued maps 
ol\C\ 4- CX2C2 where a\ and & 2 are positive.

We shall use this property as follows:

C orolla ry  9.1. If a set-valued map C  from K  to Y  satisfies the (dual) tangential 
condition and if y belongs to A (K ) ,  then the set-valued map x  —> C (x )—A (x )+ y  
also satisfies the (dual) tangential condition.

9.5 The Fundamental Theorem for the Existence of 
Zeros of a Set-valued Map

T h eorem  9.3. We suppose that the assumptions (12) are in force (X  and Y  
are Hilbert spaces, A belongs to L (X ,Y ) ,  K  C X  is convex and compact and 
C  : K  -> Y  is upper hemi-continuous with non-empty, convex, closed values). 

I f the tangential condition (16)

V.x G K , C(x)  n  closure(ATK(x)) ^  0

is satisfied, then
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(a) 3x  G K , a solution o f the inclusion 0 G C(x)
(b) \/y G A {K ) ,  3x € K ,  a solution o f the inclusion y G Ax — C(x) .  (19)

P roo f, (a) We shall prove a slightly stronger result, assuming that the dual 
tangential condition (17) is satisfied (instead of the tangential condition (16)).
(b) Corollary 9.1 implies that the second conclusion of the theorem follows from 
the first conclusion applied to the set-valued map x  —» C(x)  — Ax  +  y.
(c) To prove the existence of a zero of C, we shall argue by reduction to the 
absurd. Suppose therefore that for all x  G K,  0 does not belong to C{x) .  Since 
the sets C (x ) are convex and closed, the Separation Theorem (Theorem 2.4) 
implies that

Vx G K, 3p G Y* such that cr(C(x), —p ) <  0. (20)

We set
A p :=  {x  G K\cr(C(x), —p) <  0 }. (21)

The non-existence of zeros o f C  thus translates into the following:

K C  ( J  A>- (22)
pey*

d) Since C  is upper hemi-continuous, the sets A p are open. Since the set K  
is compact, it can be covered by n open subsets A Pi. Let {p i}i=1 n be a con­
tinuous partition o f unity subordinate to this covering. We define the function 
4> : K  x K  —» IR as follows

<£(x,y) :=  -  ^ 9 i { x ) ( A * p , x - y ) .  (23)
i=. 1

4> is continuous in x, affine in y and satisfies

4>{y>y) =  0 for all y  G K. (24)

The assumptions o f Ky Fan’s Theorem (Theorem 8.6) are satisfied; whence, 
there exists x € K  such that

Vy G K , (f>(x, y ) =  (~A*p, x  -  y) <  0 (25)

where we have set p :=  YS=i 9i(x)Pi-1*1 other words, A*p belongs to the normal 
cone Nk {x ).

The dual tangential condition implies that

< 7 (C (x ) ,-p )> 0 . (26)

But this inequality is false. To see this, we let I  be the subset of the indices i 
such that gi{x) >  0. /  is non-empty since E?=i 9i(x) =  1. If i belongs to / ,  then 
x belongs to A Pi and consequently
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cr{C{x)t - p )  =  o  fc(Æ ), -  -P i)  <  °-

\ i= i /  i€/

Thus, we have obtained a contradiction and proved our theorem. □
This theorem has many corollaries and we shall state those which we shall 

use directly in our theorems.

Remark. By taking C(x)  :=  (c (x )}  where c is a differentiable map and A(x)  =  
—d{x)  in Theorem 9.3, we derive the existence of a solution to the equation 
c(x) =  0 where the solution x  must belong to a compact convex subset K:  
Let X  and Y  be Hilbert spaces, K  C X  be a compact convex subset, Q  D K  
be an open neighborhood o f K  and c : Q  •-> Y  be a continuously differentiable 
single-valued map. Assume that

V x  G K , —c(x )  G c' ( x ) T k { x )

Then there exists a solution x  G K  to the equation c(x) =  0 . In  particular, when 
To G K  is given, there exists a sequence o f elements x n G K  satisfying

V n >  0, C (^n)(a?n l) ^(®n)

i.e., the implicit version o f the Newton algorithm.

The most important particular case is that in which X  and Y  are equal and 
A  is the identity.

T h eorem  9.4. Suppose we have a Hilbert space X , a convex compact subset 
K  C X  and an upper hemi-continuous set-valued map C  : K  —» X  with non­
empty, convex, closed values. If the tangential condition

V x e K ,  C ( x ) n T K{x)^(D  (27)

is satisfied, then

(a) 3x  G K  such that 0 G C(x)
(b) \/y G K,  3x £ K  such that y  G x — C(x) .  (28)

9.6 The Viability Theorem

Since the velocity of a constant function t —> x  is equal to zero, we can regard 
a zero x  G K  of the set-valued map C  : K  ^  X  as an equilibrium x  (or a rest 
point) of the differential inclusion

x'{t) G C{x{t))

governing the evolution of a time dependent function t ->• x{t) starting from an 
initial state a:(0) =  Xq at the initial time t =  0.
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Hence an equilibrium is a particular solution to this differential inclusion, 
so that it requires stronger assumptions than the mere existence of a solution.

The viability theorem states that when K  is (only) compact (but not neces­
sarily convex) and C  is upper hemicontinuous with non-empty, convex, compact 
values, the tangential condition (27) is necessary and sufficient for  K  to be vi­
able under C, in the sense that for any initial state xo, there exists at least one 
solution to the differential inclusion x' £ C(x)  starting from Xo and viable in 
K:

V t >  0, x{t) £ K

We emphasize now this basic and curious link between the existence of the 
general equilibrium theorem 9.4 and the ‘viability theorem’ : the General Equi­
librium Theorem —  which is an equivalent version of the 1910 Brouwer Fixed 
Point Theorem, the cornerstone of nonlinear analysis —  states the existence of 
an equilibrium x  o f the set-valued map C  : K  —»■ X  when the dynamics o f the 
uncertain dynamical system described by the set-valued map C  confronted to 
the ‘viability constraints’ described by K  are related by the tangential condition 
(27) and when K  is furthermore assumed to be convex and compact.

Both the general equilibrium theorem 9.4 and the ‘viability theorem’ find 
here a particularly relevant formulation: viability implies stationarity.

Viability implies also stationarity not only when the convexity of K  is traded 
with the convexity o f the image C { K ): I f C  is upper hemicontinuous with non­
empty, convex, compact values, if  K  C X  is a compact subset such that C (K ) is 
convex and if there exists at least one viable solution to the differential inclusion 
x' £ C(x ) ,  then there exists a viable equilibrium o f C  in K .

Indeed, assume that there is no equilibrium. Hence, this means that 0 does 
not belong to the closed convex subset C {K ), so that the Separation Theorem 
implies the existence of some p £ X*  and e >  0 such that

sup (v , - p ) =  a (C (K ) ,  —p) <  - e
x£K ,v£C (x )

Hence, let us take any viable solution x(-) to differential inclusion x' £ C(x)  
which exists by assumption. We deduce that

V t >  0, (—p,x'(t ))  <  —e 

so that, integrating from 0 to t , we infer that

£ t <  (p,x (t ) — x(0))

But K  being bounded, we thus derive a contradiction. □

We can even relax the assumption of the convexity of C(K) :  If C  is upper 
hemicontinuous with non-empty, convex, compact values, if K  C X  is a compact 
subset and if there exists a solution x(-) to the differential inclusion x' £ C{x)  
viable in K  such that
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\ $ T  Ù ' ix'{T^ dT ~  0

then there exists a viable equilibrium x, i.e., a state x  G K  solution to the 
inclusion 0 G C(x) .

The proof starts as in the proof of Theorem 9.3: We assume that there is no 
viable equilibrium, i.e., that for any x  € K ,  0 does not belong to C(x) .  Since 
the images of C  are closed and convex, the Separation Theorem implies that 
there exists p G E,  the unit sphere, and ep >  0 such that a ( C ( x ) ,—p) < —ep. 
In other words, we can cover the compact subset K  by the subsets

Ap :=  {  x  G K  | a (C {x ) t - p )  < - e p }

when p ranges over E.  They are open thanks to the upper hemicontinuity of 
C, so that the compact subset K  can be covered by q open subsets A Pj. Set 
£ :=  min,=li...i9£Pe >  0.

Consider now a viable solution to the differential inclusion x' G C(x) ,  which 
exists by assumption. Hence, for any t >  0, x(t)  belongs to some A Pj, so that

-Ik'COII <  ( -P j ,x ' ( t ) )  <  cr(C(x(t)), —Pj) < - e

and thus, by integrating from 0 to t, we have proved that there exists e >  0 
such that, for all t >  0,

£ < 1 lo WX'(T^ dT

a contradiction of the assumption o f the theorem. □

9.7 Fixed-point Theorems

The above in turn implies the famous fixed-point theorem due to Kakutani.

T h eorem  9.5 (K akutani). Suppose that K  C X  is a convex compact subset 
and that D  : K  K  is an upper hemi-continuous set-valued map with non­
empty, convex, closed values. Then there exists a fixed point x * G K  o f the 
set-valued map D.

P roof. Since D(x)  — x  C K  — x  C Tk (x ), we note that the set-valued map 
x  —> D(x)  — x  satisfies the assumptions of Theorem 9.4 (above). Thus, it lias a 
zero x* G K ,  which is a fixed point o f D. □

In fact, the above proof implies a more general result.

D efin ition  9.7. We shall say that a set-valued map D : K  —» X  is re-entrant if

Vx g K, D ( x ) n ( x  +  TK( x ) ) ^ Q  (29)

and that it is salient if

\ / xeK , D ( x ) n ( x - T K{x))^(H. (30)



9.8 Equilibrium of a Dynamical Economy 155

T h eorem  9.6 (K akutani—Fan). Suppose that K  C X  is a convex compact 
subset and that D : K  —> X  is a re-entrant, upper hemi-continuous, set-valued 
map with non-empty, convex, closed values. Then the set-valued map D has a 
fixed point x* g K .

T h eorem  9.7. Suppose that K  C X  is a convex compact subset and that D : 
K  —>■ X  is a salient, upper hemi-continuous, set-valued map with non-empty, 
convex, closed values. Then

(a) there exists a fixed point x* G K
(b) \/y e  K , 3x G K  such that y G D (x) (whence K  C D { K ))  (31)

P roo f. We apply Theorem 9.4 to the set-valued map x —>• x — D(x),  which 
satisfies the tangential condition since D  is salient. The zeros of this set-valued 
map are the fixed points o f D  and the solutions of y  G x — (x — D(x))  are the 
elements of D~1(y). □

A fixed-point x of a set-valued map D  can be regarded as an equilibrium (or 
a rest-point) of the discrete dynamical system xn+ï G D (x n) because, starting 
from x, we may remain (or rest) at x forever.

9.8 Equilibrium of a Dynamical Economy

We can describe a dynamical economy (P, c) governing the evolution of an 
abstract commodity and an abstract price. The commodities evolve according to 
the laws

I  i) x'{t) =  c{x(t ),p{t))

1 Ü) Vifi) G P

where the commodity x(-) ranges over a finite dimensional vector-space X , the 
price p(-) ranges over Y*, c : X  x Y* t-> X  describes the dynamics and where 
P  C Y* is the set of feasible prices.

Here, the first equation describes how the price —  regarded as a message, 
or regulation control (in short, regulee), or again an input to the system —  yields 
the commodity o f the dynamical economy (once the initial commodity is fixed) 
—  regarded as an output.

A solution to this system is a function t —> x(t) satisfying this system for 
some time dependent price t -> p(t) and an equilibrium (x,p) is a zero of c. 
Next we shall prove a theorem which is very useful for proving the existence 
of an equilibrium of a function c(-, •), which is constrained to satisfy additional 
conditions of the form

A x  G M

known as viability conditions. The choice of such a parameter p (which may be 
interpreted as an adaptive control) constitutes the so-called viability problem.
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In other words, each p is associated with the set Z(p) o f zeros of x —> c(x,p). 
Does there exist a parameter p such that AZ{p)  belongs to M ?

To be more precise, we introduce:

(i) two Hilbert spaces X  and Y\
(ii) two convex closed subsets L C X  and M  C Y\
(iii) a continuous linear operator A  G L ( X , Y );
(iv) a convex compact subset P  <ZY*\
(v) a continuous mapping c : L x P  —» X . (32)

We shall solve the following problem: find x G L and p G P  such that

(i) c(x,p) =  0
(ii) A x  G M  (viability condition) (33)

Theorem 9-8. We suppose that conditions (32) are in force, together with the 
following assumptions:

(i) Vx G L, p —> c(x, p) is affine
(Ü) Vx G L, Vp G P, c(x,p)  G Tl (x ) (34)

(i) L f) A~1(M) is compact
(Ü) 0 G Int {A{L) — M )
(iii) Vy G M, NM(y) C (J XP

A>0
(35)

and
Vx G L, Vp G P, (p ,A c (x ,p )) <  0. (36)

Then there exists a solution (x,p) e  L x P  of the problem (33).

Proof. This is again a consequence of Theorem 9.4. We introduce the convex 
compact subset K  L D A~l (M)  and the set-valued map C  from K  to X  
defined by

\fx G K , C{x)  :=  {c (x ,p )}pGP. (37)

Since P  is convex and compact and p c(x,p ) is affine, the images C (x) are 
convex and compact. Since c : L x P  Y  is continuous and P  is compact, the 
set-valued map C  is upper semi-continuous. In fact, if æo 6 L and e >  0 are 
fixed, we may associate any p € P  with neighbourhoods Np(x0) and N(p) of Xo 
and p (respectively), such that

Væ € Np(xo), Vg G N (p), c (x ,q ) G c(x0,p) + e B  C C (x0) +  eB.  (38)

Since P  is compact, it can be covered by n neighbourhoods N(pi) (i — 1 , . . . ,  n). 
Thus, N ( x o) :=  flf=1./V(p,.) is a neighbourhood of x 0.

The properties (38) imply that

Vx G N (x 0), C(x )  C  C (x o) 4- eB. (39)
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Whence, C  is upper hemi-continuous.
We shall prove that the dual tangential condition

Mx G K,  Vp G Nk (x ), sup {—p,v)  >  0 (40)
t>€C(x)

is satisfied. In fact, since 0 belongs to Int (A (L ) — M ), we know from formula 
(49) o f Chapter 4 that

N k ( x ) =  N l ( x ) +  A ' N m ( A x ).

Thus, any element p o f Nk (x ) may be written as p =  po 4- A*q where 
Po £ Nl (x ) and q G Nm (A x ). There exists p\ G P  such that q =  \p\ where 
A >  0. Then we introduce v :=  c{xypi) G C{x) .  Since c(x,pi)  belongs to 
Tl {x ) =  Nl {x )~ , by assumption, we have (—p0> c(x ,P i)) >  0. Moreover,

(~A*q,c (x ,p1)) =  —\{pi,Ac(x,pi) )  >  0.

Whence,

cr((Cx), - p )  >  ( po -  A*q, c (x ,p j)) >  0.

Thus, we may apply Theorem 9.4. There exists x  G K ,  in other words i G l ,  
satisfying A x  G M , such that 0 belongs to C ( x ); whence, there exists p G P  
such that 0 =  c(x,p).  □

9.9 Variational Inequalities

We shall consider

(i) a convex compact subset K  C X\
(ii) an upper semi-continuous set-valued map C  from K  to X

with convex compact values. (41)

which does not necessarily satisfy the tangential condition. The problem now 
is how to modify C  in such a way that the new set-valued map satisfies this 
condition.

We note that this modification need only be carried out on the boundary 
d K  o f K ,  since for all x  G Int(K ),  TK(x) is equal to the whole space.

For this, it is sufficient to subtract the set-valued map x  -> N k { x ) (which 
associates each x  with the normal cone to K  at x) from the set-valued map C  
and to find the zeros o f the set-valued map C — N^:

x e K  such that 0 G C(x)  — N k ( x ). (42)

By definition of the normal cone to K  at x , Nk {x ), the inclusion (42) is 
equivalent to
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(i) x  e  K
(ii) 3v G C{x)  such that (v, x  — y) >  0 Vy G K.  (43)

Definition 9.8. The equivalent problems (42) and (43) are called variational 
inequalities.

Remark. We saw that the solutions x G K  which minimise a nontrivial, convex, 
lower semi-continuous function /  : X  —> IR U {+ o o }  such that 0 G Int(AT — 
Dom/ )  over K , are the solutions of the inclusion 0 G d f (x )  4- Nx(x ) ,  whence 
solutions of the variational inequality (43) with C(x)  :=  —df(x ) .

Remark. Since TK(x) is the negative polar cone of A T (x), Theorem 5.1 of 
(Aubin 1979a) implies that any element v € C(x)  decomposes into the form 
v =  t +  n where t G T/c(x), n G NK(x) and (t,n) =  0. Thus, for any v G C(x), 
the element v — n — t belongs to (C (x ) — Nk {x )) D Tk (x ), which shows that 
the set-valued map (C — NK) satisfies the tangential condition.

We also note that any zero x of C  — N x  which belongs to the interior o f K  
is a zero o f C  and that if

Vx G K, C(x)  C Tk {x ) (44)

then any zero x o f C —N k  is a zero o f C,  since in this case, there exists v G C(x)  
which belongs to the intersection of T/c(x) and A ^ (x ), which is zero.

We could use this remark to apply Theorem 9.4 to deduce the existence of 
solutions of variational inequalities. But we can give a direct proof based on 
Ky Fan’s Inequality.

Theorem 9.9. Suppose that K  is convex and compact and that C  is an upper 
semi-continuous set-valued map from K  to X  with non-empty, convex, compact 
values. Then there exists a solution x  G K  o f the variational inequality (43)-
Proof. We set

, y) =  - a ( C ( x )  , x - y ) .  (45)
The function (f is concave in y and clearly satisfies <f(y, y) — 0. Since C  is upper 
semi-continuous with compact values, a variant of Proposition 9.1 shows that 
x —»■ cr(C(x),x — y) is upper semi-continuous. In fact, since C(xo) is bounded, 
||C(x0)l| :=  s u p ^ c ^ ) ||?;|| is finite and the inclusion

Vx G N ( x 0), C(x)  C C (xo) 4 - 7 7B

implies that

Vx G iV(x0) :
cr(C(x), x - y )  <  a (C (x0), x  -  y) 4- t?||x -  y||

<  cr(C(x0), x0 -  y) 4- a (C (x0), X -  x0) 4- 7]\\x -  y||
<  C7(C'(x0),Xo -  y) 4- ||C'(x0)||||x -  Xoil 4- 7?||x -  Xo||

+ ï ï l k o  -  2/11.
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Thus, taking rj <  gn^,; n and replacing N { x q ) by its intersection with the ball of 
radius 2p7+nc7(xo)||) , it follows that x  —» cr{C{x), x  — y) is upper semi-continuous, 
whence x —> 4>(x, y ) is lower semi-continuous. Ky Fan’s Inequality may then be 
applied (Theorem 8 .6 ). Thus, there exists x  G K  such that

M y e K ,  o ( C ( x ) , x  -  y) >  0 

in other words, such that

inf sup (v, x  — y) >  0. 
vec(x)

Since K  and C (x ) are convex compact sets, it follows that there exists v G C(x)  
such that (following Theorem 9.8)

inf (v, x  — y) >  0. yeK\ m -

Thus, this element x  E K  is a solution of the variational inequality (43). □

9.10 The Leray-Schauder Theorem

From Theorem 9.4, we may derive other theorems for the existence of zeros 
using the continuation technique due to Poincaré.

Consider the boundary d K  o f the convex compact set K  (which is different 
from K  if X  is finite dimensional and the interior of K  is non-empty).

T h eorem  9.10. Consider a convex compact set K  with a non-empty interior, 
together with an upper hemi-continuous set-valued map C  from K  x [0,1] to X , 
with non-empty, convex, closed values.

Suppose that

(i) the set-valued map x  —» C {x , 0) satisfies the tangential condition;
(ii) VA G [0,1[, V x e d K ,  0 ^ C(x,X).  (46)

Then
3x  € K  such that 0 € C(x,  1). (47)

P roof. We shall suppose that the conclusion (47) is false and derive a contra­
diction.

We set A := dK,  which is a closed subset o f K  and introduce the subset

B := { x  e. ÜT|3A G [0,1] satisfying 0 G C(x,  A)}. (48)

The set B  is non-empty, since it contains the equilibria o f x  —> C(æ,0). It 
is closed (since C  is upper hemi-continuous) and disjoint from A  (if x  G A  and 
t G [0,1 [, assumption (46)(ii) implies that x £ B;  if x  G A  and t =  1, then 
x <£ B,  since C(-, 1) has no zeros).
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Next we introduce a continuous function <j) from X  to [0,1], which is equal 
to 0 on A and 1 on 5

, . S  ,=  d(x,A)  
n > ' d(x,A) +  d (x ,B) '

together with the set-valued map D  defined by

D ( x ) :=  C(x,4>(x)). (49)

D  is clearly upper hemi-continuous with non-empty, convex, closed values. It 
coincides with C ( x , 0) on A  and consequently satisfies the assumptions of The­
orem 9.4. Thus, the set-valued map D  has a critical point x G K  such that 
0 € D[x) — C(x,4>(x)). This now implies that x G B,  whence that fi(x) — 1 
and so 0 G C(x,  1). It follows that C(-, 1) has a critical point, which is the 
desired contradiction. □

In particular, we obtain the following result:

T h eorem  9.11. Suppose that K  is a convex compact subset with a non-empty 
interior and that C  and D are two upper hemi-continuous set-valued maps from 
K  to X  with non-empty, convex, closed values.

Suppose that
C  satisfies the tangential condition (50)

and that
V/i > 0 ,  Vx G d K , 0 ^ C(x)  4- pD(x) .  (51)

Then the set-valued map D has a zero x  G K .

P roof. We apply the previous theorem with C (x , t) =  (1 — t )C(x)  +  tD(x) .  □
Let us take a finite-dimensional space X  and x0 G Int K . Then the mapping 

C(x) =  x — Xq satisfies the tangential condition. Thus, we have the following 
theorem:

T h eorem  9.12. Suppose that Xo & point in the interior o f a convex compact 
subset K  o f X  and that D is an upper hemi-continuous set-valued map from K  
to X  with non-empty closed values. Suppose further that

V/u > 0 ,  Vx G dK, x0 ^ x  +  pD(x) .  (52)

Then D has a zero x  G K .

9.11 Quasi-variational Inequalities

We shall now prove a theorem which reconciles Ky Fan’s Inequality and Kaku- 
tani’s Fixed-point Theorem. This result will be useful in the theory of non- 
cooperative games.
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T h eorem  9.13. We suppose that

K  is a convex compact subset o f a Hilbert space X  (53)

and that

C  : K  —»■ K  is an upper hemi-continuous set-valued map
with non-empty, convex, closed values. (54)

We consider a function : K  x K  —>■ IR satisfying

(i) \/y G K , x —> <p{x,y) is lower semi-continuous
(ii) Væ G K , y —» (p{x, y) is concave
(in) supyeK <p(y, y) <  0. (55)

We suppose further that the set-valued map C  and the function <p are related by 
the property

{cc € K\a(x) :=  sup (p{x,y) <  0} is closed. (56)
y € C (x )

Then there exists a solution x € K  o f the quasi-variational inequality;

(i) x e  C(x)
(ii) sup 4>{x,y) <  0. (57)

y eC (x )

Remark. Assumptions (53) and (54) are those o f Kakutani’s Theorem and 
assumptions (53) and (55) are those o f Theorem 8.6 (Ky Fan’s Inequality). 
Assumption (56) is an assumption o f consistency between C  and <f.

P roo f. We shall argue by reduction to the absurd. If the conclusion is false, for 
all a: € AT we would have either a(x)  >  0 or x  ^ C(x) .  To say that x  ^ C(x)  
implies that there exists p € X*  such that (p,x ) — cr(C(x),p) >  0. We set

(i) l/0 :=  { x  € K\a{x) >  0}
(ii) V{p)  :=  { x  <E K\(p,x) -  cr(C(x),p) >  0}. (58)

The negation of the conclusion may be expressed in the form

AT C VoU (J V{p).  (59)
pex*

Assumptions (54) and (55)(i) imply that the sets Vo and V{p)  are open. 
Since AT is compact, it follows that there exist p\, . . . ,  pn such that

K c V 0 u \ J V ( Pi) (60)
2=1

and that there exists a continuous partition o f unity {go, g i , . ■ ■ ,gn}  subordinate 
to this covering.

Next we introduce the function ip : K  x K  - »  IR defined by



162 9. Solution of Nonlinear Equations and Inclusions

i p ( x , y )  =  9o(x)<f>(xt y ) 4- Y ^ 9 i { x ) ( P h x  ~  v ) -  (61)
i=l

This function ip is lower semi-continuous in x  (by virtue of (55)(i)) and 
concave in y (by virtue of (55)(ii)). Since K  is convex and compact (by 
virtue of (53)) and since supy ip(y,y) <  0 (by virtue of (55)(ii)), Theorem 8.6 
(Ky Fan’s Inequality), implies that there exists x  G X  satisfying

supip(x,y) <  0. (62)
yeK

We shall contradict this inequality by proving that there exists ÿ G K  such 
that

ip ( x ,ÿ )>  0. (63)

We take:

(i) any ÿ  G C(x)  if a(x) <  0;
(ii) ÿ € C (x) satisfying (p(x,y) >  a(x)/2 if a(x)  >  0 (64)

(the choice o f ÿ  is free).
Since go,gi, . . .  ,gn is a partition of unity, gi{x) >  0 for at least one index 

i =  0 ,1 , . . .  ,n. The inequality (63) then follows from the following assertions:

(i) go{x) >  0 implies that 4>{x,y) >  0
(ii) gi(x) >  0 implies that (pi,x — y) >  0. (65)

Let us now prove these assertions. If ^o(^) >  0, then x  G Vq and consequently, 
a(x)  >  0. Thus, <p{x,y) >  a (x )/2 . If gi{x) >  0, then x  G V{pi) and consequently, 
{p»x)  > a(C(x),pi)  >  (pitÿ), since ÿ G C(x) .  Thus, (pitx  -  ÿ) >  0. □

Remark. It is useful to give sufficient conditions implying assumption (56). 
One such is that the function a  : x  —» a(a:) =  s u p ^ ^ )  4>{x, y) be lower semi- 
continuous. For, Proposition 9.3 implies that if the set-valued map C  is lower 
semi-continuous then so too is a.

T h eorem  9.14. Suppose that C  is a continuous set-valued map from a convex 
compact subset K  into itself\ with non-empty, convex, closed values. Suppose 
that 4> is a function satisfying assumptions (55) which is lower semi-continuous 
in both variables. Then there exists a solution x  G K  o f the quasi-variational 
inequality (57).

9.12 Shapley’s Generalisation of the Three-Poles 
Lemma

We know that the story began in 1910 with the Brouwer Fixed Point Theorem. 
It was proved later in 1926 via the Three Polish Lemma, the three Poles being
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Knaster, Kuratowski and Mazurkiewicz, which allowed them to derive the Fixed 
Point Theorem in a simpler way. Knaster saw the connection between Sperner’s 
Lemma and the fixed point theorem, Mazurkiewicz provided a proof corrected 
by Kuratowski. The extension to Banach spaces was proved in 1930 by their 
colleague Schauder.

Von Neumann did need the set-valued version of this Fixed Point Theorem 
in game theory, which was proved by Kakutani in 1941.

Lem m a 9.1 (T h ree -P o les  or  K —K —M  lem m a). Consider n closed sub­
sets Fi of the simplex M n {x  G IR+| %i =  1} satisfying the condition

\ / x e M n, x e  U  F .  (66)
{ijx i> 0 }

Then

f l  Ft *  0. (67)
i-1

At the time, this lemma was proved from Sperner’s lemma on the simplicial 
decomposition and thus stemmed from the area of combinatorics. Shapley gen­
eralised it in 1973 and we shall deduce the Three-Poles Lemma from his theorem.

However, before we do so, some indications as to how to prove Brouwer’s 
Theorem from this lemma would not go amiss.
P r o o f  o f  B rou w er ’s T heorem . Let D  be a continuous mapping of the simplex 
M n into itself. We associate this with the sets F* defined by

Fi :=  { x  G M n\xi >  Di{x )}  (68)

which axe closed since D  is continuous. Condition (66) is satisfied, otherwise 
there would exist x  G M n such that for all indices i , Xi <  Di(x).  Since x 
and D { x ) belong to M n, we obtain the contradiction 1 <  1 by summing these 
inequalities.

The Three-Poles Lemma then implies that there exists a point x  G M n 
belonging to the intersection of the F*, in other words satisfying

V* =  1 , . . .  ,n, Xi >  Di(x).  (69)

The inequality cannot be nontrivial since, otherwise, taking the sum, we would 
again obtain the contradiction 1 <  1. Thus, Xi =  Di(x)  for all z, and conse­
quently, x  is a fixed point of the continuous mapping D. □
Let us now denote the set of n elements by N  :=  { 1 , . . .  ,n} .  With any subset 
T  of N , we associate the sub-simplex M T defined by

M t :=  {x  G M n\\/i G T, X i^  0}. (70)

The characteristic functions cT G (0, l } n of the subsets T  C N  axe defined by

cT(i) =  1 if * G T, Qr(t) =  0 if i £ T .  (71)



164 9. Solution of Nonlinear Equations and Inclusions

T h eorem  9.15 (K —K —M —S T h eorem ). Every non-empty subset T  C N  
is associated with a closed subset (possibly empty) Ft C M n in such a way that 
the condition

VT ^  0, M t C U  Fs (72)
S c T

is satisfied. Then there exist non-negative scalars m(T) such that

(i) cN =  rn{T)cT
7V0

(ii) f| Ft  Ï  0. (73)
{T|m(T)>0}

P r o o f  o f  Lem m a 9.1. We apply Theorem 9.15 with Fs :=  Fi when S =  {z} 
and Fs =  0 if |S| :=  card(S) >  2. Condition (66) implies assumption (72), 
whilst the conclusion (73)(i) implies that m(z) =  1 for all i =  1 , . . .  ,n  and the 
conclusion (73)(ii) implies that the intersection of the Fi is non-empty. □
P r o o f  o f  T h eorem  9.15. This is a consequence of Theorem 9.4 applied to the 
set-valued map G : M n —» IRn defined by

It is easy to prove that G  is upper semi-continuous with convex compact values. 
It remains to show that it satisfies the tangential condition:

\ / x e M n, G ( x ) n T Mn(x) ^ 0 .  (75)

We denote the set of indices i such that Xi >  0 by T. Assumption (72) implies 
that there exists a subset R c T  such that x  belongs to Fr . Thus,

y î i cn ~  CR £ G(x).  (76)

But y also belongs to the tangent cone to M n at x , which is described by 
formula (44) o f Chapter 4. In fact, ^ =1 y* is equal to zero, and for all i such that 
Xi =  0, we have y{ =  j ^ c N(i) — | ĵC/?(z) =  > 0, since i does not belong to T.
Thus, the tangential condition (75) is satisfied. Whence, Theorem 9.4 implies 
that there exists x  € M n such that 0 € G(x),  in other words, such that

C/V =  ™ cT and r e  f l  FT. (77)
{T |Fr 9x} I2 I Fr 3x

□

Remark. We note that property (73) (i) may be written in the form

Vz, 1 , . . .  ,n, Y l m (T ) =  1-
T3i

(78)
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D efin ition  9.9. A family B of non-empty subsets T  C N  such that

Cn  =  Y , iti( T ) c t  where m(T) >  0 VT € B (79)
Tee

is called a balanced fam ily and the vector m =  (m(T))T£B satisfying (78) or 
(79) is called a balancing.

Theorem 9.15 may be reformulated by saying that assumption (72) implies 
that there exists a balanced family B such that Dree Ft f 2



10. Introduction to the Theory of Economic 
Equilibrium

10.1 Introduction

We shall describe two ways of explaining the role of prices in the problem of 
decentralisation of consumer choice (in the static framework only). This is taken 
to mean that knowledge of prices enables each consumer to make his own choice, 
in accordance with his own objectives, without knowing the global state of the 
economy and in particular, without knowing the choice of other consumers, all 
the while respecting the scarcity constraints.

It was Adam Smith who, more than two centuries ago, originated this con­
cept of decentralisation. He introduced this paradoxical and mysterious prop­
erty in a poetic way. Here is the famous quotation from his book, The Wealth 
of Nations, published in 1778.

‘Every individual endeavours to employ his capital so that its produce may 
be of greatest value. He generally neither intends to promote the public interest, 
nor knows how much he is promoting i t  He intends only his own security, only 
his own gain. And he is in this led by an invisible hand to promote an end which 
was no part of his intention. By pursuing his own interest, he frequently thus 
promotes that o f society more effectually than when he really intends to promote 
it. ’

But Adam Smith did not state what this famous hand manipulated and a 
fortiori put forward a rigorous argument to justify its existence.

It was a century later that Léon Walras suggested that this invisible hand 
acted on prices via the demand functions, using them to provide economic agents 
with sufficient information to guarantee the consistency of their actions whilst 
respecting the scarcity constraints.

This concept of economic equilibrium which we owe to Walras is not the only 
thing we owe to him. For, it was Léon Walras who, from his first publication 
in 1859, which refuted the ideas of Proudhon, suggested that mathematical 
methods could be useful in economic theory. Originality often consists o f a new 
way of viewing the world rather than of discoveries and inventions which arouse 
the interest of contemporaries. Walras introduced mathematical rigour into an 
area which at that time had not benefited from detailed work for a number 
of centuries. He did this outside of (and against) all customs, despite major
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difficulties, alone and unaided, without the encouragement and moral support 
of his colleagues, whether mathematicians or economists. He did it, because 
in his heart, he was able to recognise the perspectives involved before he even 
started. It should also be noted that the Parisian scientific community at that 
time (like that of today), guided by snobbism, custom and prestige, did not 
allow Léon Walras to take root. It was the University of Lausanne which was 
recompensed by having offered him the chair of economics in which he was 
succeeded by Vilfredo Pareto who shared with Walras the conviction of the 
applicability of mathematics to the social sciences.

It was in 1874 that Léon Walras introduced his concept of economic equi­
librium in Elements d ’économie politique pure, as the solution of a system of a 
nonlinear equations. The fact that there were the same number of unknowns as 
equations gave him sufficient optimism about the final outcome to affirm the 
existence of a solution.

But this required the tools of nonlinear analysis, which were developed fol­
lowing the proof of Brouwer’s theorem in 1910. It took another century of mat­
uration before the works of Wald and von Neumann (in the 1930s), Arrow 
and Debreu (1954), Gale, Nikaïdo and many others, produced the rigorous re­
sults which we shall describe in the greatly-simplified framework of exchange 
economies

10.2 Exchange Economies

We begin by describing an economy by introducing l types of elementary com­
modities, each with a unit of measurement, so that it is possible to talk about 
x  units of an elementary commodity. An elementary commodity is described 
not only by its physical properties, but also by other characteristics such as its 
location and/or the date when it will be available and, in case of uncertainty, 
the event which will take place, etc.

Services may also be viewed as elementary commodities as long as they can 
be quantified by units o f measurement.

A commodity (or a ‘complex’ or ‘basket’ of commodities) consists of a vector 
x  € JR1 which describes the quantity Xh of each elementary commodity h =  
1

The description of an exchange economy involves

a subset M  C IR* of available commodities (1)

together with n consumers. We shall describe two consumer models, the first of 
which could be called the classical Walrasian model. In both cases, the descrip­
tion of the zth consumer involves

the consumption set Li C Rl (2)
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This is interpreted as the set of commodities which the zth consumer needs. 
If x  belongs to Li} then the hth component x h represents the consumer’s demand 
for the elementary commodity h if >  0 and Irc/J represents the supply of this 
elementary commodity if xh is negative.

The fundamental question then arises: can consumers share an available 
commodity?

This leads us to introduce the following concept of allocation.

D éfin ition  10.1. An a llocation  x  G ( ® T  is a sequence of n commodities 
Xi G Li such that their sum Xi is available.

We denote the set of allocations by:

K  :=  \x  g f t  Li\ G m ]  (3)
l  i = l  i = l  J

Assuming that the set of allocations K  is non-empty, we must describe reason­
able mechanisms which enable consumers to choose allocations.

The two mechanisms which we shall describe are decentralised mechanisms. 
By this, we mean mechanisms which do not require each consumer to know 

the set M  of available commodities and the behaviour and the choices of the 
other consumers, but which only require each consumer to know his own par­
ticular environment and to have access to common information about the state 
of the economy.

In the two models to be described, this common information will take the 
form of a price (or price system) which is perhaps best viewed as an adaptive 
control.

As far as we are concerned, a price is a linear form p G IRZ which associates 
a commodity x  G IR* with its value (p, x) G IR, expressed in monetary units.

Since an elementary commodity h is represented by the hth vector eh :— 
( 0 , . . . ,  0 , 1 , 0 , . . . ,  0) o f the canonical basis of IR*, the components ph (p, eh) 
of the price p represent what is usually called the price o f the commodity h. 

We denote the price simplex by

M 1 :=  jp  € H O  =  ! }  (4)

We could have taken a different normalisation rule, for example, by taking a 
reference commodity w G ÛI+, called the currency whose value is always 1; this 
amounts to only considering prices p G IR** such that (p, to) =  1. For simplicity, 
we shall take u  :=  j l .

10.3 The Walrasian Mechanism

In the case of the Walrasian mechanism, we view the consumer i as an automa­
ton which associates a subset of consumptions A(p>r) C A  with each price
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system p G JR1* and each income r. In other words, a consumer is described by 

a correspondence Dt : M l x JR Li (5)

We interpret the support function

aM{p) := sup(p,y)  (6)
y€M

of the set M  of available commodities as the collective-income function which 
is the maximum value of the commodities available for each price p.

The essential assumption of this mechanism is that the collective income is 
shared between the n consumers:

there exist n functions r, : M l —» IR such that r*(p) =  <Jm {p ) ■ (7)

With this in place, for each price p G IR*, the income of each consumer is ri(p) 
and he is thus led to choose a consumption Xi in the set A(p> ri iv) ) - This choice 
is decentralised] it depends only on the price p (via rf) and is independent of 
the choice o f other consumers.

There is clearly a consistency problem.
Is there a price p such that the sum of the consumptions Y%=i € 

Di(p, r fp ) )  is available (in other words belongs to M)  or such that the 
consumptions x * G Di(p,ri(p)) form an allocation?

D efin ition  10.2. We shall say that a price p G M l is a W alrasian equilib­
rium  price  if it is a solution of the inclusion

0 € £ A ( f > , n ( p ) ) - M .  (8)
i=l

We shall call the correspondence E  from M l to IR* defined by

E { p ) : = j ^ D i { p , r i { p ) ) - M  (9)
i~ l

the excess-dem and correspondence.

Consequently, the Walrasian equilibrium prices are the zeros of the excess- 
demand correspondence. These are the prices which Adam Smith’s invisible 
hand should be able to propose to the market -  by solving the inclusion (8).
Rem.ark. To avoid misunderstandings, it is useful to stress that the partition 
Z)"=i7'i(p) =  o'M (p) of the collective income is given in the model and is not 
a solution. In other words, there are as many Walrasian equilibrium prices as 
partitions r(p) =  Yfï=i ri{p). This model is neutral as far as any question of the 
justice of the partition of the collective income between the players is concerned.

We can solve the existence problem for Walrasian equilibrium prices using 
one of the many theorems for the existence of zeros of correspondences. In 
addition, we have to find such a theorem with assumptions which are susceptible 
to a reasonable economic interpretation. This is possible. We shall show that 
simple (decentralised) budgetary rules guarantee the existence o f an equilibrium.
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C ollective  ^Valras Law

The demand correspondences Di should satisfy the condition

Vp € M l, Vxi G A (p ,n ) ,  I p , f 2 x i )  ^  f l ri‘ (10)

In other words, this law forbids the set o f consumers from spending more (in 
terms o f monetary units) then their total income.

The collective Walras law provides for transfer of income between con­
sumers. A stronger, decentralised law is given below.

W alras Law

Every correspondence D, satisfies the condition

Vp G M l, \/x G Di(p,r), (p,x) <  r. (11)

We note that the Walras law is independent of the set M  of available commodi­
ties.

T h eorem  10.1. We make the following assumptions:
The consumption set M  is convex and may be written as M  =  M0 — JRl+, where 
Mo is compact. (12)
The demand correspondences Di : M l x IR —> are upper hemi-continuous
with convex, compact values and satisfy the collective Walras law. (13)
The income functions rz- are continuous■ (14)
Then there exists a Walrasian equilibrium.

P roof. We apply Theorem 9.2 (Debreu-Gale-Nikaido) to the correspondence 
C : M l —y IR* defined by

C ( p ) : = M o - £ A ( p , r , - ( p ) )  (15)
i= 1

which is clearly upper hemi-continuous.
It follows from (12) and (13) that C(p) -  IR+ is convex and closed. Since

Vp G M l, X^rf(p) =  g {Mq -  IR+,p) =  o-(M0,p), (16)
i= 1

it follows from the collective Walras law (10) that
771

o{C(p) ,p )  =  cr(Mo,p) — sup J2(~P>x i)
Xi£Di (p,n(p)) i-1 

n

>  a{M 0, p ) - ^ ri(p)
i=l
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2=1
=  0.

Thus, there exists p G M l such that 0 G C(p) — IR+ =  -E(p)>  in other words, 
a Walrasian equilibrium price. □

One important particular case is that in which

M  :=  w — JRl+ (17)

is the set of commodities less than the available commodity w G IR/.

C oro llary  10.1. We suppose that assumptions (13) and (14) are in force and 
that 71

w =  Y 2wi is allocated to the n consumers (18)
i- 1

Then there exists a Walrasian equilibrium price p and consumptions Xi G 
Di(p , (p,Wi)) such that <  £ ”=i wi-

In fact, Léon Walras, and the neoclassical economists following him assumed 
that the demand functions and correspondence arose from the maximisation of 
a utility function under the budgetary constraints:

A (p ,r )  =  < x e  Li} {p,x)  <  r|ui(x) =  sup Ui(y) > (19)
l (p,y)<r )

Of course, these demand correspondences satisfy the Walras law. Assump­
tions needed to return to the case of Theorem 10.1 are imposed on the utility 
functions. So as not to overload the description with technical complications 
and above all because it is not clear that the maximisation of utility functions 
according to Homo economicus is compatible with the teachings of cognitive 
psychology, we shall not develop this point of view any further.

We have seen that the Walrasian equilibrium prices are the zeros of the 
excess-demand correspondence E.

It is tempting (as in physics) to consider these zeros as the stationary solu­
tions

0 G E{p) (20)

of the dynamical system (multi-valued)

p'(t) €  E(p(t))  (21)

(again called a differential inclusion).
The algorithm thus defined (called W alras tâtonnem ent) cannot be im­

plemented outside the stationary state, since in this case, 0 does not belong 
to E(p(t))  and the sum of the corresponding demands Xi(t) G Di(p(t),ri(p(t)) 
does not necessarily belong to the set M  of available commodities.
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We shall introduce another mathematical description of the consumers and 
another concept of equilibrium which may be viewed as a stationary state of 
a dynamical system. Although dynamic considerations are beyond the limited 
scope of this book, the mechanism which we shall describe avoids the criti­
cisms made of the Walrasian equilibrium. These criticisms (which were made 
too quickly) do not relate to the concept of price decentralisation, but to an 
excessively-specific mathematical translation which has become a dogma. The 
fact that this attempt to respond to criticisms has been called the theory of 
disequilibrium has added a great deal of confusion to an already complicated 
situation. The notion of equilibrium is very specific, its converse could be almost 
anything!

10.4 Another Mechanism for Price Decentralisation

We consider an exchange economy described by a subset M  of available com­
modities together with n consumers whose consumption sets Li G JR are given.

Here, we represent each consumer z, not by a demand function or correspon­
dence, but by a continuous function

d  : Li x M l -> IR* (22)

called a change function
This function associates the commodity x  G L, and the price p € M l with 

the change Ci{x,p) that the automaton consumer wishes to make to the com­
position of the commodity x. If the hth component Ci{x,p)h is positive, he will 
increase his consumption of the elementary commodity h and if Ci{x,p)h =  0 he 
will conserve his elementary commodity h.

D éfin ition  10.3. In this context, an equilibrium is defined by an a llocation  
x  G K  and a price p G M l such that

Vz =  l , . . . , n ,  Ci(xi,p) =  0. (23)

In other words, the equilibrium price p  is such that it stimulates each con­
sumer i to conserve his consumption Xi.

The choice of such an equilibrium allocation is again decentralised,; it depends 
only on the price p and the personal consumption Xi G Li of each consumer, 
and does not depend either on the choice of the other consumers or on the set 
M  of available commodities.

To solve the equations (23), we must chose an existence theorem with as­
sumptions which are susceptible to a reasonable economic interpretation. As in 
the case of the Walrasian mechanism, we shall show that simple (and decen­
tralised) budgetary rules guarantee the existence of an equilibrium.
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10.5 Collective Budgetary Rule

The change functions c* : L{ x M l —» JR1 satisfy

Va: G II Vp G M l,
i= 1

p,^2ci{xi,p) } < 0
T=1

(24)

In other words, this rule states that for each price p , the total value of the 
deficits (p, Ci(a?i,p)) incurred by each agent should not be negative or zero.

The collective budgetary rule allows for transfers of deficits between the 
consumers. It is possible to forbid such transfers and to require consumers to 
obey the following more restrictive (but decentralised) rule:

\/x G Li, Vp G M l, (p, Ci(xi, p)) <  0. (25)

We obtain the following existence theorem.

T h eorem  10.2. We make the following assumptions:
The consumption set M  is convex and may be written as M  =  M 0 — IR*+ , where 
Mq is compact. (26)
Vz =  1 , . . .  ,n the consumption sets are convex, closed, bounded below and satisfy 
OGlntESLi L i - M ) .  (27)
For each i =  1 , . . .  ,n, the change functions satisfy

(z) \/x G Li, p —> Ci(x,p) is affine
{ii) Vx G Li, Vp G M f, Ci(a;,p) G Tl.(x )

together with the collective budgetary rule

Va: G f j  € Mz,
Z—1

P , Y , Ci(Xi’ P) )  <  0
z=l

(28)

(29)

Then there exists an equilibrium allocation x =  (aq,. . .  , x n) G K  and price 
p G M£.
P roof. We apply Theorem 9.8 with

X  ■.= (IR')", r  =  H ', A x : = Y ^ X i ,  P : = M l,
i=  1 

n
L :=  JJ Li and c(a:,p) =  fyi(a:i,p))i=lt n.

Z=1

Assumptions (34) of Chapter 9 follow from assumptions (28).
Since M  =  M0 -  Ify 

contained in cones & -f IR1r+>
where Mq is compact, and since the sets Li are 
it follows that the set of allocations

I < := f i m f x i Z M
i= 1 i-1

(30)
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is compact. In fact, since M  is contained in a cone lj — IR.+, the set K  is 
contained in n?=i[£i,k; — Yj^i  £j] where [y, z) denotes the set of x  € IRZ such 
that y <  x <  z.

Clearly 0 belongs to Int(A(L) — M).  Since M  =  Mq — JR*+, it follows that for 
all y €  M , the normal cone Nm {v ) is contained in IRZ+, which is generated by 
M 1. Thus, assumptions (35) of Chapter 9 are satisfied. The collective budgetary 
rule clearly implies assumption (36) of Chapter 9. It remains to check that the 
solutions x  €  K  :=  L (1 A~l (M )  and p  G M l of the equation c(lc,p) =  0 are the 
desired equilibria. □
Example. The functions of the form

where

c(x,p)  :=  0 ( x ) ( { p j ( x ) ) g { x )  -  \\f{x)\\\\g{x)\\p -  h(x)) (31)

W 6 : L IR+ and h : L —» Rl+ are positive
(« ) /  and g are defined from L to IRZ+ (32)

are affine with respect to p and satisfy the budgetary rule, since the Cauchy- 
Schwarz inequality implies that

(p,c{x,p)) <  -6 (x ) (p ,h (x ) )  <  0

when p  runs through M l.
If we also suppose that

\/x e  L, f ( x )  e  -JRl+

(33)

(34)

we obtain the inequalities

Vz e l ,  Vp e  M l, (/(a :),c (r ,p )) >  0 (35)

again by virtue of the Cauchy-Schwarz inequality.
If we take

f  =  9 and ( / ,  h) =  0 (36)

we obtain
V x e i ,  V p e M ' ,  ( f ( x ) , c (x ,p ) )  =  0. (37)

If for the mapping /  we take the gradient Vu  of a utility function, the 
conditions (36) (or (37)) express the fact the changes c (x ,p ) are directions 
which change (or leave invariant) the level of utility.
Example. Another example of a change function may be constructed from: 
a twice-continuously-differentiable function Wi defined on a neighbourhood of
U  (38)

by setting i
ci{XiP)h =  Y ,

l

c^Wi{x)
-Ô— K—Pk dxhdxk

(39)
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If we assume that
n

y  w t is concave (or \/i,Wi is concave) (40)

the collective budgetary rule (or the budgetary rule, respectively) is satisfied. 
An equilibrium is defined by the conditions

which may be written explicitly as the system of differential equations

in which the price p appears as a control.

The problem then is to know if there exists a function t —» p(t) with values 
in the set of prices M l, such that the trajectories of the differential system (44) 
at any given time form allocations of the set M  of available commodities, in 
other words they satisfy

It can be shown that, under the assumptions of Theorem 10.2 there exists such 
a function p(-). If we set

the price p(t) is linked to the allocations X(t) by the feedback relation

(0 x  e  K

Remark. Since the equilibrium allocations are the zeros of the correspondence 
C  defined by

Mx 6 L, C(x j  :=  { c (x ,p ) }peM, (42)

it is tempting to view them as the stationary points of the differential inclusion

ITt €  C(x{t) ) (43)

X'A t) = Ci(xi{t),p(t)), i = (44)

(0

(u )

Vt >  0, V* =  l , . . . , n ,  Xi(t) € Li

vt> o, yxi{t)eM
n

(45)

Vx 6 K, n ( x u --- ,x„)  := Ipe M 'l^ C i^ i .p )  e T M >»
n

)} (46)

V i>  0, p(t) 6 n{xi(t),...,x„{t)) (47)

It is at this level that one can put one’s finger on the difference between the 
two concepts of equilibrium. The Walrasian equilibrium price is the stationary 
state of a dynamical system p'(t) G E(p(t)) involving prices, which cannot be
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implemented; whilst the second concept for equilibrium allocation is the sta­
tionary state of a dynamical system x '(t) G C(x{ t) )  involving the commodities 
consumed, which is viable, in the sense that at any given time, the :r(£) are allo­
cations. In this case, the price evolves according to the feedback law (46). This 
being the case, the two models translate the same idea of price decentralisation 
allowing each consumer to find an allocation.
Remark. In this context, one could equally well propose a decentralised planning 
model which would allow one to move around in the set of allocations.

Suppose there exists a continuous mapping x  G K  —» p (x i , . . .  , x „ )  G M l 
such that

Vx G K , p {x i , z  n) G II (x  i , . . . , x n). (48)

Such a mapping is called a continuous selection of the correspondence IJ.
In the language of planning, this is interpreted by surmising that the plan­

ning office knowing the allocation x  G K  is able to associate it with a price 
p (x i , . . . ,  x n) which is an element of I I (x\ , . . . ,  x n).

Knowing this price system, the consumers modify their consumption by 
solving the system of differential equations

x 'i ( t )  =  C i ( x i { t ) , p { x 1 ( t ) , . . . x i ( t ) , . . . , x n ( t ) ) )  (z =  1 , . . .  ,n) (49)

the solutions of which at any given time satisfy the viability conditions

(z) Vz =  l , . . . ,n, V£ >  0, Xi(t) G Li
n

(zz) Vt >  0, 5^aîi(<) G M. (50)
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Table 10.1. Comparison between Walrasian and viable equilibrium

Process: Walrasian Viable

Description of 
the behavior of
consumers

demand functions 
di{p,r)

Xi =  di{p, rf(p))

change functions
Ci(Xi,p)

x'i{t) =  Ci(Xi(t),p(t))
Demand map 
derived from 
change function

x  G Di{p) := 
if and only if
Ci(x,p) =  0

Derivation 
from utility 
function

di{p,r)
maximizes Ui under 

(p,x) <  r

Ci{x,p)
=  U [ { x ) - p

— & ( î|(p,x)<r-) 0e)
Equilibrium: 
stationarity and

(static) viability

V i, Xi =  di{p,n{p)) 
such that
n

t=l

V 2, Ci(Xi,p) =  0 
such that
j r  xi G M
i= 1

Budget rule (P,di{p,r)) <  r (P,Ci{x,p)) <  0
(dynamic)

Viability

3 p(t) such that
n

V t >  0, x i(t) G M
i= 1

Characterization 
of the viability

V (aq,. . . ,  x n),
n{X\y • • . , Xn) 7̂  0

Regulation law p{t) G J7(®i(i),...,®nW )



11. The Von Neumann Growth Model

11.1 Introduction

In 1945, J.von Neumann proposed a general economic-equilibrium model. This 
model is of historical interest, because at that time it was the only economic 
model which could be used to prove existence theorems for economic equilib­
rium. Another remarkable aspect o f this model is that it was aimed at growth 
models. At any rate, a whole area of the economic literature has developed the 
points of view discovered by von Neumann. This will also provide us with the 
opportunity to prove the Perron-Frobenius theorem on the existence of positive 
eigenvectors of positive matrices and to study the surjectivity properties of M 
matrices.

11.2 The Von Neumann Model

We shall begin by studying von Neumann’s model, which is largely concerned 
with the production sector. We suppose that there are m  commodities to pro­
duce and consume and that for this there are n production processes which 
consume these commodities as inputs and produce them as outputs.

Each production process is implemented with a certain level of activity. The 
state of the economy is then described by a vector x  €  IRn the component Xi of 
which denotes the level of activity at which the ith production process operates. 
These levels of activity are positive or zero and are normalised, for example, by 
imposing that x  belongs to

M n : = \ x  G IR” | f > i  =  l
l Z=1

We assume that we are dealing with an economy with constant yields, in 
which inputs and outputs depend linearly on the levels of activity. In other 
words, the economy is described by a pair of matrices F  and G  from IRn to IRm. 
The coefficient fij of the matrix F  represents the quantity of the commodity 
i consumed by the producer j  operating at the unit level of activity, whilst 
the coefficient gij of the matrix G  represents the quantity of the commodity i 
produced.

Let us consider the commodity i. Its total consumption is
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(F a 0i =  f i i X 3 W
3=1

and its total production is
( G x ) i  =  ± 9 i 3 x 3 (2 )

3= 1

Suppose that the production process is implemented over a period of time. 
Thus, we assume that the consumption of the commodity i at the end of the 
period of production is lower than the production of this commodity at the 
beginning of the period:

F x 1 <  Gx° (3)

We shall say that there is balanced growth if the levels of activity increase 
at the same rate, in other words, if there exists a  such that

x 1 =  (1 4- a)x°.  (4)

If such an a  exists it is called the balanced-growth rate. Conditions (3) and 
(4) imply that x° is a solution of the inequalities

(1 +  ct)fx° <  Gx°. (5)

We now consider the transposes of the matrices F  and G. We interpret the dual 
IRm* (identified with IRm) as the space of prices p =  (p1, . . .  ,pm), where the 
component pl represents the unit price of the commodity i. These unit prices 
axe assumed to be non-negative and are normalised with the assumption that

p  e  AT* :=  j P e  R?| f y -  =  1J

Thus, the images F*p and G*p denote the value of the consumptions (inputs) 
and the productions (outputs). The problem is now to find prices such that the 
value of the outputs at the beginning of the period does not exceed that of the 
inputs at the end of the period:

F*pl >  G*p°. (6)

We assume that the price p1 is related to the price p° by

P° =  ^ P 1 where p =  V— ^ ~  (7)

where p is interpreted as the interest rate. Conditions (5) and (6) imply that p° 
is the solution of the inequalities

(1 +  p )F’p °> G 'p ° .  (8)

We shall solve problems (7) and (8) and show that the interest rate p and 
the balanced-growth rate coincide.
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T h eorem  11.1 (von  N eum ann). Consider two matrices F  and G from  IRn 
to IRm satisfying
(i) the coefficients gij o f G are non-negative, but not all zero;
(ii) Vi =  1 , . . . ,  m, E "=1 g,j >  0;
( i i i )  Vj =  E E i fij >  0. (9)
Then there exist x  G M n, p G M m and Ô >  0 such that

W
(« )

(iii)

6Fx <  G x  
6F*p >  G*p 
5{p, F x ) =  (p, Gx.) ( 10)

Moreover, 6 is maximal in the sense that if  x  G M n is a solution o f XFx <  Gx 
then A < 6 .  Also, for all p  >  6 and all y G IntlR!^, there exists x  G IR” such 
that

p F x  — Gx <  y. (11)

We shall deduce this theorem from a more general result due to Ky Fan, in 
which the linearity assumptions are replaced by convexity assumptions.

We recall that we have previously described the n — 1 simplex of IRn by

M " :=  j z e I R " | f > i =  lJ

T h eorem  11.2. Consider two mappings F  and G from M n to ]Rm satisfying

(i) the components ff o f f  are convex and lower semi-continuous;
(ii) the components gt o f g are concave, positive and lower semi-continuous; 
(in) 3p €  M m such that \/x € M n, (p, F (x ))  >  0;
(iv) 3Æ € M n such that Vi =  1 , . . .  ,n, gi(x) >  0. (12)
(a) Then there exist 6 >  0, x  £ M n and p G M m such that

(0
( ü )

(in)

Vi =  1 , . . . ,n, 6 f i ( x ) < g i ( x )
Vx € M n, (G (x) -  6F(x) ,p)  <  0 
Vi =  1 , . . . »  n, Pi(6fi(x) - g i ( x ) )  =  0

(b) The number 6 >  0 is defined by

i  . ,  f e f W )— =  sup inf r-.-'
Ù p€A/m (p,G(x))

=  inf sup (p,F(x))

(13)

x € M n p € J[}rn ( P , G ( X ) ) '

If  A > 0 and x G M n satisfy the inequalities A fi (x)  <  gi(x), Vi =  1 ,. . . ,  n, 
X < 6 .

(14)

then
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(c) For all f i >  5 and for  all y G Int (IR™), there exist (3 >  0 and x  G M n such 
that

Vi =  -  gi(x) <  (lyi (15)

P roo f. We begin by defining the number 6 by

1
6

sup
p € M m

inf
*ew« (p, G{x))

(16)

which is positive and finite by virtue of assumptions (12)(ii)-(iv).
Next we consider the mapping 6F — G  from M n to IR™ the components 

Sfi — gi of which are convex and lower semi-continuous. Propositions 1.8 and 
2.6 imply that

the subset (6F  — G ) ( M n) +  IR™ is closed and convex. (17)

(a) We note that
0 € (ÔF -  G ) { M n) +  IR™ (18)

Otherwise, following the separation theorem (Theorem 2.4), there would exist 
Po G IRm and e >  0 such that, Væ G M n,

6{p0,F {x ) )  -  (po,G{x))  +  inf (p0) v) >  £■vÇlR™

This implies that po G IR^; whence, after dividing by and setting
pQ =  Pq/YGILi Poii we obtain the inequality

\fx G M n, 6{potF (x ))  -  (p0, G { x )) >  e / ^ p o t
/  i = i

But the definition of 6 in (16) implies that

Vx G M n, S(p0}F (x )) -  (po, G (x)) <  0.

Thus we have obtained a contradiction.
(b) Consequently, the inclusion (18) implies that there exists x G M n such that

6F{x)  <  G{x).  (19)

Taking the scalar product of this inequality in IRm with p G M m, we obtain

(p ,F (x ))  1
peMm (p, O (x)) — 6

whence we deduce the minimax equation (14).
(p, F(x))

Since M m is compact and p - »  — ——rr is continuous, there exists p G M m
(P, £ (x ))

such that
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1 =  (p, F{x))  _  (p,F(g))
(5 (p ,G (x)) *€M" (p ,G(x ) ) ’

Next we consider x  G M n and A > 0 such that AF(x )  <  G(x).  Since, for all 
V G M m, A(p, F (x ) (< )p ,  G (x ) ) , we obtain

I  <  sup fr. *•(*)> <  I
S PGM”* (p, (?(£)) A

(c) Suppose now that p > S and that y  G Int (IR™). We define the number (3 by 

P :=  sup inf
p € M m ( p ,  p )

which is strictly positive since the inequality

implies that

I < i =  inf ^ ) )
P  Ô x € M ”  ( p ,  G ( x ) )

/ ? >  inf ~  G (* »  >  0.
x(=Mn ( p ,  y j

We shall prove that
P y € { p F - G ) { M n) +  lR™ (20)

If this is not the case, then, since this set is convex and closed, the separation 
theorem (Theorem 2.4) implies that there exist p\ G IRm and e >  0 such that

P ( P i , y ) + e <  {pu pF (x )  -  G(x)) +  inf (Pl,v).veiR™

This implies that px G IR™ and that px :=  px/ Y£L\ Pu satisfies the inequality:

(pltMF ( * ) - G ( x ) >
P 4- £ <  inf

x € m n iPuV) <P
which is a contradiction.

The inclusion (20) implies that there exists x  G M n such that

pF(x )  -  G ( f )  <  y

from which we deduce the minimax equation

„  . f ( p , p F { x ) - G { x ) )
p  =  inf sup —-------r----------------

x £ M n p e M m ( j>> V )

and the existence of q G M m such that
{ q , f j .F ( x ) -G (x ) )

0  = (?.y>

(21)

(22)

(23)

□This completes the proof of Theorem 11.2 
P r o o f  o f  T h eorem  11.1. We note that the assumptions (9)(ii) and (iii) imply 
assumptions (12)(iii) and (iv) with p =  ^ ( 1 , 1 , . . . ,  1) and x  =  £(1, ! , . . . , ! ) .  □
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11.3 The Perron—Frobenius Theorem

When the dimensions n and m  are equal, boundary conditions on F  imply that 
the solutions x  and x  o f the inequalities

<5F(if) <  G (x )

and

/iF(x) -  G(x) <  Py

are in fact equalities

6F(x) =  G(x)

and

fiF(x) -  G(x)  =  Py.

T h eorem  11.3. Suppose that F  is a mapping from M n to IRn satisfying

(i) the components fi o f F  are convex and lower semi-continuous;
(ii) 3p G M n H Int (IRJ) such that \/x € M n, (p, F(a;)) >  0;
(Hi) if  Xi =  0 then fi (x) <  0. (24)
Suppose also that G is another mapping from M n to IRn satisfying

(i) the components gt o f G are concave and upper semi-continuous;
(ii) Vic € M n, Vt =  1 , . . .  ,n, gi{x) >  0. (25)

Consider the number 6 defined by ( I f ) .  Then there exist x  € M n Dint (1R+) 
and p G M n fl Int (IR^) such that

(i) 6F(x)  =  G(x)
(ii) Vx G AT,  (p, G(x) -  6F(x))  <  0. (26)

I f p >  6 and y G Int(IR^) are given, there exist P >  0 and x G M n D Int(lR!J.) 
such that

pF(x )  -  G(x)  =  Py (27)

P roo f. We let eJ denote the j th  element o f the canonical basis o f IRn. The 
boundary condition (24)(iii) implies that

f k( e ' ) < 0  (28)

which, together with the positivity condition (24)(ii), implies that

Vi =  1 , . . .  ,n,  f i (el) >  0 (29)
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since, because p G Int(IR”  ),

P ifi(e') +  Y . M & )  =  >  0.
k î

(a) Let us now consider the solutions x  G M n and p G M n of the system

(0
(Ü )

(Hi)

6F(x)  <  G(x)
\/x G M n, (p, G(x) -  6F(x))  <  0 
(p} G ( x ) - 6 F ( x ) )  =  0 (30)

which exist by virtue of Theorem 11.2.
We note firstly that p belongs to the interior of IR” . Taking x  :=  el in 

(30)(ii) and using the fact that gk(F) >  0 for all k , it follows that

à p jiie1) +  S Y^Pkfk(e{) >  (p, G (é ) )  >  0.
k î

Inequalities (28) and (29) show that p{ >  0. We set z := G(x)  — 6F(x)  which 
belongs to IR/J. by virtue of (30) (i). Property (30)(iii) may now be written as 
(P> z) =  0.

Since the components pi are strictly positive, it follows that ~z =  0 and 
consequently that 6F(x)  =  G(x).  Finally, since the components gi(x) are strictly 
positive, the same is true of the components fi (x)  of F(x )  (since Ô >  0). The 
boundary condition (24)(iii) then implies that Xi >  0 for all i =  1 , . . .  ,n.

The proof of the second part of the theorem is completely analogous. □
The mapping F  :=  1 clearly satisfies the conditions (24). Thus, we obtain 

the following corollary on the eigenvalues of concave, positive operators.

C orolla ry  11.1. Suppose G is a mapping from M n to Int(IR” ) the components 
o f which are concave and upper semi-continuous. The number 6 defined by

1 • f (p,æ)-  :=  sup inf -— -:t-
6 p e M n x€ M n (p, G(#)) (31)

is strictly positive and if there exist x  G M n and A >  0 such that Xx <  G(x)  
then X <  6.

There exist x  G M n n  Int(IR” ) and p G M n Pi Int(IR" ) such that

(0
(w)

6x — G(x)
\/x G M n, ( p , G x - 6 x )  < 0 . (32)

I f  p >  6 and y G Int (IR” ) are given, there exist ft >  0 and x G M n D Int(IR” ) 
which are solutions of the equation

px  — Gx  =  (5y. (33)
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When G is a positive matrix we obtain the Perron-Frobenius theorem.

T h eorem  11.4 (P erron -F rob en iu s). Let G be a matrix with strictly positive 
coefficients.
(a) G has a strictly positive eigenvalue 6 and an associated eigenvector x  the 

components o f which are strictly positive.
(b) 6 is the only eigenvalue associated with an eigenvector o f M n.
(c) Ô is greater than or equal to the absolute value o f any other eigenvalue o f 

G.
(d) The matrix p — G is invertible and (p — G)~l is positive if and only if

p >  6.
P roof, (a) The existence of <5 > 0, x  G M n H Int(IR+) and p G M n H Int(IR" ) 
such that Sx =  Gx and G*p — Sp <  0 follows from Corollary 11.1. In fact, we 
have the equality G*p — Sp =  0, since

(G*p — Sp, x) =  (p, Gx — Sx) — 0

and since the components Xi o f x  are strictly positive.
(b) Suppose x  G M n and p are such that Gx =  px, It follows that

p(p,x)  =  (p ,G x) =  (G*p, x) =S {p ,x ) .

Since (p, x) is strictly positive (because x  belongs to M n and p G Int(IR” )), the 
previous equality implies that p =  S.

(c) Suppose that A is an eigenvalue of G  and that z G IRn is an associated 
eigenvector. The equalities

n

\Zi =  )  ] 9 i j zj  (f = 1> - - - , 72-) 
i=i

imply the inequalities

|A||zi| <  ^29ij\zj\.

j= i

If \z\ denotes the vector with components \zt\, it follows that |A||z| <  G\z\, 
which implies that |A| <  S.

(d) We know that when p > S the matrix p —G  is invertible, since <5 is the largest 
eigenvalue. We also know that for all y G Int (IR" ), the solution (p — G)~ly 
belongs to Int(IR+), by virtue of the second part o f Corollary 11.1. This implies 
that (p — G )-1 is positive.

Conversely, suppose that (p — G)  is invertible and that (p — G )-1 is positive. 
The inequality p <  S cannot hold, since this would imply the inequalities

px  <  6x  — Gx  where x  G M n

and thus also

—x =  (p — G)~1(Gx — px)  G IR"

since Gx — px  is a positive vector. Thus p  is strictly larger than S. □
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11.4 Surjectivity of the M matrices

We shall use the following more general result to show that the M matrices 
which we define below are surjective.

Theorem 11.5. We consider a mapping H  from  IR" to IRn satisfying
(i) the components hi o f H  are convex, positively homogeneous and lower semi- 

continuous;
(ii) 3b £ JR such that \/x £  IR", bxi >  hi(x);
(in) Vx £ M n, 3q £ M n such that (q ,H (x )) >  0. (34)
Then

\/y £  Int(IR^), 3x £  IntIR” such that H{x )  =  y. (35)

Proof. We choose a number p  strictly larger than the number b used in as­
sumption (34)(ii). We associate H  with the mapping G  :=  p — H.  Corollary 
11.1 implies that there exist 6 >  0 and x  £ M n satisfying

Sx — Gx — px — H(x) ,  x  £ M n Pi Int(IR" ).

Since (p — S)x =  H ( x ), assumption (34) (iii) implies that

{ p - 6) (q,x) =  (q ,H(x))  >  0.

Since (q, x)  is strictly positive, it follows that p >  Ô. Again by virtue of Corollary 
11.1, we can associate any y £  Int(IR” ) with a strictly positive number (3 and 
x £ M n H Int(IR” ) such that

H x  =  (p — G)x =  Py

Then x  :=  x )P  is the desired solution. □
We now deduce the surjectivity theorem for the M matrices.

D efin ition  11.1. A matrix H  :=  (% )  from  IRn to itself is called an M  m atrix 
if the following two conditions are satisfied

V i j t j ,  hij <  0 (36)

Vx £ M n, 3ç £ M n such that (q, M x) >  0. (37)

T h eorem  11.6. Suppose H  is a matrix from  IRn to IRn satisfying (36). The 
following conditions are equivalent:

(a) H  is an M matrix;
(b) H  is invertible and H ~1 is positive;
(c) H* is invertible and H*~l is positive.
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Proof. The implication (a)=>(b) follows from the previous theorem and the 
implication (b)=^>(c) is clear. It remains to show that (c) implies (a).

Suppose p £  Int(IR” ) is the solution of the equation H*p — 1 where 1 is the 
vector with components all equal to 1. Then, for all x £ M n,

(p, H x) =  (H*p,x ) =  X > i  =  1.
i= 1

Property (37) is satisfied and this implies that H  is an M  matrix. □
Remark. There is another criterion for the surjectivity of a matrix: any positive- 
definite matrix satisfying

Vx ^  0, (Hx,  x) >  0

is invertible.



12. n-person Games

12.1 Introduction

The fundamental concepts o f two-person games extend to n-person games.
The ith player is denoted by i =  1, . . . ,  n. Each player i may play a strategy 

x l in a strategy set E l.
We denote the set o f multistrategies x  :=  (x1, . . .  , xn) by

E - = f [ E ‘ (1)
i = l

12.2 Non-cooperative Behaviour

Let us put ourselves in the place o f the ith player. Prom his point o f view, the 
set of multistrategies is considered to be the product of the set E l of strategies 
which he may choose and the set

E l :=  J ]  Ej (2)

of strategies x l =  (a;1, . . . ,  x n) o f the other players, over which he has no control 
in the absence of cooperation. Thus, from the ith player’s point of view, the set 
of multistrategies x  :=  may be written as the set

E  :=  E l x E l (3)

The choice o f the players’ strategies may be determined using decision rules.

D efin ition  12.1. A decision rule of the ith player is a correspondence C l from  
E 1 to E 1 which associates the multistrategies x 1 G E 1 determined by the other 
players with a strategy set C ^ x 1).

Once each of the n players i has been described in terms of the decision 
rules C\ as in the case of two-person games, we single out the consistent mul­
tistrategies .

D efin ition  12.2. Consider an n-person game described by n decision rules C l 
from E l to E l. We shall say that a multistrategy x  G E is consistent if
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V* =  1, . . . ,  n, x1 G C l(xl) (4)

In other words, the set of consistent multistrategies is the set of fixed points 
of the correspondence C  from E  to E  defined by

C (x ) :=  f [  C V )  (5)
i - 1

Thus, Kakutani’s fixed-point theorem immediately provides an existence 
theorem for consistent multistrategies.

T h eorem  12.1. Suppose that the n strategy sets are convex, compact subsets 
and that the n decision rules C 1 are upper semi-continuous, with non-empty, 
convex, closed values. Then there exists a consistent multistrategy.
P roof. We apply Kakutani’s theorem (Theorem 9.5) to the correspondence C 
defined by (5) from the convex, compact set E  into itself, which is clearly upper 
semi-continuous with non-empty, convex, closed values.

12.3 n-person Games in Normal (Strategic) Form

We shall suppose now that the decision rules o f the n players are determined 
by loss functions.

D efin ition  12.3. A game in normal (strategic) form is a game in which the 
behaviour of the ith player is defined by a loss function  f l : E  —> IR that 
evaluates the loss f l {x) inflicted on the ith player by each multistrategy x.

A game described in strategic form may be summarised by the multiloss 
mapping f  : E  —>• IRn defined by

Vx S E, f ( x ) : = ( / ‘ (x )......../ " ( x ) ) € R " .  (6)

The associated decision rules are defined by

? ( * » )  = - { * * €  £ * l i n f  / V , A } .  (7)
y ie E i

D efin ition  12.4. The decision rules C  associated with the loss functions /* 
by (7) are called the canonical decision rules, A multistrategy x  G E which is 
consistent for  the canonical decision rides is called a n on -coop era tive  equi­
librium  (or  N ash equ ilibrium ).

This definition leads to the following characterisation. We introduce the 
function <̂> : E  x E  to IR defined by

4>(x,y) f ( y \ x %
i=  1

(8)
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P rop osition  12.1. The following assertions are equivalent:
(a) x  £ E  is a non-cooperative equilibrium;
(b) V* =  1 , . . .  ,n , Myl G E \  <  /V » ® * ) ;
( c )  M y e E ,  <f>{xty) <  0. (9)

The equivalence of (9 )(a) and (9)(b) follows immediately from the definitions. 
The implication (9)(b)=^(9)(c) is obtained by adding the inequalities

r ( x \ x l) -  f ( y \ x l) <  leqO. (10)

To prove that (9)(c) implies (9)(b), we fix i and take y  :=  (y\ôcl).
The inequality <j)(x, y) <  0 may be written as

f i { x \ x l ) -  f i { y \ x l ) 4■ ' $ 2 f j ( x 3t x 3) ~  f j i u ’ yX3) < 0. (11)
j^i

Now, x  =  { x 3,x 3}  — {y3,x 3}  whenever j  ^  i. Thus, (11) implies that 

W  € E\ f i {x \ x l) <  f i {y \ x l).

T h eorem  12.2 (N ash). We suppose that

\/i G N, the sets E l are convex and compact (12)

and that

Mi € N, the functions fi are continuous
and the functions yl - »  fi (y \ x l) are convex (13)

Then there exists a non-cooperative equilibrium.
P roof. The theorem follows from Ky Fan’s theorem (Theorem 8.6).

We have introduced the set E  and the function <f> defined by

(o
i- 1

(«) 4>(x,y) =  i\ U i{x i,x i) -  h (y \ x 1))- (14)
i= 1

The set E  is convex and compact, since it is the product of convex, compact 
sets E 1 (by assumption (12)). Moreover, assumptions (13) clearly imply that 
the functions x  —» 4>(x,y) are continuous and that the functions y —> 4>{xyy) 
are concave. Thus, Ky Fan’s theorem implies that there exists x  =  {â f,â f} € E 
such that

sup <£(z, y) <  sup <f>(y, y) =  0 ( 15)
y<ZE y e E

since 4>(y, y) — 0 for all y.
Proposition 12.1 may then be applied. □
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12.4 Non-cooperative Games with Constraints 
(Metagames)

Here, we consider a game defined by both decision rules C l : E 1 E l and loss 
functions /* : E  —> HI.

We associate these with the canonical decision rules defined by

C V )  :=  lx* € C V )  \ f ( x W )  =  inf . f t f , * 1) )  (16)
( y'€C'(x') J

We shall say that the consistent multistrategies are social equilibria of the 
metagame. It is easy to adapt the proof of Theorem 12.1 to this new game.

For this, we set

(0 E : = f [ E ‘
i= 1

(w) 4>(x,y) :=  -  f\ y \ x *))
i— 1

( m )  c ( x )  : = f [ ^ V ) -  ( 1 7 )

2=1

P rop osition  12.2. The following assertions are equivalent

(a) x  G E  is a social equilibrium;
(b) Vz =  1 ,. . .  ,n , x 1 G CÈix1) andMy1 G C 1̂ ) ,  /*($%$*) <  f l{ y \ x l);
(c) x  G C(3J) and \/y G C(æ), < (̂x, y) <  0. (18)
P roof. The proof is left as an exercise. The existence of a social equilibrium 
then follows from Theorem 9.14.

T h eorem  12.3 (A rrow —D ebreu -N a sh ). We suppose that

Vz G N , the sets E l are convex and compact (19)

and that

Vz G N, the correspondences C l from E3 to E l
are continuous with non-empty, convex, closed values. (20)

Lastly, we assume that

Vz G N , the functions f l are continuous 
and the functions y1 —> f l {y\x l) are convex. (21)

Then there exists a social equilibrium.

P roof. The set E  is convex and compact. The correspondence C  is clearly 
continuous with non-empty, convex, closed values.
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The function 4> is continuous and for ail x  G E, the function y —> <£(x, y) is 
concave. Moreover, f ( y ,  y) — 0 for all y G E.

Theorem 9.14 implies that there exists x  G X  such that

(«) x  =  {æ1, . . .  ,æn} G C(x )  =  C l(xl)
i=i

(n) <f>% y) < 0 ,  My G C{x)  (22)

Proposition 12.2 may then be applied. □

12.5 Pareto Optima

As in the case of two-person games, we single out Pareto optima when the 
players are permitted to exchange information and to collaborate.

D efin ition  12.5. A multistrategy x  G E  is said to be Pareto optimal if there 
are no other multistrategies x G E  such that

Mi =  1, . . . ,  n, f\ x )  < f { x ) .  (23)

We also saw in the case of two-person games that there may be a number 
of Pareto optima. There thus arises the problem of choosing these optima. For 
example, one might attribute a weight X1 >  0 to each player.

If the players accept this weighting, they may agree to collaborate and to 
minimise the weighted function

/ * ( * ) : = £ > ’ 7 'W  (24)
Z=1

over E. If the vector A with components A* is not zero, we note that any mul­
tistrategy x  G E  which minimises f\{x) is a Pareto minimum. For, if this were 
not the case, there would exist x  satisfying the inequalities (23). Multiplying 
these by Ai >  0 and summing them, we obtain the contradiction f\{x) < f\{x).

If the n players could be made to agree on a weighting A, we would no longer 
have a game problem proper but a simple optimisation problem. However, it 
is interesting to know the conditions under which any Pareto optimum may be 
obtained by minimising the function f\ associated with a weighting A which is 
borne in some way by this Pareto optimum. This question has a positive answer 
if we apply convexity assumptions.

P rop os ition  12.3. Suppose that the strategy sets E l are convex and that the 
loss functions f l : E  —> IR are convex. Any Pareto optimum x may be associated 
with a non-zero weighting A G IRn such that x  minimises the function f\ over 
E.
P roo f. Proposition 2.6 implies that
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f e e ) + f t ;  is convex (25)

We then note that an element x G E  is a Pareto minimum if and only if

f(a?) g f (£ )  +  & ” (26)

Thus, we may use the large separation theorem (Theorem 2.5) to see that there 
exists A G IR'\ A ^  0, such that

(A ,f (x ) )=  in| ((A ,f(x )) +  (A,w>). 
u e K

It follows that A is positive and that x  minimises x  - »  f x{x) =  (A ,f(x )) on E.
□
Remark. A Pareto minimum also minimises other functions.

For example, we introduce the virtual minimum ex defined by its components

a* :=  in f /* (* ). (27)

We shall say that the game is bounded below if Vi =  1 , . . . ,  n, a 1 >  —oo.
In this case, we take /?*’ < a1 for all i and set (3 := (ft1, . . . , fin) G IRn.

P rop os ition  12.4. Suppose that the game is bounded below.
An element x  G E  is a Pareto minimum if and only if there exists A G IR+ 

such that x  minimises the function gx defined by

gx{x) :=  max -  /?£) (28)

over E.

P roof, (a) If x G E  minimises gx on E  and is not a Pareto minimum, we could 
find x G E  satisfying the inequalities (23). Subtracting /%, and multiplying 
by dj and taking the maximum of the two terms, we obtain the contradiction 
gx{x) < gx{x).

(b) If x  is a Pareto minimum, we take A* =  f l (x) — (3* >  0 such that 
gx(x) =  1. If there were an x G E  such that gx{x) < gx(x), then we would 
have max^i,...^ ( )  <  * which would imply the inequalities (23). □

We can also define conservative strategies for the players. We set

f^ ix 1) :=  sup f i x ^ x 1) (29)
xiçE1

We shall say that G E* is a conservative strategy for the zth player if

f^ (x^ ) =  inf sup /*(£*,£*).
xl£Ei x'ieE1

(30)
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and we shall say the number v\ defined by

i ■= inf. sup /*(£*,£*). (31)
xi£ E i

is the conservative value of the game. As in the case of two-person games, 
this conservative value may be used as a threat, by refusing to accept any 
multistrategy x  such that

f { x )  >  vj (32)

since by playing a conservative strategy x iÿ the loss ^ ( x ^ . x 1) is strictly less 
than f l{x).

Suppose that
Vi =  1, . . .  ,n , vj >  a\ (33)

(the conservative value is strictly greater than the virtual minimum).
Consider the function g0 : E  —j► IR defined by

go{x) =  max 
K <=•... » v j - a 1

Proposition 12.4 (with p* =  a 1 and A1 =  vj — a 1) implies that

if xq € E  minimises po on E , then Xq is a Pareto minimum.

If d :=  minx€£ £0(2)> it follows that Xq minimises g0 on E  if and only if 

V i,. . . ,  n, f ( x j )  <  (1 -  d)f| +  den-

(34)

(35)

(36)

This property suggests that such choices o f Pareto optima should be viewed 
as best compromise solutions.

Other methods of selection by optimisation involve minimising functions

x
f \ x ) - a l f n( x ) - a n

v\ — a L ’ V n  —  a n
(37)jj 1 ’ ' *■ — cr

on E,  where the function s satisfies the following increasing property

if a1 >  bl for all i, then s(a) > s(b). (38)

It is easy to show that any x  €  E  which minimises (37) is a Pareto mini­
mum. We also note that the function (37) remains invariant whenever the loss 
functions f l are replaced by functions a,/* -f 6,-, where a* >  0.

We also say that by replacing the functions f l by the functions gl

=
f l{x) -  0?

Vi — a 1
(39)

we have ‘normalised’ the same game. For the normalised game the virtual min­
imum is zero and the conservative value is 1.
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12.6 Behaviour of Players in Coalitions

We denote the set o f n players by N  and write S C N  to denote a coalition of 
players. As a member of a coalition S , a player i £  S will modify his behaviour. 
For example, we suppose that he cooperates with the players o f the coalition 
S and that he does not cooperate with the players of the adverse coalition 
S :=  N\S. In other words, the player i £ S, as a member of the coalition S, 
assumes that the players j  £ S o f the adverse coalition will maximise his loss. 

For this, we set
E s :=  f t  E\ E è  :=  Ej (40)

j&S
and it is convenient to make the following identifications:

(i) E  =  E s x E^} x  =  (xs , x è ) where (i i )xs £ E s, x è £ E è

(a ) f i(x) =  f i(xs , x è ). (41)

Thus, the behaviour of the player i as a member of the coalition S is described 
by the loss function f §  : E s IR by

/| (x s ) : =  sup f ( x s , y é ). (42)

When S reduces to a single player z, this définition is compatible with that of 
/ ifi given in (29).

We let Cs denote the operator from IRn to itself defined by

and set

(CS ' r)i :

IRS :=  cs ■ ]Rn, IR® :

f ri H i e s (43)if i $  S

=  Cs •

S-j-
&hii

&

(44)

Thus, the behaviour of the players i of the coalition S is described by the 
multiloss mapping fg from E s to IR5 defined by

r 5
f $ ( x s ) H i e s  
0 if i i s (45)

Consider now a multistrategy x £ E  and a player i. As a member of the 
whole coalition, he incurs a loss f l{x). As a member of the coalition S, his loss 
is f s ( xS) the worst case.

If all the players i of the coalition S can find a strategy ys £ E s  such that

V ie  5, fs(yS) < f'(x) (46)

they will reject the multistrategy x, form a coalition S and choose the mul- 
tistrategy ys . Consequently, for the multistrategy x  to be accepted by all the
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players, it must be the case that whatever the coalition S, there is no multi­
strategy ys  €  E s such that the inequalities (46) are satisfied.

This leads us to make the following definition.

D efin ition  12.6. We shall say that the core  o f the game is the set o f multi­
strategies x £ E  which are a ccep ted  by all non-empty coalitions S C N , in 
the sense that

VS, it is not the case that (3ys €  E s \\/i € S, f ÿ (ys ) < f l{x)).  (47)

This concept is not void, since we shall prove the following theorem due to 
Scarf (1971).

T h eorem  12.4. We suppose that the strategy sets E? are convex and compact 
and that the loss functions f l : E  —» IR are convex (with respect to all the 
variables)  and lower semi-continuous. Then the core of the game is non-empty.

In fact, for clarity, we shall get rid of the strategy sets and loss functions 
and retain only their images in the space of multilosses.

For this, we set

VS C N, IV(S) :=  f “s ( £ s ) C IRS. (48)

It then follows that x  belongs to the core of the game if and only if its multiloss 
r :=  f(x ) satisfies

(*) r € W {N )

(it) V S c N ,  cs ■ r $ W (S ) +  (49)

We then note that the problem (49) is equivalent to the problem 

(t) r € W (N )  +  R "

(ii) V S C N ,  cs - r ^ W ( S )  +  t i+  (50)

Any solution of (49) is clearly a solution of (50), let us consider a solution r 
of this latter problem. Then r may be written as ro -f r\ where r0 € W (N ) 
and ri € IR” and we note that ro satisfies the conditions (49)(ii); for otherwise, 
there would exist S and r2 € W (S) +  IR^ such that Vi € s, r* =  r0i +  ru >

O g
r2i +  ru > rzi, in other words r € W (S ) +  IR+. □

By setting V (S ) :=  W (S ) 4- IR j, we may thus assume that the sets V^S) 
satisfy the property V(S) =  F (S ) -f IR^.

12.7 Cooperative Games Without Side Payments

In 1971, Scarf deduced the above theorem from a famous theorem which he 
proved in 1963 on the non-emptiness of a game defined solely by the multiloss
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sets V (S) of each coalition S. With Nash’s theorem (1951), this is one of the 
two major theorems of game theory. For a long time it remained a very difficult 
theorem to prove, until, in 1973 Shapley gave a simple proof based on Theorem 
9.15, which he conceived and proved just for that purpose.

Thus, you will appreciate that the discovery of these theorems and their 
original proofs required considerable effort on the part o f their authors (Nash, 
Scarf, Shapley) not to mention originality and intelligence. If they now feature 
in this master’s level book it is because, little by little, over two decades, work to 
understand these results and developments in nonlinear analysis have enabled 
us to unravel Ariane’s threads and to find direct approaches. Much exploration 
of unknown territory was needed to find better signposted paths leading with­
out excessive difficulty to an understanding of these theorems.

D efin ition  12.7. A cooperative n-person game without side payments is de­
scribed by the introduction for every non-empty subset S of N  of a non-empty 
subset V (S ) of 1R5 satisfying

V(S) =  V(S)  +  JRS+ (51)

A multiloss r €  IRN is said to be accepted if, for any coalition S , there is no 
rs € V'(S) such that r f  <  rl fo r  all players i in S. The core of the game is the 
set o f multilosses o f V ( N )  accepted (by all the coalitions).

We denote the set of multilosses r accepted by all coalitions by A. Since
O S

V{S)  +  IR+ is the set of multilosses which are not accepted (thus rejected) by 
the coalition S, we note that the set A  of accepted multilosses may be written 
in the form

A : =  f ) ™ M c s r \ V { S )  +  JRS+) (52)
S C N

This is a closed set. Thus, the core of the game is equal to

C{N ) :=  K (J V )n /  (53)

We must show that this intersection is non-empty. The idea is to consider the 
subcores

C(T)  :=  (Ct - ) ~ 1V ( T )  D A  (54)

of the multilosses of the coalition T  accepted by all the others. We shall prove 
the following theorem:

T h eorem  12.5. Suppose that the subsets V{T) are closed and bounded below. 
Then there exists a balanced family B of coalitions such that

Ftt z b C { T )  ^  0 (55)

We shall prove a theorem to show that the core is non-empty under the 
following assumptions.
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D efin ition  12.8. We shall say that a game is balanced , if for  any balanced 
family B, we have n ( c r ) - V ( T )  C V(N) .  (56)

T£B

T h eorem  12.6 (S carf). Suppose that the game is balanced and that the subsets 
V(T) are closed and bounded below, Then the core o f the game is non-empty.

P r o o f  o f  T h eorem  12.5. The idea is simple, namely to apply Theorem 9.15. 
We cannot do this directly since the subsets C(T)  are not contained in the 
simplex. But C(T)  is contained in V(T)  D comp(Vr(T) +  IÎI+) which is the 
Pareto surface of V(T)  and which is intuitively isomorphic to the simplex M T. 
We shall explain all this.

First we note that

A  C JJ] — oo,t>i] where u* :=  inf F ({z })  (57)
£=1

since, for coalitions with one player

comp(c{£}-)~1(V '({z}) +  tft+) =  { r e  ]Rr|rt- <  ^ } .

Normalising by the condition

Vz € N, Vi :=  inf F ({z })  =  0 (58)

so that A  C —1R" changes nothing in the game.
Then, since the sets V(T)  are bounded below, there exists a finite number 

a* >  0 such that
—Qf :=  inf inf r* (59)

S 3 i  r€V(S) v '
r<  0

Consequently, the set A  of the accepted multilosses is bounded:
n

A  c  IB — oo, —Of] (60)
i= l

We set
p : = n  sup at >  0. (61)

i=l,...,n
We change nothing in the game by taking p — 1.

Let us now consider an element x  of the simplex and the straight line x+ IR l. 
Since the sets V (S ) satisfy the condition

V (S )  =  V (S )  +

it follows that

if a  <  r  then {re — cri C A  => x — r l  €  .4 }. (62)
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Fig. 12.1.

Moreover, we note that if x  — r l  belongs to A,  then r  is positive.
Thus, we may associate every x  G M n with the number r(x)  >  0 defined by

t ( x )  :=  inf{r|x — r l  G A } .  (63)

Let us for the moment accept the following lemma,

L em m a 12.1 The mapping r  from M n to IR+ is continuous.

We then define the subsets

Ft :=  {x  G M n\cT ■ {x -  r(æ )l) G V{T ) } .  (64)

Since V ( T ) is closed and r  is continuous, the subsets Ft are closed. Suppose 
for a moment that there exist a balanced family B and x  G M n such that

x e  f ]  Ft (65)
ree

Then, by the construction of r  and the Ft we have proved Theorem 12.5, since

x  —  t ( x )  1 G  p| C ( T )  ( 6 6 )

T € B

Thus, we must prove (65), for which we must apply Theorem 9.15, that is 
to say verify the assumption

VT C N, M t C IJ f s (67)
S C T

Consider firstly the case where T  =  N.  We have

M n C U  Fs
S C N

(68)
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In fact, we may write
r (^) =  mæcTS(rr) (69)

where
rs (x) :=  inf{r|(x -  t1) € com pcs ' 1 • (V(S)  +  fe + )} (70)

Thus, we may associate any element x  G M n with a coalition S such that 
t (x ) =  r5(x), whence such that x -  t {x ) 1 =  x  -  r5(x ) l  € (c^-)- 1 (V'(S')).

Consider now the case when T  ^  N.  Since M T C M n C Usc/v Fs , it is 
sufficient to prove that

if M T D Fs  ^  0, then S C T  (71)

to verify that the assumption (67) is satisfied.
Thus, we take x  in fl F$. We shall show that Vi G S, Xi >  0, which 

will imply that S C T. Since x  belongs to M T and since T  A  IV, there exists a 
player i0 G T  for which

Xi0 >  — (72)
n

Moreover, since x  — r ( x ) l  belongs to A , then

Vi =  1 , . . . ,  n, Xi — r(x)  <  0. (73)

These two inequalities imply that

— <  r(x)  (74)
n

Since x  also belongs to Fs, then cs ■ (x — r (x ) l )  belongs to V (5 ) , whence, 
following the definition of a* in (59), we obtain the inequalities

Vi G S, —ai <  Xi — r(x )  <  Xi — —. (75)
n

Since n su pa , =  1, it follows that

Vi G S, Xi >  0 (76)

and thus that S H com pT =  0, in other words, S C T. Assumption (67) is 
satisfied, there exist x  and B such that (65) is satisfied and Theorem 12.5 holds 
and has been proved. D
P r o o f  o f  Lem m a 12.1. We let 7Z denote the complement of A  which satisfies
the property Tl +  f t ” =  7Z. We consider the cone x — r{x )  1 +  f t ” , which is
contained in Tl and the cone x — r(x)  1 -  IR” which is contained in A.  

Consider a sequence x^ converging to x.
We set

(i) tn :=  sup{£|rcn -  f l  G x -  t (x ) 1 +  f t ” }
(ii) sn :=  inf-fslzn -  s i  G x — t (x ) 1 -  IRJ} (77)
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Fig. 12.2.

It then follows that
tn <  r ( x n) <  sn (78)

It suffices now to note that sn and tn tend to r(.r) as x n tends to x. □
P r o o f  o f  T h eorem  12.6 (S carf). Following Propositions 1.8 and 2.6, we know 
that the subsets V (S ) :=  f!l ( E s ) -f IR+ satisfy

V(S) is closed, convex and bounded below. (79)

Thus, Theorem 12.5 applies to the V{S).  □
To prove Theorem 12.4 from Theorem 12.6, we must show that this game 

is balanced.
This will follow from Proposition 12.5, below. We recall that we defined 

balancings (Definition 9.9) as vectors m  =  (m[S))ScN satisfying

m(S) >  0, Vt =  l, . . . , n ,  ^ m (S ')  =  1 (80)
S3i

or alternatively
m(S)  >  0, cN :=  rn(s )cs  (81)

S c N

where c$ denotes the characteristic function of the coalition S.

P rop osition  12.5. Suppose that the strategy sets E l and the loss functions 
f l are convex. Then ,for any balancing m =  (m(S'))ScN and any family of 
multistrategies x s G E s , we have the inequalities

Vi £ N, f  (  Y .  <  E  m ( S ) f ii { x s ). (82)
\ S C N  )  SBi

P r o o f  o f  T h eorem  12.4. It is sufficient to show that the game is balanced. 
For this, we take r G n 5GB(cs-)~1F (5 ) where B is a balanced family associated
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with the balancings m(S) >  0. Thus, we may associate every S G B with a 
multistrategy x s G E s  such that

V S e B, es - r > 4 ( x s ). (83)

We take x N :=  YLsaN m (s )xs , which is a multistrategy in E. Since J2ssi m (S) =  
1, it follows from Proposition 12.5 that, for all i G N,

n  =  £ > ( £ > *  >  E m (s ) / s V )  >  / ' ( * " )  (84)
SBi SBi

whence that r G f^rc^) +  IR" C V(N).  □
P r o o f  o f  P rop os ition  12.5. Consider a balancing m =  (m(S))ScN and two 
players i and j .  We observe firstly that

£ > ( T )  =  y > ( S )  (85)
T B j  S Bi
T ÿ i  S ÿ j

since

1 =  ] r 77i(S) =  +  ^2 m(S)
SBi S D {iJ }

S j f j

= E m(3’) = E “ (ïl+ E m(T)
TDj Tï,j TD {i , j )

Now we consider multistrategies x s G E s . We shall associate these with 
multistrategies yj G E 1 define^ by

Y ?  ^  h yf ■= m (T )xT'i (86)

From equation (48) yj belongs to Ej since the latter is convex. If S 3 i and 
j  7̂  i we set

v t  =  t i ) x s e E *- (87>

We note that for j  ^  i,

Y /m{S){xs ,yf)J
SBi

H  m(5)a:Sj +  ]C  m (S)yi
S B i
S ÿ j

53 m (S )xs,:i 
SD {iJ }

+ E
S B  i 
S ÿ j

(
53 m{T )xT,i

\ iTJIi
5 3  m (S )a ;SJ

5D{iJ}
+  53 m {T )xT'i

T B jT%i
J 2 m (T )xrJ
TBj
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if j  =  £, then, clearly,

Y l m (S){xs , y f ) 1 =  Y l m (s )xS,i-
SBi SBi

Thus, we have established the equality

Vi € N, £  m(S) ( X s , yf)  =  £  m (S )xs . (88)
SBi SCN

Since YlsBim is) =  1» the convexity of the loss functions f l implies that 

f (  S  m (5 )xs ) =  / iE m ( S ,)(x s ,y f ) )
S C N  SBi

<  5 3 m (S ') /i (xs ,2/f)
SBi

<  J 2 m (s ) f s ( xS)
SBi

□
Suppose that the players in the coalition 5  decide to combine their losses. 

The best worst-loss of the coalition S is then defined by

w { S ) : =  jn f H / s f a 5)- (89)
x £t/ ies

C orolla ry  12.1 We suppose that the assumptions of Proposition 12.5 are in 
force. Then

w{N)  <  £  m(S)w{S).  (90)
SCN  *

P roo f. Following Proposition 12.5

™{S)xs ) <  Y .  Y l m (S) f s ( xS)
i e N  SCN i€N SBi

=  £ ™ ( s ) £ / s V ) -
s c n  ies

Next we choose x s  € Es such that
Y 2 f s ( xS) ^  M-5) /  £  m (5).

*es /  scn

Then :=  £ scn m (S )xs € E  and we have

H * )  <  £ / i( £ « ( 5 ) x s ))
i€ N  SCN

<  £  m (S) £  /| ( * s )
S C N  S C N

<  Tri'{S)w(S) +  £
s c n

□
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12.8 Evolutionary Games

We regard the probability simplex

M ":=  jxelR" ! £ >  = l j

as the set o f mixed strategies of the evolutionary game. Such games provide 
equilibria o f dynamical systems which we shall built. We begin with systems for 
which we know the growth rates gi(-) o f the evolution without constraints (also 
called “specific growth rates” ):

V i =  1, . . .  ,n, x'i{t) =  Xi(t)gi(x(t))

We set g(x) := (g i{xx)t . . . ,  gn{xn)) and x o g{x) := (a:1̂ 1(a:1) , . . . ,  xngn{xn)). If 
the map x £ M n —» x o g(x) £  IRn does not satisfy the tangential condition

which boils down to

V x £  M n, x o g{x ) £ Tnjn(x)

\/ x £ M n, 'Ÿ2xigi(x) =  0
i=i

thanks to formula (44) of chapter 4, we cannot us theorem 9.4 for obtaining the 
exitence of an equilibrium. But we can correct this situation by subtracting to 
each initial growth rate the common “feedback control t2(-)” (also called “global 
flux” in many applications) defined as the weighted mean of the specific growth 
rates

n

V x £  M n, ü(x) := xj9j{x ) 
j=i

because
\/ x £ M n, jr x i (g i (x )  -  u(x)) :=  0 

£=1
Hence, we replace the initial dynamical system by

V i =  l , . . . , n ,  x[(t) =  Xi{t){gi(x(t)) -  u{x(t)))

=  Xi{t)(gi(x(t)) - E ”=i Xji^gjixit)))

called replicator system (or system under constant organization) by the biolo­
gists who introduced these games.

Remark. There are other methods for correcting a dynamical system to make a 
given closed subset a viability domain. A general method consists in projecting 
the dynamics onto the tangent cone (see variational inequalities of chapter 9.) 
Here, we have taken advantage of the particular nature of the simplex.
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An equilibrium a  of the replicator system is thus a solution to the system

V z =  1, . . .  ,n, ai(gi(a) - u ( a ) )  =  0

Such an equilibrium does exist, thanks to Theorem 9.3. These equations imply 
that either a* =  0 or <?i(a) =  ü(a)  or both, and that gi0{a) =  w(a) holds true 
for at least one zo- We shall say that an equilibrium a is nondegenerate if

V i =  l , . . . , n ,  gi(a) =  ü(a)

Equilibria a  which are strongly positive (this means that a* > 0 for all i =  
1, . . . ,  n) are naturally non degenerate.

We shall say that an equilibrium a  is evolutionary stable if and only if the 
property

n
3 77 >  0 such that x  £ B(a ,  77), x  ^  a, — £*) >  0

i=1

holds true in a neighborhood of a. Let us consider the function Va defined on 
the simplex M n by

Vr_,(z) :=  f [ z ? '  :=  n C
i=l i€/a

where we set 0° :=  1 and Ia :=  { i  =  1 , . . . ,  n | a* >  0}. Such an equilibrium is 
called evolutionary stable because

1. a is the unique maximizer o fV a on the simplex M nl,

2. starting from an equilibrium a £  M n, the solution æ(-) to the replicator 
system satisfies

t —> Va(x(t)) is increasing

since
-T:Va{x{t)) =  Va(x(t)) j^ (a i(t) -  Xi)gi(x(t)) >  0

i=l
in a neighborhood of a.

1This follows from the concavity of the function y? := log: Setting OlogO = 0 log 00 =  0, 
we get

^ o r ilo g ^ - =  X ^ û ilog ^ ; ^ loë (  S  xi )  < iogl =  0

i—l 1 <Xi> 0 * \oj>0 /
so that

n  n

log xi < ai log ai 
i—l i=l

and thus, Va(x) <  14(a) with equality if and only if x = a.
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Therefore, whenever the equilibrium is evolutionary stable, x(t) converges to the 
equilibrium a. Indeed, the Cauchy-Schwarz inequality implies that

and thus,
V ^ > 0, it,9 i{x{t))x 'i{t) >  0

z=l
Therefore, whenever a  G M n is a nondegenerate equilibrium,

' i v a(*(*)) =  E * / . £ V 0(*(t))a4(t)
<
. =  ^ ( * ( 0 ) ^ . 0 , ^

and
n x'(t) nE aifm  = £(«£ -  ®i(0)Pi(®(0)

i=  1 xi \ l ) i=l
Example: Replicator systems for linear growth rates. The main class 

of examples is provided by linear growth rates
n

V i 1 , . . . ,  7i, . =  ^  ] OijXj
3=1

Let A  denote the matrix the entries of which are the above a^ s. Hence the 
global flux can be written

n

V x  G M n, u(x) =  Y  akix kXi =  < Ax, X  >
k,l=1

Therefore, first order replicator systems can be written
n n

V i =  1 , . . . ,  n, x'i(t) =  Xi(t)(Y  aijXj{t) -  akiXk{t)xi(t))
3=1 k,l=1

Such systems have been investigated independently in —  population genet­
ics (allele frequencies in a gene pool) —  theory o f prebiotic evolution of 
self replicating polymers (concentrations of polynucleotides in a dialysis reac­
tor) —  sociobiological studies of evolutionary stable traits of animal behav­
ior (distributions of behavioral phenotypes in a given species) —  population 
ecology (densities of interacting species). In population genetics, Fisher-Wright- 
Haldane’s model regards the state x  G M n as the frequencies of alleles in a gene 
pool and the matrix A :=  (aij)i,J=1 as the fitness matrix, where atj repre­
sents the fitness o f the genotype (i , j ). In this case, the matrix A  is obviously 
symmetric and we denote by

ü{x) :—< Ax, x  >  the average fitness
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In the theory of prebiotic evolution, the state represents the concentrations of 
polynucleotides. It is assumed in Eigen-Schaster’s “hypercycle” that the growth 
rate of the z^-polynucleotide is proportional to the concentration of the pre­
ceding one:

V i =  1 , . . .  , n, gi(x) — CiXi-i where X-\ :=  xn

In other words, the growth of polynucleotide i is catalyzed by its predecessor by 
Michaelis-Menten type chemical reactions. The feedback u(x) =  Y,?=i j
can be regarded as a selective pressure to maintain the concentration. The 
equilibrium a  of such a system is equal to

1 /  n 1 \ 1
V i =  1 , . . . ,  n, — -----  [ Y"' — ) where Cn+1 :=  C\

c ‘- + i  \U ci J
First order replicator systems also offer a quite interesting model of dynamic 
game theory proposed in 1974 by J. Maynard-Smith to explain the evolution 
of genetically programmed behaviors of individuals of an animal species. We 
denote by i =  1, . . . ,  n the n possible “strategies” used in interindividual com­
petition in the species and denote by az-j the “gain” when strategy i is played 
against strategy j .  The state of the system is described by the “mixed strategies” 
x  €  M n, which are the probabilities with which the strategies are implemented. 
Hence the growth rate gi{x) YJj=\ aijXj is the gain obtained by playing strat­
egy i against the mixed strategy x and ü(x) :=  £ £  -=1 Q-ijXiXj can be interpreted 
as the average gain . So the growth rate of the strategy i in the replicator system 
is equal to the difference between the gain of i and the average gain (a behavior 
which had been proposed in 1978 by Taylor and Jonker.) In ecology, the main 
models are elaborations of the Lotka- Volterra equations

V i — 1 , . . . ,  n } x^(i) — X i ( t )  ^ûjo T ^ ' a(jXj{t') j

where the growth rate of each species depend in an affine way upon the number 
of organisms of the other species. A very simple transformation replaces this 
system by a first order replicator system. We compactify IR” by introducing 
homogeneous coordinates. We set Xo :=  1 and we introduce the map

V i =  0 , . . . ,  n, Vi :=  1
2^j=i Xj

from IR” onto Sn+1, the inverse of which is defined by x* :=  yi/yo. We set 
a0j =  0 for all j ,  so that Lotka-Volterra’s equation becomes

V i =  1 , . . . ,  n, y'i =  “  | è  aijVi ~  akiViVk | 
y °  \ j=o  k,i=i /
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because

r/i -  ^  =  *. »  -  *  (  Vo

This is, up to the multiplication by T , i.e., up to a modification of the time 
scale, a (n +  l)-dimensional first order replicator system. So, first-order replica­
tor systems appear as a common denominator underlying these four biological 
processes.





13. Cooperative Games and Fuzzy Games

13.1 Introduction

Let us consider a set N  oî n players and the set X>(iV) of subsets of players S. 
Cooperative games are those which take into account not only the behaviour of 
the players but also that of coalitions o f players. Thus, we require a completely 
different formalism from that used for non-cooperative games. Prom the be­
ginning, theorists of cooperative games have wrestled with difficulties resulting 
from the finite nature of V (N ) .  The structure of this set is too weak and the 
results relating to it are either trivial or very difficult. Several attempted ap­
proaches have involved increasing the number of players by various means. For 
example, one such approach involved taking the interval [0, 1] as the set of play­
ers (the interval is called the continuum of players). This technique, which was 
first used by R. Aumann, is one which physicists have used since the invention 
of differential calculus.

13.2 Coalitions, Fuzzy Coalitions and Generalised 
Coalitions of n Players

We denote the set of n players by N.
The first definition of a coalition which comes to mind is that of a subset of 

players S C N. Thus there are 2n coalitions. However, although the number of 
coalitions rapidly becomes important, it remains finite which prevents us from 
using analytical techniques.

In defining mixed strategies, we saw a first example of the ‘convexification’ 
of a finite set.

We shall study a natural way of ‘convexifying’ the set V (N )  of coalitions of 
n players. For this, we identify the set of coalitions V (N )  with the set {0 ,1  } n 
with the aid of the set characteristic functions

5 e D ( i V ) 4 cs 6 { 0, l } n (1)

where cs, the characteristic function of S , is defined by

cs(i) :=
1 if i €  <S 
0 if i £ S (2)
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Since {0, l } n is a subset o f IRn, we can take its convex hull, which is the 
cube [0, l]n. We shall call any element c of [0, l]n which is defined by

c : i e N  -> c(i) G [0, 1] (3)

a fuzzy subset of N. The number c(i) €  [0,1] is called the level o f membership 
(of i ) of the fuzzy subset c.

This concept of the fuzzy set was introduced in 1965 by L.A. Zadeh. Since then, 
it has been wildly successful, above all in many areas outside the mathematical com­
munity. In this age of anti-scientific reaction, the adjective ‘fuzzy’ must have raised 
some people’s hopes of being able to escape from the constraints of rigour to which 
mathematicians are subjected. Whilst the latter are wary of fuzziness could this not 
offer a way of avoiding the punishing logical consistency of scientific reasoning, with­
out a bad conscience? Did not the author of Caroline chérie and Les corps tranquilles 
(J. Laurent) recently entitle his last novel Les sous-ensembles flous (Fuzzy Subsets)?

Beyond such anecdotes -  and the rather unkind reflections on snobbery which they 
may evoke -  it is useful to reflect on the power of words and the harm which may 
result from word play. The success of catastrophe theory outside mathematics must 
be associated with this phenomenon. At this time of collective pessimism and end-of- 
the-world atmosphere, was not scientific support for this made even more legitimate 
when the originator of catastrophe theory won the Fields medal, the mathematician’s 
equivalent of the Nobel prize? However, all this is as nothing compared with the 
alarming word play around the concept of entropy, which takes a cowardly advantage 
of the difficulty of this notion. Must pervading ideologies be no longer viable for the 
second law of thermodynamics to be raised to a quasi-religious statute?

That this is no exaggeration is proved by J. Rivkin’s book, the title of which, 
Entropy, is repeated three times in flamboyant colours. To see this, we need only read 
the titles of the last paragraphs:

Entropy: a new world in view, Toward a new economic theory, Third world de­
velopment, Domestic redistribution of wealth, A new infrastructure for the solar age, 
Values and institutions in an entropie society, Reformulating science, Reformulating 
education, A second Christian education, Facing the entropy crisis, From despair to 
hope.

This is so scandalous that a famous professor of mathematics at the Ecole Poly­
technique has formulated the third law of thermodynamics: “Any sophistical expla­
nation of the second law of thermodynamics is a foolish affirmation” .

Since we have interpreted any subset o f N  as a coalition of players, we shall 
interpret any fuzzy subset c of [0, l]n as a fuzzy coalition of players and each 
number c(i) as the level o f participation o f player i in the fuzzy coalition c. 
Player i participates fully in c if c(i) =  1, does not participate at all if c(i) =  0 
and participates in a fuzzy way if c(i) G]0, 1[.

The interest o f the concept of fuzzy coalitions in political games is clear for 
all to see!

Since the set of fuzzy coalitions is tlie convex hull o f the set of coalitions 
any fuzzy coalition may be written in the form

c =  Y  m ( s ) c s  where m(S ) > 0, Y  m is ) =  1- (4)
s e v ( N )  s e v ( N )
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The levels of participation of the players are then defined by

c{i) =  Y^rn{S) (i =  l , . . . , n ) .  (5)
S3i

Thus, if m(S)  is interpreted as the probability of the formation of the coalition 
S, the level o f participation of player i is the sum of the probabilities of the 
formation of the coalitions S to which i belongs.

But why stop there? Why not model non-cooperative behaviour of the ith 
player by a negative level of participation?

Fig. 13.1. Coalitions and fuzzy coalitions of players, (a) N =  (1,2), 2 players, 
(b) N — (1,2,3), 3 players.

Definition 13.1 A generalised coalition of n -players is defined to be any 
element o f the cube [—l , -p l]n of functions c : TV —» [—1,4-1] which associate 
each player i with his level of participation c(i) 6 [—1, 4-1].

A positive level of participation is interpreted as cooperative participation of 
the player i in the coalition, whilst a negative level of participation is interpreted 
as non-cooperative participation of the ith player in the generalised coalition.

We can also enrich the description of the players by representing each player 
i by what psychologists call his ‘behaviour profile ’ . Let us explain this.

We consider q ‘behavioural qualities’ k =  1 , . . .  }q, each with a unit of mea­
surement. For example, k =  1: intelligence, k =  2: patience,
k — 3: creativity, etc. We also suppose that a behavioural quantity can be mea­
sured (evaluated) in terms of a real number (positive or negative) of units. A 
behaviour profile is a vector a =  (a\, . . . ,  aq) C IR9 which specifies the quantities 
a*. of the q qualities k attributed to the player. Thus, instead of representing 
each player by a letter of the alphabet, he is described as an element of the 
vector space IR9.

We then suppose that each player may implement all, none, or only some 
of his behavioural qualities when he participates in a social coalition. For ex­
ample, suppose that we have retained the two qualities k =  1: intelligence and 
k =  2: patience. A player may implement these two qualities in different ways, 
according as to whether he is participating in the Fraternal Society for Social 
Psychology, the Anglers’ Association or the Association of Belote Players. In



the first case, we assume that he implements the two qualities in full, while in 
the second case he does not use his intelligence at all but proves his patience 
to the full and in third case he uses half of the potential of each of these two 
qualities.

This translates to the statement that the level of participation (or, in the 
terminology of social science ‘the degree of actualisation’) of his behaviour pro­
file is (1,1) in the first case, (0,1) in the second case and (1/ 2,1/ 2) in the third 
case.

We note (and this is important) that the level of participation is independent 
of the behaviour profile.

More precisely, we introduce the following concept:

D efin ition  13.2 Consider n players represented by their behaviour profiles in 
IR9. Any matrix C  =  (Cf) describing the levels of participation C f €  [—1, -Fl] 
of the behavioural qualities k for the n players i is called a socia l coalition .
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qualities
players quality 1 quality k quality q

player 1 Cl C f C l
I

player i C> C? Cl

player n a C l

The q rows represent the levels of behavioural participation of the q players. 
The set of all social coalitions which it is possible to construct is the 

çn-dimensional hypercube [—1, - f l ]9” .
If the players are described by their behaviour profiles a1 =  (a[ , . . . ,  a*, . . .  a* ) 

G IR5, the qualities brought into play by a social coalition C  €  [—1, -Fl]9” are 
equal to

Vi =  1 , . . .  ,n, (C ? 4 )t=1... , € R " .  (6)

For example, let us consider three players and two qualities (intelligence and 
patience) and the social coalition:

1 2
Xavier 1/6 1
Yvette 3/4 1/4
Zoe 1 0

Xavier brings 1/6 of his intelligence and all his patience to bear. Yvette uses 
3 /4  of her intelligence and 1/4 of her patience. Zoe shows all her intelligence 
but is not patient (nor is she impatient).
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Suppose that the behaviour profiles of our three players are:

a* = (6, - 3 )
aY = (4,4)
az  = (-3 ,1 1 )

The behaviour
be:

(Xavier is intelligent and quick tempered)
(Yvette is intelligent and patient)
(Zoe is not very smart but has the patience of an angel) 

profiles effectively implemented by this social coalition will

bx  =  (1 , -3 )  =  Q  - 6 ,1 -  ( - 3 ) )

6" =  (3,D =  g  -4,1 -4) 

bz  =  (—3,0) =  (1 • (—3),0 ■ 11).

We note that a social coalition of n players is simply a generalised coalition 
of nq subplayers (z, k) formed by the kth quality of player i.

Patience

Zoe

- 3

- 3

/- Profile of Zoe implemented in 
the social coalition

a"
Yvette

r
Profile of Yvette implemented in 
the social coalition

bY

Intelligence
bx

•4
Xavier

N— Profile of Xavier implemented in 
the social coalition

Fig. 13.2.
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13.3 Action Games and Equilibrium Coalitions

Consider n players i — 1, . . .  ,n. We suppose that the behaviour of the ith player 
entails acting on the environment to transform it.

The environment is described by:

a convex closed subset L of a finite-dimensional vector space X  (7) 

and the action of the ith player is described by

a continuous mapping fj from L to X . (8)

We also suppose that

the action of a generalised coalition c G [— 1, +  l]n on the environment 
is described by the continuous mapping 5D”=i Cifi from L to X .  (9)

D efin ition  13.3. We shall say that a state o f the environment x  €  L and a 
generalised coalition c €  [—1, -f l]n form an equilibrium  if

! > / ; ( £ )  =  0. (10)
i- 1

Such a state of the environment x  is not modified by the action of the 
generalised coalition c €  [—1, + l ]n.

T h eorem  13.1. Suppose that L is compact and that

71
Vx €  L, 3c €  [— l , + l ] n such that ^  cifi(x) £  Tl {x ). (11)

i=1

Then there exists an equilibrium state x  and coalition c G [—1, -H ]n.
P roo f. We apply Theorem 9.4 to the set-valued map C  defined on the convex 
compact set L by

C { x ) : = \ ± Cif i { x ) }  (12)
U=i Jce[-i,+i]n

which is clearly upper semi-continuous with convex compact values. The as­
sumption (11) says that the tangential condition is satisfied. There exists a 
state of the environment x  €  L such that 0 €  C{x)  which, by virtue of (12), 
implies the existence of a generalised coalition c satisfying (10). □

We shall complicate this model slightly by assuming that any state of the 
environment x  €  L inflicts a loss ( p i , x )  on each player i =  1 , . . . , n ,  where 
Pi  G X*  is a linear form on X .
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By interpreting IRn as the space of multilosses of the n players, we suppose 
that the survival of the n players requires that the multilosses be confined to a 
set M.

Thus, we require that a state of the environment should obey the additional 
constraints:

(13)

T h eorem  13.2. We suppose that assumptions (7) and (8) are satisfied and that 

K  :=  {x  G jL|(13) holds} is compact (14)

We also suppose that

\/x €  L, the matrix of coefficients (pi, fk{x)) is negative semi-definite. (15)

Then there exists an equilibrium state o f the environment x  €  L satisfying the 
constraints (13) and a generalised (equilibrium) coalition c:

(i) x e  L and { ( p i , x ) ) i= 1 ....n € M
(ii) EF=i Cifi(x) =  6. (16)

P roof. We use Theorem 9.8, where Y  =  IRn and the operator A  is defined by:

Ax :=  ( ( P i , x ) ) i = 1 ^ n (17)

and where the role of the parameters p is played by the generalised coalitions 
c €E [—1, - f l ]n = : P. Assumption (36) of Chapter 9 in Theorem 9.8 follows from 
assumption (15) since

( c , A  ( j 2 ckfk(x)]  \ =  Y), (PiJk(x))dck <  0.
\ \ k= l  )  /  i ,k=l

The other assumptions of Theorem 9.8 are clearly satisfied. Thus, we deduce 
the existence of x  and c satisfying the conditions (16). □

Remark. (jpufk{x)) may be interpreted as the marginal loss inflicted on the 
player i by the action of the player k on the state of the environment x. As­
sumption (15) implies that for each player z, the marginal loss (pi ,f i {x )) which 
follows from his own action is not positive.

Remark. These models may be given a dynamic interpretation by considering 
the equilibrium states x  €  L as the stationary points of the differential equation

x ' ( t ) = ' t c i( t ) f i(x(t))  (18)
i= l

where the generalised coalitions c(t) play the role of control parameters.
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13.4 Games with Side Payments

A game with side payments is described by a loss function v (called a charac­
teristic function) defined on the set of coalitions:

v : V {N )  -> IR. (19)

The problem here is how to partition the loss v(N) of the set o f players 
amongst all the players,

71
find s — ( s i , . . . ,  sn) €  IRn such that s* =  v(N).  (20)

i—1
We interpret the elements s 6 IRn as multilosses.
The goal which game-theory specialists gave themselves was to find a fair 

distribution of the loss v(N)  taking into account the results of the cooperation 
of the players as described (a priori) by the characteristic function of the game. 
We shall o f course give examples of cooperative games with side payments.

But, before that, we shall define the notions of fuzzy games and generalised 
games with side payments which aie described by loss functions defined on the 
sets [0, l ]n and [—l , - f l ] n of fuzzy and generalised coalitions, respectively.

Since the number +1 which we have chosen to define set characteristic func­
tions and fuzzy coalitions is arbitrary, it is clear that this function should depend 
only on the relative levels of participation; in other words, it should be positively 
homogeneous.

D efin ition  13.4. A generalised sharing game with side payments is defined to 
be a function v from  IRn to IRU {- fo o }  satisfying

(i) v is positively homogeneous;
(ii) v is Lipschitz in the neighbourhood of c^ =  (1, . . . ,  1);
(iii) v{cs) <  +oo fo r  any coalition S C N. (21)

We shall say that the subset

M  :=  {s  e  H n|Vc €  IRn, (c, s) <  v{c)}  (22)

is the set of multilosses accepted by all the coalitions of players since, for any 
generalised coalition c, the loss SfC* =  (c, s) imputed to the coalition c in 
a pro rata fashion, based on the levels of participation of the players does not 
exceed the loss v{c) attributed to this coalition a priori.

The conjugate function v* defined by

v*(s) =  sup ((c, s) -  v(c)) (23)
c€lRn

is the indicator function of the set M  o f accepted multilosses.
We shall impose a number of axioms, which must be respected by any rule 

for sharing out v(cN) with a priori knowledge of the losses inflicted on any 
generalised coalition c.
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A share-out rule is, by definition, a set-valued map which associates with 
any game v a subset S(v) o f multilosses in IRn.

E fficiency (P a reto ) A x iom . This simply says that the multilosses s of S (v ) 
form a partition of t;(c;v):

\/s€S (v ), '%2si =  v(cN). (24)
i=l

S ym m etry  A x io m  (or  A x iom  o f  A  P riori Justice). Consider a permuta­
tion 6 : N  —> N  of the set of n players, which defines the order in which these 
players play. The action of 6 on the function v is defined by:

{6 * v)(c) :=  u(ce- . (i ) , . . . ,  ce- i(n)) (25)

and the action of 6 on the multiloss s G IRn is defined by

(6 * s )i =  se(i) Vi =  1 , . . . ,  n. (26)

The symmetry axiom states that the share-out rule does not depend on the 
order in which the players are called to play, in the sense that

for any permutation 6, S{6 * v) — 6 * S(v). (27)

A tom icity  A x iom . If P  :=  (S i , . . . ,  Sm) is a partition o f the set N  of n players 
into m non-empty subsets of players Sj, any game v with n players may be 
associated with the game PUv of m players defined by

(P O v)(d i,. . .  ,dm) :=  ^ (c i ,. . .  ,Cn) where c* =  dj when k €  Sj. (28)

Any n-loss s G IRn is associated with the m-loss PDs G 1RW by the formula

(P O s)j :=  £  sk j  =  (29)
fceSj

The atomicity axiom states that

S(PO v) =  PO S{v). (30)

D u m m y P layer A x iom . Consider a superset M  D N  of m players and an 72- 
person game v. This is associated with an m-player game ttm A v by the following 
formula. If C  denotes the projection of IRm onto IRn, we set

(7rMAv)(d)  := v (C  • d), VdeJRm (31)

and
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{irMA s)j
f Sj if j  €  N  
{ 0 if j  £ N 3 =  I ,- - m. (32)

In other words, the players in M  who do not belong to N  are dummy.
The dummy player axiom ensures that the redundant players receive noth­

ing:
S{ixm A v) = txm A S {v). (33)

Before we introduce a share-out rule in the general case (which demands a 
knowledge of the generalised gradients described in Chapter 6), we shall begin 
with two special cases which extend the concepts of the Shapley value and the 
core to the case of generalised games.

E xam ple 1. Shapley Value o f  R egular Gam es. If v is continuously differ­
entiable at c/v =  (1, - • •, 1), we shall say that the game described by v is regular 
and we define the Shapley value of the regular game v to be the gradient of v 
at Cyv:

S{v) :=  V'i'(czv) € IRn (34)

The loss Si :=  S (v)i attributed to the zth player is the marginal loss which 
he incurs by belonging to the coalition of all the players. It in some way measures 
the role o f the player i as a pivot.

The Shapley value defines a share-out rule. In fact, since v is positively 
homogeneous, we know that, setting s :=  S(v),

n
Y l Si =  (S>C) =  (Vv(cyv),Cyv) =  v(cN).
i= 1

It is easy to check that the symmetry, atomicity and dummy player axioms 
hold for the Shapley value. In fact, we associate a permutation 6 with the matrix 
A =  (or-) defined by

aj =  1 if j  =  6~l {i) and a{ =  0 if j  ^  0-1 (^). (35)

Since
0 * v =  v o A, 6 * s =  A*s and Ac^ =  ĉ v, (36)

it follows that

S{6 *v ) =  V(t> o A ){cn ) =  A'\7v {A cn ) =  6 *  S(v). (37)

Similarly, we associate any partition P  — (S i , . . . ,  5m) with the linear oper­
ator B  from IRm to IRn defined by

{Bd)i — dj whenever i G  A j .  (38)

Since
PUv =  v o B, POs = B*s and Bcm — cn (39)
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it follows that

S(PD v) =  V (v  o B)(cm) =  B*\7v{Bcm ) =  B*S(v). (40)

Finally, we associate any superset M  D N  with the matrix C  from IRm to IRn 
which is the projection of IRm onto IR". Since

7tm A v =  v  o C} trMA s ■= C*s and C cm =  c^, (41)

it follows that

S(ttmAv) =  V(t> o C ){cM) =  C *V v{C cM) =  7tmAS{v). (42)

E xam ple 2. W eigh tin g  G am e. We associate any weighting k =  (k\,. . .  t kn) G 
IRn with the function 7*. defined by

/  n \ i/|fc|
7k{c) :=  ( j [  c?‘ J where \k\ :=  ki +  . . .  +  kn (43)

(where, by convention, 0° =  1). We note that

- (I),.. . <44>
since ^ 7k{c) =  ^ 7fc(c)c,“ 1 whenever d  >  0.

In this weighting game, the Shapley value leads us to share v(c^) =  1 
proportionally according to the weight of each player.

We are now in a position to characterise the Shapley value by a system of 
axioms.

P rop os ition  13.1. Let V be the set o f games with side payments generated by 
the weighting games 7* as k runs through the set N n o f integer vectors.

Then the mapping S : v G V - »  S(v) G IRn is the unique linear operator 
which satisfies the efficiency, symmetry and atomicity axioms.
P roof. Suppose <$ is a linear mapping from V to IRn which satisfies the efficiency, 
symmetry and atomicity axioms.

Consider an integer vector k =  (fcj,. . . ,  kn) G N n and the games 7* and 7[fcl 
with n and |fc| players, defined respectively by

/  n \ i/ifcl (  1*1 \  VW
7k{c) =  ( n ^ j  and 7[*'(<*) =  ( j  • (45)

The efficiency and symmetry axioms imply that
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If P  is the partition of the set of k players into n subsets S\ of k\ players, 
. . . ,  Sn of kn players, we note that 7* =  POy^'. The atomicity axiom then 
implies that

rtn), = E -  E m = È = S(7fe)i-
jeSi jeSi H  H

Since S and $  are linear and coincide on the basis of M  formed by the games 
7/t, they are equal. □

E xam ple 3. C ore  o f  Subadditive Gam es. We shall say that the generalised 
game described by a function v is subadditive if

Vci, c2, v {d  +  c2) <  v(ci) + v (c 2). (46)

Since v is positively homogeneous, this is equivalent to saying that

the loss function is convex. (47)

We note that such games are a translation of the idea that unity makes for 
strength. In fact, if S and T  are two disjoint coalitions, cs+ ct is the characteristic 
function of S U T  and inequality (46) leads to the inequality

^(csut) <  w(cs) +  v{cT) (48)

which states that the loss incurred by the union of two disjoint coalitions is less 
than or equal to the sum of the losses incurred by each coalition separately.

P rop osition  13.2. Suppose that the function v which describes the game is 
subadditive. Then the subdifferential dv(cjv) is the set (non-empty) o f accepted 
multilosses s G M  into which v(C^) may be partitioned.

dv{ cN) = (49)

P roo f. To say that s belongs to dv(cw) is equivalent to saying that for all 
c G IRn,

v(cN) -  v{c) <  (s, cN -  c). (50)

Taking c =  Acat, this inequality implies that

(1 -  X)(v{cN) -  (s, c/v)) <  0.

Choosing A =  + 1 /2  and A =  —1/2, it follows that, on the one hand,
n

v ( c n ) =  (5, c/v) =  *52 Si (51)
i= 1

and, on the other hand, taking into account (50),
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Vc €E IRn, (s ,c ) <  v {c) (i.e. s €  M ). (52)

Conversely, (51) and (52) clearly imply (50). □
We define the core of the subadditive game v to be the subdifferential of v 

at Cj\r
S{v) :=  dv{cN) C JRn. (53)

This defines a natural share-out rule. If the game is both regular and subaddi­
tive, then the core consists of the single Shapley value, since in this case

S(v) =  dv(cN) =  (V u (c/v)}. (54)

We note that the Shapley value and the core of a generalised game are two 
special cases of a single concept, which we shall now define.

D efin ition  13.5 Suppose we have a generalised game with side payments defined 
by a function v. We define the so lu tion  of the game to be the generalised 
gradient o f v at the characteristic function C/v o f the set o f all the players

S{v) :=  dv{cN) C IRn. (55)

Thus, this coincides with the Shapley value when the game is regular and 
with the core when the game is subadditive.

The solution S(v) defines a share-out rule.

T h eorem  13.3. The solution S(v) satisfies the efficiency, symmetry and 
dummy player axioms, together with the properties

(i) VA > 0, S(Xv) =  AS{v)
(ii) S fr  +  v2) C S(vi) +  S{v2). (56)

P roo f. This follows from the properties of generalised gradients. The efficiency 
axiom follows from the fact that v is positively homogeneous (see Proposi­
tion 6.11, formula (45)). Since the matrices A  associated with the permutations 
6 by (35) and the projections C  from IRm onto IRn associated with the extensions 
M  D IV are surjective, using properties (36) and (41) we obtain

S(6 * v) =  d(v o A)(cyv) =  A*dv{Acu) =  6 * S(v) (57)

and
S(ttn A v) =  d(v o c)(cN) =  A*ôv(C cn) =  7tm A S (v). (58)

Formulae (57) and (58) now imply the symmetry axiom and the dummy player 
axiom. D

Remark. The properties (39) and Proposition 6.11 imply that

S(PDv) C  PDS(v). (59)
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Equality (the atomicity axiom) only occurs under additional regularity assump­
tions. For example, when v is subadditive, Corollary 4.3 implies that the core 
of a game satisfies the atomicity axiom

,S(PDu) =  PD5(t>) for all partitions P  (60)

together with the additivity property

S(v1+ v 2) = S(v1) + S(v2). ( 6 1 )

The solution scheme also satisfies all the properties of the generalised gra­
dient described in Chapter 6.

The notion of the solution S(v ) :=  dv(c^) makes the coalition of all players 
c/v play a privileged role. We note that for any coalition c €  Int Dom v, the gen­
eralised gradient dv(c) provides a subset of multilosses s 6  IRn which partition 
the losses of the coalition c, since

Vs €  dv(c), (c, s) =  ^(c). (62)

The converse question then arises. Does a given multiloss s belong to the 
generalised gradient dv(c) of a coalition c?

T h eorem  13.4. Suppose P  is a convex compact subset contained in the inte­
rior of the domain of the function v. Any a ccep ted  multiloss s €  M  may be 
associated with a generalised coalition c G P  such that

s 6  dv(c) +  P ~ . (63)

P roo f. We apply Theorem 8.6 (Ky Fan) to the function <f> defined by

^(c,d) :=  (d, s) — Dcv(c)(d ) (64)

which is concave in d and lower semi-continuous in c (see Theorem 6.1) and 
which satisfies <̂ (c, c) =  (c, s) — Dcv{c){c) =  (c, s) — t'(c) <  0 when s belongs 
to the set M  of accepted multilosses. Since the set P  is compact, Ky Fan’s 
Inequality implies that there exists c G ?  such that

\/d €  P, (d, s) <  Dcv(c)(d ) =  a(dv(c),d ).

This implies that s G dv(c) +  P ~ . □

E xam ple 4. C ore  o f  M arket G am es. Consider a (Hilbert) strategy space X  
and

n nontrivial, convex, lower semi-continuous 
loss functions from X  to IRU {-Foo}. (65)
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Suppose we have
n vectors yi G X . (66)

Suppose that c G IR” is a fuzzy coalition. We define the set K {c) o f allocations 
of the fuzzy coalition c by

K (c)  :=  i x  G n i X > i  =  Y ^ y À  • (67)
l £=1 i=l i=l J

This means that in participating in the fuzzy coalition with a level of participa­
tion q , the zth player (consumer) offers Qy*. The loss function of the coalition 
c will be defined by

f ( c ,  x) :=  Y  cifi ( “ )  • (68)
Ci>0

Thus, the minimum loss function o f the fuzzy coalition c is defined by

We shall say that v describes a fuzzy market game.

Lem m a 13.1. Suppose that

Vi = 1,. . . ,  n , yi G Int (Dom ff).

(69)

(70)

Then we may write

ü(c) :=  sup Y  ci((p,yi) -  f*(p)) (71)
P€X* \^>0 J

and the supremum is attained at a point pc G X*.
P roof. We apply Corollary 5.2 with X  =  X n, Y  :=  X ,

n n n
A CX =  Y CiXi> Vc =  - Y Ci V f c ( x )  := Y ° i f i ( Xi) and M =  W ’

i=l i— 1 i=l

Assumptions (70) imply that

—yc G Int ( Ac Dom f c)

for any fuzzy coalition c.
Thus, we have
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and there exists q at which the maximum of this problem is attained. □
Whence, it follows that the function v is convex. Proposition 4.4 enables to 

calculate di>(c/v); in other words, the core of the fuzzy market game.

P rop os ition  13.3. Suppose that the assumptions (70) are in force, whence 

Mi =  1 , . . . , n, pi (E Int (D om /*).

We set

P (N ) :=  (p  € P k C W ) =  i t fH X i)  =  -  /< * (-? ) ) }  • (72)

l 1=1 i=l )

Then the core of the fuzzy market game is equal to

S(v) =  CÜ{{(p,Xi -  pi) +  fi(Xi))i= i n}pGP(iV). (73)

13.5 Core and Shapley Value of Standard Games

Consider a standard game with side payments defined by a function w from 
V (N ) to IR.

We may associate this with a solution scheme whenever we have a means 
associating w with a fuzzy game or with a generalised game ttw by taking S(ttw).

Thus, there are as many solution schemes as methods of extending a game 
to a fuzzy game. We shall introduce two methods which will lead to the concepts 
of the core and the Shapley value.

C ore  o f  a Standard G am e

Consider a game defined by a function w from {0, l } n to IR. We associate this 
with the set M  of accepted multilosses defined by

M  :=  {s  e  H n|V5 C N ,Y ,S i <  ^ (S )} .  (74)
ies

D efin ition  13.6. We define the core  C(w) of the gam.e w to be the set of 
accepted multilosses s €  M  such that Si =  w (N ).

This notion is compatible with that of Definition 12.2. The game with side 
payments w described by the function w is associated with the game without 
side payments defined by the sets

1/(S) := { r e K s| ^ r i >a)(5 )}.
ies
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This suggests associating w with a fuzzy subadditive game which has the same 
set o f accepted multilosses.

We shall say that the generalised game ttw defined by

7rtu(c) :=  sup(c, s) (75)
s £ M

is the ‘subadditive covering’ of the game w, which is the support function of the 
set of accepted multilosses of the game w.

We always have the inequalities 7rw(cs) <  u>(S) for any coalition S.
We shall say that a game is balanced if

w (N ) =  7tcu( cjv ) .  (76)

P rop os ition  13.4. The core C (w ) of a game is non-empty if and only if it is 
balanced. In this case,

C (w ) =  S(nw).

P roof, (a) If s £  M  belongs to C{w), then

?t w { c n ) >  ( c n , s )  =  w (N ).

Thus, the game is balanced since we know that ttw(Cn ) <  w (N ).
(b) If the game is balanced, the set S ( ttw ) is non-empty and clearly coincides 
with C(w). □

We note that the set M  is of the form 7i-1 (iu — P), where A  : IRn —> IR2n_1 
is defined by Tls =  ((cT, s))TcNt w :=  {w {T ))TcN and P  :=  IR j1-1. Then 
formula (70) o f Chapter 3 allows us to write the support function ttw of the set 
M  in the form

7vw(c) =  inf ((m ,w) — (m>u)).
' A* m—c ueP

Since A*m =  YLtcn m (T )cT, we obtain

7Tw(c) =  inf Y ] m {T)w {T)V > m ( T ) > 0 ^ N

c  =  Y  m ( T ) c T -  

T C N

In particular, taking c — cat, the formula becomes

7rw(cn) =  inf{ rn{T)w {T)y m is a  balancing}
T C N

(see Definition 9.9).
To say that the game is balanced is then to say that

w (N ) <  Y  ^ {T ) w (T) for all balancings m.
T C N
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Example. The following corollary may be deduced from Theorem 12.1

C orollary  13.1. Consider a game defined in strategic form byn convex strategy 
sets and n convex loss functions and associate it with the cooperative game 
defined by

Then its core is non-empty.

Shapley Value of a Standard Game

We shall use an extension \ which associates every standard game w with a 
regular game x w- We associate every coalition S C N  with its characteristic 
function cs £  { 0, l } n and the weighting function

/ \ i/|S|
7s(c) :=  7cs(c) :=  ( I l  ciJ where \S\ =  card(S). (77)

We associate every coalition S with the functionals

w (T ) :=  inf X ^ /r f r 3-).

== YL ( - ! ) |s| |T|̂ ( n - (78)
T C S

We define the extension operator X by

Xw(c) =  o s H l s W - (79)
S C N

Lem m a 13.2. The 2n functions 7s satisfy

(80)

and x w interpolates w in the sense that

VS c  N } x w ics) =  w(S). (81)

P roof. Formula (80) is self-evident. We calculate

Xw (ct ) =  Y  a s (w )7 s (cr )
S C N

=  y  q s H
S C T

S C T  R C S
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Since there are (js{_{#|) coalitions S between R  and T  with |S| elements, it 
follows that

£  ( - i ) |SHK|
r c s c t

£ (\T\ -  | * | \
\\s\ -  \R\)

£  t\T\ -  1 * 1  

0<fc<!T|-|fi| V ^
(1 -  1)'TH*I
f 0 if |*| <  \T\
\ 1 if |*| =  |T|.

Thus, we have shown that xw (ct ) — w (T). □
Since x w 1S continuously differentiable, it follows that 4> =  S o ^ is a linear 

mapping from the space W  Rv(-N) of standard games into IR77.

D efin ition  13.7. We shall say that the mapping <f defined by

\/w G W , (f)(w) :=  S (xw) C IRn (82)

is the Shapley value.
We saw that Sfiyr )* =  l / | T | i f i € T  and 0 otherwise and we thus deduce 

that the zth component of the Shapley value of a game w is defined by

4>{w)i =  Y  74 - a r H .  (83)
T B i  I-1 I

The following two propositions are independent.

P rop os ition  13.5. The Shapley value is given by the following formulae: 
Vz =  1 ,. . .  , n,

=  E (|r| ^  |T|)!K r ) - ^ ( T - { » } ) )
T B i  U '

Te* û

where, when 6 is one o f the n\ permutations of the set of players N, 

m ) = {j\e(j) <  e ( i ) }  and T$(i) =  u r n  <

(84)

(85)

P roo f. Formulae (78) and (83) imply that

* M i  =  £ i ^ £ ( - D |r|- |s|̂ ( s )
TBi I1 I S C T

= Y  w(s)
S C N

£
,rnsu{i}

(_1)P1-|S|\
P’1 ) '



230 13. Cooperative Games and Fuzzy Games

We set

K(S):= E
T D S U {î}

(86)

If S does not contain i, then R =  S U {« }  does contain it. Thus, it is easy to see 
that

ft(S) = E
t d r m

\T\= -  E
TDR^RU{i}

= -ta(su{i}).

Whence, we may write

4>(u>)i =  Ri(S)w{S)
SCN

= Eft(sws)+Eft(%(s)
SBi S$i

=  E w ( % ( s ) - E f t ( s u { t } M S )
SBi S$i

= E »i(w(S)-w(S-{i}))
SBi

since, for any coalition S which does not contain i , we may write 5 U {f} =  T —{i }  
where T  does contain i } and vice versa.

Next we must calculate fii(S) when S 3 i. There are exactly (|y|rjsj) coali­
tions T  between S and N. Thus, we obtain

Hi(s) = E
SCTCN m

e  (-i)ithsiC ! |sD fx 'T'-'dx
isi<m<i7vi VkI - \s\J 

= j' E  (-1s< t< n  S )  JO

= / > -  e  (-u‘- ( " : ; W
=  f  æs-1(l  — x )Tl~sdx.

Jo

But we know how to calculate this integral:

M S )  =  f  , w - ( i  -  * r |S|̂  =
Jo n!
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This gives the first formula. To derive the second formula, we fix a coalition 
T  and i €  T. The number of permutations n! such that T  =  Te(i) is equal to 
(| T | -l)!(n -| T | )!, since the members of T  — { i }  and N  — T  may be arbitrarily 
permuted. □

This formula may be interpreted by the following scenario. We fix one of 
the n! permutations of the players at random (with probability ^ ). For a per­
mutation 6, we consider the difference between the losses ^(T^z)) — f  (Te(z)), 
which we interpret as the loss o f the zth player in this ordering. Then, the zth 
component o f the Shapley value is the mathematical expectation of these losses.

As in the case of generalised games, the Shapley value may be justified by 
a system of axioms, which we define below:

Efficiency Axiom
'f2<f)(w)i =  w (N ). (87)
i=l

Symmetry axiom If 6 is a permutation, and if 6 * w is defined by (6 * w)(S) =  
w(6(S)), then

4>(6 * w) =  6 * (f>{w). (88)

Redundant-players axiom A player i is said to be redundant if VS C N , v(S) =  
t ) (S U {i}) .  The axiom states that

for any redundant player, <f)(w)i =  0. (89)

P rop os ition  13.6 The Shapley value is the unique linear operator from  W  to 
IRn which satisfies the efficiency, symmetry and redundant-players axioms.

P roo f. Lemma 13.2 shows that x  is an isomorphism from W  to the space 
generated by the 2n functions 75. Thus, the functions ws =  X~ll s  form a basis 
for W . They are defined by

w s^  =  {  0 !f 5 n c l p T ^ 0

and any function w may be written in the form

w =  ^2 as(u>)ws. (91)
SCN

Firstly, the Shapley value clearly satisfies the three axioms. Suppose that 
is another linear operator from W  to !Rn which also satisfies these axioms. 

It is sufficient to show that <p and ^  coincide on the elements of the basis of 
W  formed by the ws- Let us consider ws . If i does not belong to 5, then i is
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a redundant player for the game w s‘, in fact, if T  D S, then T  U {z } D S and 
w s{T) =  tu s (T u {z }) =  1. If S'n comp T  0, then STïcomp (TU {z }) ^  0 since
z does not belong to S. Thus, w${T) =  w s{T  U {z }) =  0. Whence,

if i tfz Sy then 'ip{ws)i — 0. (92)

Suppose now that i and j  belong to S and that 6 is a permutation which 
interchanges z and j  and leaves the other players unchanged. Then 0(S) =  S , 
whence 6 * ws =  ws- The symmetry axiom implies that

ip(ws)i = ^(0 * ws)i = 6* Tp{ws)i = 4>(ws)j-

Lastly, the efficiency axiom implies that

n
=  E  =  WS(N ) =  1.

1=1 ies

It then follows that
if i € 5, then ip(ws)i =

Whence, we have obtained

(93)

Vi =  1........n, ip{ws )i =  <f>(ws )i (94)

This completes the proof o f Proposition 13.6. □
Example: Simple Games. A game w is simple if for any coalition S C N  we 
have w (S) =  1 (winning coalition) or w(S) =  0 (losing coalition) and any 
coalition of winning coalitions is again a winning coalition. In this case, the 
terms v(T) — v(T  — {z }) either have value 0 (if T  and T  — {?.} are both losing 
coalitions or if T  — i is a winning coalition) or value 1 if T  is winning coalition 
and T  — {z } is a losing coalition.

We shall denote the set o f winning coalitions S such that S — {z'} is a losing 
coalition by G(i). Then, for a simple game we obtain

4 > (™ )i =  E
seG(i)

(|S|-l)!(n-lSl)!
\S\ (95)

Remark. Many authors have suggested that the Shapley value of simple games 
should be interpreted as a power index. It is a matter of definition. Consider, 
for example, a game with three players. Each of these players is attributed side 
weights: 1, 48 and 49. The winning coalitions are those for which the sum of 
the weights is greater than 50 (electoral game).

The process which consists of attributing to each player the power index 
proportional to his weight would give ^  and This partition is ob­
tained by applying the fuzzy Shapley value to the weighting game defined by 
v(c) :=  (ciC28C39) 1//100. But this fuzzy game v is not a good description, since it
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does not use the rule defining the winning coalitions. This shows that the win­
ning coalitions are {1 ,3 }, {2 ,3 }  and {1 ,2 ,3 }. If power means participating in a 
winning coalition then we see that player 3, who may participate in three win­
ning coalitions, is more powerful than the other two players and that these two 
players have the same power of participation in two winning coalitions. Thus, 
we may think of attributing the power indices |, | and | to these players. (The 
Shapley value of the associated simple game attributes the players with indices
1 1 4 \
6’ 6’ 6*/

Do we have enough information to define a power index?
The first two players have the same probability o f participating in a winning 

coalition and are reliant on the choice o f the third player. Thus, we see that this 
last player may use an optimisation mechanism; for example, the third player 
may pay the other players to participate.

This leads us to a very common paradox. Since he has a very low weight the 
first player may be less demanding as regards the compensation which he claims 
from the third player; thus, he may well participate in a winning coalition. We 
see that the definition of power indices depends on the information available to 
describe the game.
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IT. Compendium of Results

17.1 Nontrivial, Convex, Lower Semi-continuous 
Functions

D efin itions. A function f  : X  —> IR U {+00} is said to be:

• nontrivial if there exists x0 G X  such that / ( x 0) < + 00;

• lower semi-continuous at Xo if

VA < / ( x 0), 377 > 0 such that \/x G B (x 0,r]), A <  /(x );

• lower semi-compact if VA G IR, the sets S ( f } A) := {x G X \ f(x ) <  A} are 
relatively compact;

• convex if for any convex combination x Ya=\

• strictly convex if for all x, y such that f ( x )  <  4-00, f(y) <  + 0 0  we have

• locally Lipschitz on an open set Q  if for all x0 G 17, there exist rj >  0 and 
c >  0 such that

Vx,y G £ ( x0>7?)> 1/0*0 “  f(y )I < c\\x -  2/11.

We make the following definitions:

• Dom /  :=  {x  G X \ f(x ) <  + 00} is the domain of / .

• Ep /  := {(x , A) e  X  x  IR|/(x) < A} is the epigraph of / .

•  S (f,  A) := {x  G X \ f(x ) <  A} are the sections of / .
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• ipK defined by

:= { +oo if

is the indicator function of K .

We note that
Ep fsu p /A  =  p | Ep (fi)

\ ie i  /  içj

and

S ( s u p fi ,x ]  =  f| 5 ( /i ,A )
Vie/ /  ie/

and that
l x  e  X \ f(x) =  mf f (x )\  =  p  S (f,  A).

 ̂ A>inf,\' f (x )

Suppose that /  : X  -> IRU {+00} is a nontrivial function. 

A function /  is lower semi-continuous at Xo if and only if

f i x 0) < liminf f ( x ) =  sup inf f ( x )
> ~  x - « 0 J ^>0 xeB(x0,v)

x € K  
x £ K

( i )

(2)

(3)

The following properties are equivalent

(a) /  is lower semi-continuous;
(b) the epigraph of /  is closed;
(c) all the sections S ( f , A) of /  are closed. (1.4)

If f ,g , fi (i € I)  are lower semi-continuous functions then following are lower 
semi-continuous:

• f  +  9\
• a / ,  V a >  0;
• inf ( / ,# ) ;
• supiG/ fù
• f  o A, where A is a continuous mapping from y  to X .  (1.5)

If K  C X  is closed and if /  : K  —> IR is lower semi-continuous, then 
//<■ : X  -> IRU {+00} defined by

f f(x) if x G K  
I  + 0 0  if £ ^ RT (6)

is lower semi-continuous.
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If K  c  Y  is compact and if g : X x  K  —>• IRu{-t-oo} is lower semi-continuous, 
then /  : X  —» IR U { + 00} defined by

f ( x )  :=  inf g (x ,y )  (7)

is lower semi-continuous.
If /  is both lower semi-continuous and lower semi-compact, then the 

set M  of elements at which /  attains its minimum is non-empty and
compact. In particular, this is the case if K  C X  is compact and if
/  : K  —> JR is lower semi-continuous. (1.8)

Suppose that E  is complete and that /  : E  IR+ U { + 00} is nontrivial, 
positive and lower semi-continuous.

Consider Xo € Dom /  and e >  0. There exists x  G Dom /  such that

(i) f ( x )  +  ed(x0, x) <  f ( x 0)
(ii) V x ^ x ,  f ( x ) < f ( x ) + e d ( x , x ) .  (1.9)

17.2 Convex Functions
A function /  is convex if and only if the epigraph of /  is convex. In this 
case, all the sections 5 ( / ,  A) are convex. (2.1)

If £ 1) are convex, then:

• f  +  g is convex;
• Va >  0, ctf is convex;
• if A : Y  —> X  is affine, then /  o A  is convex;
• sup£€/ ft is convex;
• i f g r i A T x y —»IRU {-Foo} is convex then /  : X  - »  IR U { + 00}

defined by f ( x )  :=  infy€y g {x ,y ) is convex. (2.2)

If K  is convex, then /  : K  - »  IR is convex if and only if f K is convex. (2.3) 

If the functions fi : X  —> IRU { + 00}  are convex, and if we set

F (s ) := ( /1(aO ,...,/„(x))€lR ", X  := ft Dona/i (4)
i- 1

then the sets F (K )  +  IR+ and F (K )  -f are convex.

If /  is convex, the set M  of elements at which /  attains its minimum 
is convex. If /  is strictly convex, this set contains at most one point. (2.5)
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If /  is convex, the following conditions are equivalent:
(a) /  is bounded above on an open subset

(b) /  is locally Lipschitz (whence continuous) on the interior o f its domain. 
In particular:

• if X  is finite dimensional, any convex function is continuous on the 
interior of its domain;

• if X  is a Hilbert space, any convex lower semi-continuous function
is continuous on the interior of its domain. (2.6)

17.3 Conjugate Functions

D efinitions. The function /*  : X* —> IR U {- fo o }  associated with a nontrivial 
function /  : X  - f  IRU {- fo o } by the formula

Vp G X*, /* (p ) :=  sup{(p ,x ) -  f { x )) (1)
xex

is called the conjugate function of / .  The function /** : X  —» { —oo}U lR U {-foo} 
defined by

Vx G X , f**{x ) :=  sup((p ,x) -  f* (p )) 
pex*

is called the biconjugate function of / .

We note that

\/x G X , Vp G X*, (p,x) <  f ( x )  +  /* (p ) (Fenchel’s inequality) 

that

Væ G X , r * ( x ) < f ( x )

and that
- / * ( 0 ) =  m f / ( x ) .  (2)

A nontrivial function /  : X  —» IRU {- fo o } is convex and lower semi- 
continuous if and only if /  =  /* . In this case, /*  is also nontrivial. (3.3)

• If /  <  g then g* <  f*.
• If A G L (X , X )  is an isomorphism, then ( /  o A)* =  f*  o A*-1 .
• If g{x) :=  f ( x  -  z 0) H- (p0, x) +  a, then

9* ip) =  P i p - V o )  +  (p ,x  o) -  (a +  (po,Xo)).

• If g(x) :=  /(A x ), then g*{jp) — / * ( f )  and if h{x) :=  A /(x ), then 
h*(p) =  A /* (f ) .

• If /  : X  x 7  —>IRU {- fo o }  and if g(y) :=  infx€X f { x ,y ) ,  then 
9*(Q) =  r (0 ,Q )- (3.4)
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If /  : X  —► IR U { + 00}  and g : Y  —» IR U { + 00}  are nontrivial, convex, 
lower semi-continuous functions and if A  G L (X , Y ) satisfies 0 G Int (ADom /  — 
Dom p), then Yp G A* Dom g* +  Dom/* , 3q G Y* such that

( /  +  9 °  A Y  ip) =  r ( p -  A*q) +  g '(q) =  mf ( f ( p  -  A'q) +  g'(q)) (5)

If, in particular, we suppose that 0 G Int (Im A — Dom g ), then Yp G A* Dom g*, 
3g G Dom g* satisfying

A*g =  p and fa o ^ )* (p ) =  g*(ç) =  min g*(q).
A 'q —p

If K  C X  is convex and closed and satisfies

0 G Int (Dom f  — K)

then Yp G Dom(/|^)*, 3q G b(K) such that

(/l/c)*(ri =  f * ( p ~ g )  +  VK(q)-

If

0 G Int (Dom /  — Dom g)

then Yp G D om /*  +  D o m / ,  3g G Dom g* such that

{f + 9)*(p) = f*(p-q) + 9*(q) = inf (f*(p -  q) + g*{q))-

17.4 Separation Theorems and Support Functions

Suppose that K  is a convex closed subset of a Hilbert space. Then Yx G X , 
there exists a unique solution 717̂ (2:) E K  of the best-approximation problem

||x-7r*(æ)|| =  inf ||x-y||. (1)
yGK

This is characterised by the variational inequality

(i) 7*7c(z) G K
(ii) Vy G K , (7rK(æ) -  x ,n K(x) -  y) <  0. (4.2)

The mapping t\k  : X  —> K  is continuous and satisfies

\\7YK(x ) -T x K{y)\\ <  ||z - t/||
||(1 -  7r*)(æ) -  (1 -  7rK){y)\\ <  \\x -  y\\.

The mapping 7rK is called the ‘projector of best approximation’ onto K .
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The function ok : X* —> IRU { + 00} defined by

Vp € X *t ctk{p ) '■= sup(p, x) G IRU { + 00} (3)
x £ K

is called the support function of K  and its domain

b(K) := Domcr/f := {p € X*\o k (p ) < +00} 

is called the barrier cone of K .

If K  is a convex closed subset of a Hilbert space X  and if xq AT, then 
there exist p € X* and e >  0 such that

Pk {p ) :=  sup fa y )  <  (p ,x0) -  e. (4)
y€K

If K  is a convex subset of a finite-dimensional space X  and if x0 ^ K , then 
there exists p G X* such that

P ^  0 and o K(p) :=  sup(p,p) <  (p ,x0). (5)
y e K

\ / p e X \  <jK (p) =  Ozô(K)ip)

oK =
(6)

• If K  =  B  is the unit ball, o k (p ) =  ||p||#.

• If K  is a cone, o k {p ) =  ipK-(p) and b(K) =  K ~.

• b(K)~ =  n x>0X (K  — £0) (for all x 0 G K ).

Any support function ok  is convex, positively homogeneous and lower 
semi-continuous. (4.7)

Conversely, any function 0  from X*  to IR U {+oo} which is convex, positively 
homogeneous and lower semi-continuous, is the support function of the set

Ka :=  {x  e  X\Vp e  X * } (p,x) <  o (p )}. (8)

• If AT is a convex closed subset, then

K  =  { x e  X\Vp G X*, (p,x> <  o K(p)}. (9)

• If AT is a convex closed cone, then

K = ( K ~ ) ~

If AT is a closed vector subspace then AT =  (AT-1) -1.
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If A G L (X , Y ) is a continuous linear operator and K  C X> then

A {K )~  =  A*~1(K ~).

In particular, (Im 24)'L =  Ker A*.

If K  c  L, then b(L) C b(K) and (Jk  <  (4-10)

If Ki C Xi (i =  1, . . . ,  n), 6(nr=1 Ki) =  nr=i &(#«) and
n

° k {P\, ■ • • ,Pn) =  °* i(P i)-
i-l

6(cüUiGL PQ) C r\e /6(ify) and (Jcô(uiçIKi){p) =  sup aKi(p).
i e i

If B e  L (X ,Y ), then b(B (K )) =  B*~1b(K ) and (^^jq(p) =  aK(B*p). 

b(Ki T K 2) =  b{K{) n  b{K2) and crKl+K2{p) =  aKl{p) +  aK2{p).

If P  is a convex closed cone, then

b(K  +  P ) =  b{K) PI P -

and
W * )  =  (  UK[P) i t P  6 P ‘

v ' [ Too otherwise.

b(K  T { z 0}) =  b(K) and aK+Xo(p) =  crK(p) +  (p, x0).

If A  G L (X , y ) ,  if L C X  and M  C Y  are convex closed subsets and if 
0 G Int(.A(L) — M ) then

b {L r iA -\ M )) =  b{L) +  A*b{M) (11)

and Vp G 6(PQ, 3q G 6(M ) such that

0LnA-i(M)(p) =  ° l(p  -  a *q )+  aM(q)
=  '^SM ^P ~ A*q) T  aM(q)).

qG.Y

If A  G L [X , Y ), if M  C F  is convex and closed and if 0 G Int (Im (A )—M ), 
then 6(j4_1(M )) =  A*b(M ) and Vp G 6fyl_1(M )), 3g G b(M) satisfying

A * q = p  and oa - um){p ) =  &M(q) =  inf crM{q)-
v A*q=p

If K\ and K 2 are convex closed subsets o f X  such that 0 G Int(ify — K 2) } 
then b(K\ H K 2) =  b{K x) T  b(K2) and for all p G b(K\ n  K 2), there exist 
pi g b { K i ) (i  =  1,2) such that p =  Pi T  p2 and

nic2 (p) =  OKy (pi ) +  ^/c2 (p2 ) =  inf (aKl (pi ) +  <?k2 f e )  ) •
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17.5 Subdifferentiability

D efinition . Suppose that /  : X  —» IRU {- fo o } is a nontrivial convex function. 
Suppose also that rco 6 Dom/  and v G X . Then the limit

£ > /(* „ )(* ) :=  lim /(* o  +  M - / ( * o) (1)
h-*0+ h

exists in IR and is called the right derivative of /  at £o in the direction v.

It satisfies the properties

f { x o) -  f { x o -  v) <  D f (x 0)(v) <  f ( x o +  v) -  f ( x o) (2)

and

v —>• D f(xo )(v )  is convex and positively homogeneous.

D efinition . /  is said to be Gâteaux differentiable at Xq if v —> D f (x 0)(v) :=  
(V f ( x o ) , f )  is linear and continuous. Then the subset

d f(x o) :=  {P G G X , (p,v) <  D / (x 0)(^ )} (3)

is called the subdifferential o f /  at x 0. The subdifferential is a convex closed set 
(which may be empty, for example, if there exists v such that D f(x 0)(v) =  — oo).

If v —> D f(xo )(v )  is a nontrivial lower semi-continuous function from X  to 
IRU {- fo o } then

<r{df(xo)>v) =  D f (x 0)(v). (4)

Suppose that /  is a nontrivial convex function which is subdifferentiable at 
x. Then, the following assertions are equivalent:

(a) V € df(x)\
(b) (p>®) =  f*ip) + / M ;
(c) Vy e  X , f ( x )  -  fa x )  <  f ( y )  -  fa y ) . (5.5)

If in addition /  is lower semi-continuous, then

p e d f(x )  <=> x  G df*(p). (6)

If /  is a convex function which is continuous on the interior of its domain, 
then /  is right differentiable and subdifferentiable on Int Dom /  and satisfies 
the following properties:



17.6 Tangent and Normal Cones 411

(a) (x ,u ) G Int Dom /  x X  —» D f(x )(u )  is upper semi-continuous;
(b) 3c >  0 such that D f(x ) (u ) =  a (d f (x ) ,u ) <  c||w||;
(c) Vx G Int D o m /, d f(x )  is non-empty and bounded;
(d) the set-valued map x  G Int Dom /  -r  d f(x )  is upper hemi-

continuous. (5.7)

If /  is a nontrivial, convex, lower semi-continuous function, then

(a) /  is subdifferentiable on a dense subset o f the domain of / ;
(b) VA >  0, the set-valued map x  —> x  T X df(x) is surjective and 

its inverse Jx :=  (1 T A 5 /(-))-1 is a Lipschitz mapping with
constant 1. (5.8)

If /  : X  —» IR U {T o o } and g : Y  -T IR U {T o o } are nontrivial, convex and 
lower semi-continuous, if A  G L (X , Y ) and if 0 G Int (A D om / — Dom g), then

d ( f + g o A ) ( x ) = d f ( x ) + A * d g ( A x ) .  (9)

In particular, if 0 G Int (Dom /  — Dom g), then d (f  T #)(£) =  d f(x )  T dg(x).
If 0 G Int (Im j4 — Dom^), then d(g o 7l)(x) =  A*dg(Ax).
If K  C X  is convex and closed and if 0 G Int { K —D o m /), then d(f\K)(x) =  

d f{x )  T  Nk (x ).

If / i , . . . ,  f n are n convex lower semi-continuous functions and if Xq G 
n”=1Int Dom fi, then

d (  sup fi ) (x0) =  cô U  dM x o) (10)
\i= 1  n /  * € /(x  o)

where / ( x 0) :=  {i  =  1 , . . .  ,n|/i(x0) =  supj=1... n f j ( x 0)}.

Suppose that /  : X  x Y  —> IRU {T o o } is a nontrivial convex function and 
that g : Y  - »  IR U {T o o } is defined by

g(y) := jgf /(x,y). (n )

If x G X  satisfies g(y) =  f ( x , y ) t then q G dg{y) if and only if (0,g) G d f (x }y).

17.6 Tangent and Normal Cones

D efin ition . Suppose that K  is a convex subset. If x G K  then:

(i) Tk {x ) :=  closure ( (J ^-(K — x )) is the tangent cone to K  at x; 
h>o h

(Ü) Nk {x ) =  {p G  X\(p,x) =  aK(p)} is the normal cone to K  at x. (6.1)
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We observe that

Nk  ( x ) =  dipK (x) =  Tk  ( x ) " ,  Tk  ( x ) =  Nk  (x) '".

If x G Int(A^), then NK(x) =  {0 } and Tjc(x) =  X .

If K  =  {x 0} then iV/c(x0) =  X  and T/c(x0) =  {0 }.
If K  =  B  (the unit ball) and if ||x|| =  1, then

N k ( x ) =  {Ax } a>0 and TK(x) =  { v  €  X|(v,x) <  0}.

If K  =  IR+ and if x G IR+, then

Nk (x ) =  {p G  — IR” \pi =  0 when x* >  0}
Tk (x ) =  G IRn|u* >  0 when x* =  0}.

If M n {x  G IR"| J2i=i x i =  l}> then

N m * ( x ) =  { p  G JRn \pi =  max p j  when X i  >  0}
3= 1 ..... n

71
TMn(x) =  {-i> G IRn| ^2 vi =  0 and Vi >  0 when X{ =  0}.

i =  1

Formulae.

• If K  C L and x G X ,  then TK{x) C TB(x ) and NL(x) C NK(x).

• If I<i C Xi (i =  1 , . . . ,  n), then

-̂ 11,"= i Ki â'1 ’ ■ ■ ■ »Xn) =  n  (x î)
i=i

and
n

N U U  K t ( x l > - - - > x n )  =

i =  1

• If B e  L (X , F ), then

T b (k ) ( B x ) =  closure (BTK{x))

and

Nb {i<)(Bx ) =  B*~1Nk (x ).

• TKl+k2 {xi +  x2) =  closure {TKl (xi ) -f TK2 (x2) ) 
and

X k i+k2(x i +  x 2) — ^ K i(x i ) n Nk2(x2).
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• If A G L (X , Y ), and if L C X  and M  c  Y  are convex closed sets satisfying 
0 G Int(7l(L) — M ), then

=  Tl {x ) n  A~1TM(Ax)

and

N lda- i(M)(x ) =  Nl (x ) 4- A*Nm (A x ).

• If A g L (X yY ) and if M  C Y  is a convex closed subset satisfying 0 G 
Int (ImTl — M ), then

Ta- hm)(x ) =  A~1Tm (A x )

and

^A~1(M) (®) — A* Nm (Ax).

• If Ki and K 2 are convex closed subsets of X  such that 0 G Int (K\ — K 2), 
then

TKir\K2(x ) =  TKl(x ) H Tk2(x )

and

^K iDK2{x ) =  NKl(x) +  Nk2(x ).

17.7 Optimisation

We consider the minimisation problem

^ := j n f / (æ) =  - /* ( 0 )  (*)

where /  is a nontrivial function from X  to 1R U {+ o o } . We denote the set of 
points at which /  attains its minimum by M  {æ G Dom f\ f(x ) =  i»}.

If /  is both lower semi-continuous and lower semi-compact, there exists 
at least one solution of (*). (7.1)

If /  is strictly convex, there exists at most one solution of (*). (7.2)

If /  is convex, the solutions of (*) are solutions of the inclusion

0 G d f (x ) (Fermat’s rule) (3)

If /  is convex and lower semi-continuous, then

M  =  d f* ( 0).
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If /  is convex and lower semi-continuous, and if

0 G Int (Dom /* ) (4)

then there exists a solution of (*).

If /  is nontrivial, convex and lower semi-continuous and if A >  0, for every 
x  >  0, there is a unique solution J\{x) of the proximation problem

The functions f\ are convex and continuously differentiable and we have

and the penalisation property

(a) inf f ( x )  =  jun fx {x )

(b) If < 5 /*(0 )^0 , lim V A (s )  =  0.
A—voo

Suppose we have:

• two Hilbert spaces X  and Y\

• two nontrivial, convex, lower semi-continuous functions 
/  : X  —> IRU {+ o o }  and g : Y  —» IR U {+ o o } ;

• a continuous linear operator A  from X  to Y. (7.6)

We consider the two minimisation problems

The mapping J\ satisfies

(a) || Jxx -  .Jxy\\ <  ||z -  !/||

(b) ||(1 -  J>)x -  (1 -  Ja)2/|| <  ||x -  J/||

(c) JA =  (1 +  \ d f {■))-'.

V / a(z ) =  -  J\x) e  d f  (Jxx).

In addition, we have the régularisation property

\/x G D om /, f ( x )  =  lim f\(x) and x  =  lim J\x

h(y) :=  inf ( f (x )  -  (p ,x) + g (A x  +  y))

and

e*(p) := inf,(/*(P “  Aq) + 9*(q) ~ (9,3/))-
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(7)

y € Int (Dorn g — j4Dom/ ) (8)

then the following conditions are equivalent:

(i) x  is a solution o f the problem h(y).

(ii) x  belongs to the sub differential de*{p) of the marginal function e*.

(iii) x  is a solution o f the inclusion p € d f(x )  +  A*dg(Ax +  y).

(c) Similarly, the assumption (7.8) implies that there exists a solution q o f the 
problem e*(p) and the two assumptions together imply the equivalence of the 
following conditions

(i) g is a solution of the problem e*(p);

(ii) q belongs to the subdifferential dh[y) of the marginal function h;

(iii) q is a solution of the inclusion y G dg*(q) — A df*(p  — A*q).

(d) The two assumptions together imply that the solutions x  and q of the prob­
lems h(y) and e*(p), respectively, are the solutions of the system of inclusions

(i)
(Ü)

P e  d f(x )  +  A*(q) 
y € - A x  +  dg* (q).

17.8 Two-Person Games

Suppose that /  : E  x F  —► IR is a function of two variables. 
The following conditions on (x , ÿ) G E  x F  are equivalent

V ( x , y ) e E x F ,  f { x , y ) < f ( x , y ) (1 )

and

sup f ( x ty) =  inf sup/(æ , 2/)
y € F  xeJ  ̂ y&F
inî f ( x , y )  =  sup inf f ( x , y ) .
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The pair (x, y ) is then called a saddle point of / .

If we suppose that

(i) E  is compact

(ii) Vy € F , x  —» / ( x , y )  is lower semi-continuous 

then, there exists x G F  such that

sup f ( x , y )  =  inf sup f { x , y )  =  sup inf s u p / (x ,y )
y e F  x(zE ygjP K £ K x ^E y £ K

where /C is the set of finite subsets K  of Y.

If we suppose that

(i) E  is compact

(ii) Vy G F,  x  —» f ( x , y )  is convex and lower semi-continuous

(iii) Vx G F , y —» / ( x , y )  is concave 

then, there exists x  G E  such that

sup f ( x , y )  =  inf sup f ( x ty) =  sup in f / ( x , y ) .
y e F  x e E  y £ F  ye F x ^ E

If we suppose that

(i) E  and F  are convex and compact

(ii) Vy € jF, x —» f { x , y )  is convex and lower semi-continuous

(iii) Va; G E, y —» /(a;, y) is concave and upper semi-continuous 

then /  has a saddle point.

If we suppose that

(i) E  is compact

(ii) Vy G F , a: —> f ( x , y ) is lower semi-continuous

(iii) F  is convex

(iv) Vx G F , y —> f { x , y )  is concave

then there exists x G E  such that

su p / (x ,y )  =  sup i n f / ( x , F ( x ) )  =  inf sup / (C (y ) ,y ) .  
y e F  D e C (E ,F )x e E  CeC{F,E) y e p
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K y  Fan’s Inequality. If we suppose that K  and 0 : K  x K  -> IR satisfy 

(i) K  is convex and compact 

(ü) My G K , x  —>■ <f>(x,y) is lower semi-continuous

(iii) Mx G K ,  y —» (f)(x,y) is concave

(iv) Vy G JC, 2/) <  0,

then there exists x e  E  such that My G K , 0(5, y) <  0. (8.6)

17.9 Set-valued Maps and the Existence of Zeros and 
Fixed Points

D efin itions. A set-valued map C  from K  to Y  is upper semi-continuous at Xq 
if

Me >  0, 3t7 > 0  such that Mx G Bk (xo, t])7 C( x ) C C(æ0) +  £B. (1)
C  is upper hemi-continuous at Xq if

Mp G Y*y x —> a(C(x)yp)  is upper semi-continuous at Xo- (2)

C  is lower semi-continuous at x0 if, for any sequence x n converging to Xq and 
for all 2/o € C (x o), there exists a sequence of elements yn G C( xn) converging to 
2/0 -

Any upper semi-continuous set-valued map is upper hemi-continuous. (9.3)

If /  : X  4  R U  {+ o o }  is convex and lower semi-continuous and 
if IntDom /  0, then x  G IntDom /  —> df ( x )  C X * is upper hemi-
continuous. (9-4)

B a n a ch -P ica rd  F ixed -P oin t T heorem . If K  is a complete metric 
space and the mapping D  is a contraction (3fc <  1 such that Mx,y G K,  
d(D{x) ,D{y) )  <  kd(x,y) )  from K  to itself, then D  has a unique fixed 
point. (9.5)

Suppose that C  is a set-valued map from a complete metric space K  to itself. 
Suppose that there exists a nontrivial positive function /  from K  to IRU {+ o o }  
such that

Mx G K,  By G C(x)  such that f ( y )  +  d(x,y)  <  f ( x ) .  (6)

Then one of the two assumptions

(a) /  is lower semi-continuous

(b) the graph of C  is closed 

implies that C  has a fixed point.
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Three-Poles Lemma. We consider n closed subsets Ft of the simplex 
Mn := (x  € IR+|£?=iZi = 1}. If \/x G Mn, x G U{i\Xi>0}Fi then 
H?=1Fi ?  0. (9.7)

Brouwer’s Fixed-Point Theorem. If K  is a convex compact subset of 
a Hilbert space and if D  is a continuous mapping from K  to itself, then 
D  has a fixed point. (9-8)

Gale—Nikaïdo-Debreu Theorem. Suppose that C  is a set-valued map from 
M n =  { x 6 IR” | ££=i x i =  1} to satisfying

(i) C  is upper hemi-continuous

(ii) \/x G M n, C(x)  =  C(x)  — IR+ is convex and closed

(iii) \/x G M n, <r(C(x),x) >  0.

Then there exists x G M n such that 0 G C{x) .  (9.9)

Brouwer—Ky Fan Theorem. Suppose that K  is a convex compact subset of 
X  and that C  is an upper hemi-continuous set-valued map from K  to X  with 
convex closed values. If we suppose that

Vx G K, C(x)  O Tk (x ) ^  0

then

(a) 3x  G K  such that 0 G C{x)
(b) \/y G K , 3 x  G K  such that y  G x — C(x) .  (9.10)

Fixed-Point and Surjectivity Theorem. Suppose that K  c  X  is a convex 
compact subset and that D  : K  —> X  is an upper hemi-continuous set-valued 
map with convex closed values.
(a) If D  is re-entrant in the sense that

Vx G K, D(x)  n  (x +  Tk (x )) 0

(in particular any D : K  —»• K  is re-entrant) then D  has a fixed point x* G K.
(b) If D  is salient in the sense that

VxGify  £ > ( x ) n ( x - r * ( x ) ) ^ 0

then

(i) D  has a fixed point x* G K
(ii) My G FT, 3x G K  such that y G D(x). (9.11)
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Suppose we have:

• two convex closed subsets L C X  and M  C Y ;

• a convex compact subset P  C.Y*\

• a continuous mapping c : L x P  - »  Y ,

satisfying the following conditions:

(i) Va: G L, p c(x ,p ) is affine
(ü) Va: G L, Vp G P, c(x ,p ) G Tjr(x)

and

(i) L O A~l (M )  is compact
(ü) 0 € Int (A(L) -  M )
(iü) V y e M ,  NM{y) C Ua>o AP

together with

Va: G L, Vp G P, (p ,Ac(x,p )) <  0.

Then there exist x  G L and p G P  satisfying

Ær G M  and c(x,p)  =  0. (12)

Leray—Schauder Theorem. We consider a convex compact subset /T C IRn 
with a non-empty interior and a set-valued map C  from K  x [0,1] to IRn which 
is upper hemi-continuous with convex closed values. We suppose that

(i) Va: G K, C(x,  0) fl TK(x)  ±  0
(ü) VA G [0,1[, Vx G dK,  0 i  C { x , A).

Then there exists x  G K  such that 0 G C(x,  1). (9.13)

Suppose that K  C X  is a convex compact subset and that C  : K  —» X* 
is an upper semi-continuous set-valued map with non-empty, convex, compact 
values. Then:

3x G K  such that 0 G C(x)  — NK{x). (14)

Suppose that K  C X  is a convex compact subset and that C  : K  —> K  is an 
upper hemi-continuous set-valued map with non-empty, convex, closed values. 
We consider a function <j) : K  x K  —> IR satisfying

Vy G K, x  <^(x,y) is lower semi-continuous 
Vx G K y y —> 4>(xyy) is concave 

Vy G K , <£(y, y) <  0.

(i)
(ü)
(iii) (9.1S)
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Suppose that the set-valued map C  and the function 4> are linked by the 
property

{x  G K  | sup (f)(x,y) <  0} is closed.
y€C(x)

Then there exists a solution x G K  of

(i) x  G C(x)
(ii) sup <f>(xt y ) <  0.

y£C {x)

We consider a finite covering { A j j - j  n of a metric space E. There exists a 
continuous partition of unity subordinate to this covering, in other words, there 
exist n continuous functions a,i : E  [0,1] such that

n
(i) Vx G E,  y^Qj(x) =  1

i- 1
(ii) Vi =  1 , . . .  ,n , support (a*) C (9.16)

where support(a,) :=  closure {x  G Z?|ai(x) 7̂  0}.

We consider two mappings F  and G from Mn to IRm satisfying

(i) the components /* of F  are convex and lower semi-continuous;

(ii) the components gi of G are concave, positive and upper semi-continuous;

(iii) 3p G Mm such that Vx G M n, (p, F(x)) >  0;

(iv) 3x G Mn such that Vi =  1 , . . . ,  n, <?i(x) > 0.

(a) Then there exist S >  0, x G Mn and p G Mm such that

(i) Vi = 1, . . . , n, Sfi(x) < gi{x)
(ii) Vx G M n, (G(x) -  6F(x),p) <  0
(iii) Vi =  1 , . . . ,  n, p i ( S f i ( x )  -  9i { x )) =  0. (9.17)

(b) The number Ô >  0 is defined by

1 . (p,F(x)) . c (p>F{x))
-  =  sup inf -— - -  f -  =  inf sup -— (. 
6 p e M m x € M n (p, G(x)) x £ M n p e M m  (p, G(x)) (*)

If A > 0 and x G Mn satisfy the inequalities A /i(x) <  gi(x), Vi =  1, . . .  ,n, then 
A <  6.

(c) For all p > 6 and for all y G Int(IR™), there exist (3 >  0 and x G M n such 
that

Vi =  1, . . . ,  n pfi{x) -  9i{x) <  pyi.



17.9 Set-valued Maps and the Existence of Zeros and Fixed Points 421

We consider two matrices F  and G  from IRn to IRm satisfying

(i) the coefficients gij of G  are non-negative;

(ii) Vf =  l , . . . , m , E S . l f t i > 0 ;

(iii) Vj =  > 0 .

Then there exist x E M n, p E M m and <5 >  0 such that

0)
(ü)
(iü)

6Fx <  Gx  
6F*p > G*p 

5(p,Fx)  =  {pt Gx).

Moreover, for all p >  a  and all y E IntIR™, there exists x  E IR” such that

Suppose that F  is a mapping from M n to IRn satisfying

(i) the components /,- of F  are convex and lower semi-continuous;

(ii) 3p E M n H Int(IR!J.) such that Mx E M n, (p, F ( x ) )  >  0;

(iii) if Xi =  0 then f i ( x )  <  0.

Suppose that G  is another mapping from M n to IRn satisfying

(i) the components gi of G  are concave and lower semi-continuous;

(ii) Væ E M n, Vz =  1 , . . . ,  n, p,(x) >  0.

We consider the number 6 >  0 defined by (*) (above). Then there exist 
x  E M n fl Int(IR+) and p  E M n D Int(IR!J.) such that

If p >  Ô and y E Int(IR!J;) are given, then there exist (3 >  0 and x E M n 
such that

p F x  — Gx <  y. (18)

(i)
(Ü)

SF(x) =  G(x)
Vx €  M n, {p, G(x)  -  SF(x)) <  0.

pF(x )  -  G(x) =  py (19)
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P erron—F robenius T h eorem . Suppose that G is a positive matrix.

(a) G has a strictly positive eigenvalue 6 and an associated eigenvector 
x with strictly positive components.

(b) 6 is the only eigenvalue associated with an eigenvector of Mn.
(c) Ô is greater than or equal to the absolute value of all other eigen­

values of G
(d) The matrix fi — G is invertible and {y — G)~l is positive if and

onty if y  >  Ô. (9.20)

We consider a mapping H from IR+ to IRn satisfying

(i) the components ht of H are convex, positively homogeneous and lower 
semi-continuous;

(ii) 3b e  JR such that Vx G IR+, 6x, >  /i,(x);

(iii) Vx G Mn, 3q G Mn such that (q,H(x)) >  0.

Then \/y G IntlR^., 3x G IntIR” such that H(x) =  y. (9.21)

T h eorem  (S u rjectiv ity  o f  the M  M atrices). Suppose that H is a matrix 
from IR71- to IRn satisfying

Vi ^  j ,  hij <  0. (22)

The following conditions are equivalent

(a) Vx G M n, 3q G Mn such that (q, Hx) >  0;

(b) H is invertible and H~l is positive;

(c) H* is invertible and H*~l is positive.
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